1
|
Li J, Zhu Y, Ji X, Huang D, Ge M, Wang W, Li J, Li M, Chen C, Zhao J. Oxidation of Polycyclic Aromatic Hydrocarbons (PAHs) Triggered by a Photochemical Synergistic Effect between High- and Low-Molecular-Weight PAHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17807-17816. [PMID: 39347567 DOI: 10.1021/acs.est.4c08661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Photooxidation of polycyclic aromatic hydrocarbons (PAHs), which are widely observed in atmospheric particulate matter (PM), largely determines their atmospheric fate. In the environment, PAHs are highly complex in chemical composition, and a great variety of PAHs tend to co-occur. Despite extensive investigation on the photochemical behavior of individual PAH molecules, the photochemical interaction among these coexisting PAHs is still not well understood. Here, we show that during photooxidation, there is a strong photochemical synergistic effect among PAHs extracted from soot particles. We find that neither small PAHs with low molecular weights of 200-350 Da and 4-8 aromatic rings (named PAHsmall) nor large PAHs with high molecular weights of 350-600 Da and 8-14 aromatic rings (named PAHlarge) undergo photooxidation under red-light irradiation (λ = 648 nm), even though PAHlarge can absorb light with this wavelength. Interestingly, when PAHlarge is mixed with PAHsmall, substantial photooxidation is observed for both PAHlarge and PAHsmall. Comparisons of in situ infrared (IR), high-resolution mass spectrometry, and electron paramagnetic resonance analysis indicate that the presence of PAHsmall inhibits the light quenching effect arising from the π-π stacking of PAHlarge. This leads to the formation of singlet oxygen (1O2), which initiates the photooxidation. Our findings reveal a new mechanism for the photooxidation of PAHs and suggest that complex atmospheric PAHs exhibit distinct photoreactivity from simple systems.
Collapse
Affiliation(s)
- Jiachun Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yifan Zhu
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaojie Ji
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Maofa Ge
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weigang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meng Li
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Hinton P, Villeneuve PJ, Galarneau E, Larsen K, Wen D, Meng J, Savic-Jovcic V, Zhang J, King WD. Ambient polycyclic aromatic hydrocarbon exposure and breast cancer risk in a population-based Canadian case-control study. Cancer Causes Control 2024; 35:1165-1180. [PMID: 38630334 PMCID: PMC11266283 DOI: 10.1007/s10552-024-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitous pollutants recognized as established human carcinogens and endocrine-disrupting chemicals. PAHs have seldom been modeled at the population-level in epidemiological studies. Fluoranthene is a prevalent PAH in urban settings and correlates with the occurrence of other PAHs. The purpose of this study was to evaluate associations between long-term residential exposure to ambient PAHs and breast cancer risk, both pre- and post-menopausal, in Canada. METHODS Using the National Enhanced Cancer Surveillance System (NECSS), a national-scale Canadian population-based case-control study, annual fluoranthene exposures were estimated using the GEM-MACH-PAH chemical transport model on the basis of geocoded residential histories throughout a 20-year exposure window. Odds ratios (ORs) and 95% confidence intervals (CIs) controlling for potential confounders were estimated using logistic regression. Separate analyses were conducted for Ontario and national samples given a finer-resolution exposure surface and additional risk factor information available for Ontario. RESULTS Positive associations were observed between fluoranthene exposure and premenopausal breast cancer, with inconsistent findings for postmenopausal breast cancer. For premenopausal breast cancer, adjusted ORs of 2.48 (95% CI: 1.29, 4.77) and 1.59 (95% CI: 1.11, 2.29) were observed when comparing the second highest category of exposure to the lowest, among the Ontario and national samples, respectively. For postmenopausal breast cancer, adjusted ORs were 1.10 (95% CI: 0.67, 1.80) and 1.33 (95% CI: 1.02, 1.73). Associations for the highest level of exposure, across both samples and menopausal strata, were non-significant. CONCLUSION This study provides support for the hypothesis that ambient PAH exposures increase the risk of premenopausal breast cancer.
Collapse
Affiliation(s)
- Patrick Hinton
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | | | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, ON, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Verica Savic-Jovcic
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Cao C, Wu YY, Lv ZY, Wang JW, Wang CW, Zhang H, Wang JJ, Chen H. Uptake of polycyclic aromatic hydrocarbons (PAHs) from PAH-contaminated soils to carrots and Chinese cabbages under the greenhouse and field conditions. CHEMOSPHERE 2024; 360:142405. [PMID: 38782134 DOI: 10.1016/j.chemosphere.2024.142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.
Collapse
Affiliation(s)
- Chun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Yu-Yao Wu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Zhen-Ying Lv
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Chen-Wen Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jun-Jian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina, 29634, United States.
| |
Collapse
|
4
|
McLarnan SM, Bramer LM, Dixon HM, Scott RP, Calero L, Holmes D, Gibson EA, Cavalier HM, Rohlman D, Miller RL, Kincl L, Waters KM, Anderson KA, Herbstman JB. Predicting personal PAH exposure using high dimensional questionnaire and wristband data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:679-687. [PMID: 38177333 DOI: 10.1038/s41370-023-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive environmental pollutants with a variety of known health effects. While significant work has been completed to estimate personal exposure to PAHs, less has been done to identify sources of these exposures. Comprehensive characterization of reported sources of personal PAH exposure is a critical step to more easily identify individuals at risk of high levels of exposure and for developing targeted interventions based on source of exposure. OBJECTIVE In this study, we leverage data from a New York (NY)-based birth cohort to identify personal characteristics or behaviors associated with personal PAH exposure and develop models for the prediction of PAH exposure. METHODS We quantified 61 PAHs measured using silicone wristband samplers in association with 75 questionnaire variables from 177 pregnant individuals. We evaluated univariate associations between each compound and questionnaire variable, conducted regression tree analysis for each PAH compound and completed a principal component analysis of for each participant's entire PAH exposure profile to determine the predictors of PAH levels. RESULTS Regression tree analyses of individual compounds and exposure mixture identified income, time spent outdoors, maternal age, country of birth, transportation type, and season as the variables most frequently predictive of exposure.
Collapse
Affiliation(s)
- Sarah M McLarnan
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA.
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Holly M Dixon
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Richard P Scott
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Lehyla Calero
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Darrell Holmes
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Elizabeth A Gibson
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Haleigh M Cavalier
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Diana Rohlman
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Laurel Kincl
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| |
Collapse
|
5
|
Moon HG, Bae S, Chae Y, Kim YJ, Kim HM, Song M, Bae MS, Lee CH, Ha T, Seo JS, Kim S. Assessment of potential ecological risk for polycyclic aromatic hydrocarbons in urban soils with high level of atmospheric particulate matter concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116014. [PMID: 38295737 DOI: 10.1016/j.ecoenv.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Seonhee Bae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yooeun Chae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yong-Jae Kim
- Medical Industry Venture Center, Korea Testing Laboratory, Wonju 26495, the Republic of Korea
| | - Hyung-Min Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, the Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, the Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Taewon Ha
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Jong-Su Seo
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| | - Sooyeon Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| |
Collapse
|
6
|
Chen R, Tabeta S. Dynamic multimedia approach for source apportionment of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 350:141036. [PMID: 38151061 DOI: 10.1016/j.chemosphere.2023.141036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
This study was performed to evaluate the variable indicators of polycyclic aromatic hydrocarbons (PAHs) source apportionment by using an unsteady-state multimedia model. The identical indicators have been used in different environmental bulks for more than 20 years, which resulted in huge errors in source apportionment. Generated through four emission arrays, the diagnostic ratios for indicators revealed dimensionless OR, in air/soil and seawater/sediment reached ∼3.63 and ∼0.24 for Fla/Pyr, and for Ant/Phe the ratio was ∼0.31 and ∼0.18, and coastal OR for air/seawater was higher than the offshore, suggesting both compartmental and spatial divergences. The PCA indicated similar loading distribution and primary factors, shared by emission, atmosphere, and seawater arrays, whereas the slow transport between air/water and soil/sediment, weak degradation, and original concentration level might result in factors in soil and sediment separated or merged in dynamic conditions. The physicochemical divergence of indicators could be intensified after long-term environmental transport, misleading the source apportionment. Therefore, the result elucidated the essential evaluation of additional inorganic indicators and necessary verification by simultaneous sampling measurement on vertical compartments.
Collapse
Affiliation(s)
- Ruize Chen
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8563 Japan.
| | - Shigeru Tabeta
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8563 Japan
| |
Collapse
|
7
|
Deng J, Xie J, Lu Q, Xiao X, Wu Y, Liu N, Luo L, Luan T, Yang Y. Nanospray Laser-Induced Plasma Ionization Mass Spectrometry for Rapid and Sensitive Analysis of Polycyclic Aromatic Hydrocarbons and Halogenated Derivatives. Anal Chem 2023; 95:16791-16795. [PMID: 37937882 DOI: 10.1021/acs.analchem.3c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 μg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.
Collapse
Affiliation(s)
- Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialiang Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xu Xiao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yuehua Wu
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Ning Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
8
|
Dong Z, Kong Z, Dong Z, Shang L, Zhang R, Xu R, Li X. Air pollution prevention in central China: Effects on particulate-bound PAHs from 2010 to 2018. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118555. [PMID: 37418927 DOI: 10.1016/j.jenvman.2023.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Long-term trends in particulate-bound polycyclic aromatic hydrocarbon (PAH) concentrations in air in Zhengzhou (a severely polluted city in central China) between 2010 and 2018 were studied to assess the effectiveness of an air pollution prevention and control action plan (APPCAP) implemented in 2013. The PM2.5, sum of 16 PAHs (Σ16 PAHs), benzo[a]pyrene (BaP), and BaP toxic equivalent concentrations were high before 2013 but 41%, 77%, 77%, and 78% lower, respectively, after the APPCAP. The maximum daily Σ16 PAHs concentration between 2014 and 2018 was 338 ng/m3, 65% lower than the maximum of 961 ng/m3 between 2010 and 2013. The ratio between the Σ16 PAHs concentrations in winter and summer decreased over time and was 8.0 in 2011 and 1.5 in 2017. The most abundant PAH was benzo[b]fluoranthene, for which the 9-year mean concentration was 14 ± 21 ng/m3 (15% of the Σ16 PAHs concentration). The mean benzo[b]fluoranthene concentration decreased from 28 ± 27 ng/m3 before to 5 ± 4 ng/m3 after the APPCAP (an 83% decrease). The mean daily BaP concentrations were 0.1-62.8 ng/m3, and >56% exceeded the daily standard limit of 2.5 ng/m3 for air. The BaP concentration decreased from 10 ± 8 ng/m3 before to 2 ± 2 ng/m3 after the APPCAP (a 77% decrease). Diagnostic ratios and positive matrix factorization model results indicated that coal combustion and vehicle exhausts were important sources of PAHs throughout the study period, contributing >70% of the Σ16 PAHs concentrations. The APPCAP increased the relative contribution of vehicle exhausts from 29% to 35% but decreased the Σ16 PAHs concentration attributed to vehicle exhausts from 48 to 12 ng/m3. The PAH concentration attributed to vehicle exhausts decreased by 79% even though vehicle numbers strongly increased, indicating that pollution caused by vehicles was controlled well. The relative contribution of coal combustion remained stable but the PAH concentration attributed to coal combustion decreased from 68 ng/m3 before to 13 ng/m3 after the APPCAP. Vehicles made dominant contributions to the incremental lifetime cancer risk (ILCRs) before and after the APPCAP even though the APPCAP decreased the ILCRs by 78%. Coal combustion was the dominant source of PAHs but contributed only 12-15% of the ILCRs. The APPCAP decreased PAH emissions and changed the contributions of different sources of PAHs, and thus strongly affected the overall toxicity of PAHs to humans.
Collapse
Affiliation(s)
- Zhangsen Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zihan Kong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhe Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Luqi Shang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiqin Zhang
- Institute of Environmental Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruixin Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Wang H, Huang X, Kuang Z, Zheng X, Zhao M, Yang J, Huang H, Fan Z. Source apportionment and human health risk of PAHs accumulated in edible marine organisms: A perspective of "source-organism-human". JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131372. [PMID: 37060753 DOI: 10.1016/j.jhazmat.2023.131372] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Most PAHs produced by human activities can be absorbed and accumulated by edible organisms and pose a potential hazard to human health. However, the source apportionment and human health risk of PAHs accumulated in edible organisms remains largely unknown. Therefore, we conducted source analysis and health risk assessment based on the PAH concentrations in ten marine fish from coastal areas of Guangdong, China. Results showed that the pollution of PAHs in fish organisms was at "Minimally polluted" level, and that all marine fish had the ability to accumulate PAHs. Risk assessment indicated Carcinogenic risk of PAHs in four populations was at a "Cautionary risk" level, with urban children suffered the highest risk. Petroleum pollution, Coal and biomass combustion, and Marine transport emissions were identified as the main anthropogenic sources for PAHs in organisms, and Marine transport emissions accounted for the highest Carcinogenic risk. The Acceptable daily intake for all populations were far below their actual daily intake without causing "Cautionary risk". Our findings provide new insights into the source apportionment and health risk of PAHs from a "source-organism-human" perspective, and suggested that joint management of three anthropogenic sources would be an effective way to prevent the health risks of PAHs.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zexing Kuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Figueiredo DM, Lô S, Krop E, Meijer J, Beeltje H, Lamoree MH, Vermeulen R. Do cats mirror their owner? Paired exposure assessment using silicone bands to measure residential PAH exposure. ENVIRONMENTAL RESEARCH 2023; 222:115412. [PMID: 36736760 DOI: 10.1016/j.envres.2023.115412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
It has been suggested that domestic animals can serve as sentinels for human exposures. In this study our objectives were to demonstrate that i) silicone collars can be used to measure environmental exposures of (domestic) animals, and that ii) domestic animals can be used as sentinels for human residential exposure. For this, we simultaneously measured polycyclic aromatic hydrocarbons (PAHs) using silicone bands worn by 30 pet cats (collar) and their owner (wristband). Collars and wristbands were worn for 7 days and analyzed via targeted Gas Chromatography-Mass Spectrometry (GC-MS). Demographics and daily routines were collected for humans and cats. Out of 16 PAHs, 9 were frequently detected (>50% of samples) in both wristbands and collars, of which Phenanthrene and Fluorene were detected in all samples. Concentrations of wristbands and collars were moderately correlated for these 9 PAHs (Median Spearman's r = 0.51 (range 0.16-0.68)). Determinants of PAH concentrations of cats and humans showed considerable overlap, with vacuum cleaning resulting in higher exposures and frequent changing of bed sheets in lower exposures. This study adds proof-of-principle data for the use of silicone collars to measure (domestic) animal exposure and shows that cats can be used as sentinels for human residential exposure.
Collapse
Affiliation(s)
- Daniel M Figueiredo
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands.
| | - Serigne Lô
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Esmeralda Krop
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Jeroen Meijer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands; Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Henry Beeltje
- TNO Environmeral Modelling, Sensing & Analysis, Princetonlaan 8, 3584 CB, Utrecht, the Netherlands; AQUON, De Blomboogerd 12, 4003 BX, Tiel, the Netherlands
| | - Marja H Lamoree
- Department of Environment & Health, Faculty of Science, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
11
|
Raoelison OD, Valenca R, Lee A, Karim S, Webster JP, Poulin BA, Mohanty SK. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120713. [PMID: 36435284 DOI: 10.1016/j.envpol.2022.120713] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities. A comparison of the pre-and post-fire water quality data from 44 studies reveals that wildfire could increase the concentration of many pollutants by two orders of magnitude. However, the concentration increase is sensitive to when the sample was taken after the wildfire, the wildfire burned area, discharge rate in the surface water bodies where samples were collected, and pollutant type. Increases in burned areas disproportionally increased total suspended solids (TSS) concentration, indicating TSS concentration is dependent on the source area. Increases in surface water flow up to 10 m3 s-1 increased TSS concentration but any further increase in flow rate decreased TSS concentration, potentially due to dilution. Nutrients and suspended solids concentrations increase within a year after the wildfire, whereas peaks for heavy metals occur after 1-2 years of wildfire, indicating a delay in the leaching of heavy metals compared to nutrients from wildfire-affected areas. The concentration of polycyclic aromatic hydrocarbons (PAHs) was greatest within a year post-fire but did not exceed the surface water quality limits. The analysis also revealed inconsistency in the existing sampling protocols and provides a guideline for a modified protocol along with highlighting new research opportunities. Overall, this study underlines the need for consistent reporting of post-fire water quality data along with environmental factors that could affect the data so that the post-fire water quality can be assessed or compared between studies.
Collapse
Affiliation(s)
- Onja D Raoelison
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| | - Renan Valenca
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Allison Lee
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Samiha Karim
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Jackson P Webster
- Department of Civil Engineering, California State University, Chico, USA
| | - Brett A Poulin
- Department of Environmental Toxicology, The University of California, Davis, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| |
Collapse
|
12
|
Siudek P. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in the Coastal Urban Environment of Poland: Sources and Transport Patterns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14183. [PMID: 36361064 PMCID: PMC9657786 DOI: 10.3390/ijerph192114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study combines an interseasonal variation of deposition profiles of fine-particulate-bound polycyclic aromatic hydrocarbons (PM2.5-bound PAHs) with source apportionment analysis. Comprehensive measurements were conducted in four representative periods of 2019 in the coastal urban region of the Baltic Sea in Poland. The mean daily deposition flux of Σ13PAHs was 229 ng m-2 day-1, which was lower than in other urban/industrial sites of Europe and Asia. The seasonal PAHs distribution exhibited a clear U-shaped pattern, reaching maximum values in January and December and the minimum in June. A strong influence of local/regional anthropogenic emissions and meteorological factors (precipitation, ambient temperature, wind regimes) was observed. The contribution of medium molecular weight PAHs (fluoranthene, pyrene, benzo(a)anthracene, chrysene) to the total sum of PAHs deposition fluxes increased from 24% in spring to 38% in summer, as a result of photochemistry, urban traffic, and shipping emissions. The highest contribution of 5- and 6-ring PAHs occurred primarily in autumn (55%), followed by winter (39%), spring (35%), and summer (26%). Benzo(a)pyrene (human carcinogenic compound) had a relatively high deposition flux in winter, which was almost 14 and 20 times higher than the values registered in spring and summer, respectively. The FLEXTRA dispersion model was used to study potential pollution regions for PM2.5-bound PAHs and to investigate changes in the PAH deposition regime in different seasons. This study reveals that the winter contribution of PAHs was mostly impacted by local urban activities (i.e., residential heating and coal-fired power plants). Winter PAH deposition fluxes were particularly associated with atmospheric particles transported from surrounding areas and industrially impacted regions of SE-S-SW Poland and Europe.
Collapse
Affiliation(s)
- Patrycja Siudek
- Institute of Meteorology and Water Management, Waszyngtona 42, PL-81-342 Gdynia, Poland
| |
Collapse
|
13
|
Li R, Hua P, Krebs P. Global Trends and Drivers in Consumption- and Income-Based Emissions of Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:131-144. [PMID: 34935358 DOI: 10.1021/acs.est.1c04685] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of the most hazardous substances. As unavoidable byproducts of petrogenic and pyrogenic processes, their emissions are dominantly linked to various economic sectors. In international trade, not only final consumption but also primary input can transfer the emissions among regions. Therefore, a long-term impact assessment of the international trade on PAH global emissions based on the final consumption and primary input could significantly benefit worldwide PAH mitigation strategies. This study investigated the changes in consumption- and income-based PAH emissions and interregional flows of worldwide regions, using the latest available data from 1999 to 2014. Results show that in 2014, 16.8 and 10.1% of global PAH emissions were transferred by consumption and primary input through international trade. Meanwhile, the production-, consumption-, and income-based emissions in most regions were decreasing. Furthermore, from the consumption-based perspective, sub-Saharan Africa surpassed China and became the largest net exporter of consumption-based emissions. From the income-based perspective, the net income-based outflows of India and the rest of Asia increased significantly, indicating the income-based emission leakage in emerging markets. From the socioeconomic perspective, emission intensity dominated the global decline in PAH emissions. As the two main factors driving the increase in emissions, the primary input structure (41%) had a larger effect than the final demand level (28%) from 1999 to 2014. Therefore, global cooperation, through the mitigation strategies of reducing emission factors and improving international trade patterns, is posited as an efficient strategy to reduce PAH pollution and related health risks.
Collapse
Affiliation(s)
- Ruifei Li
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden 01062, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
14
|
Wu J, Bian J, Wan H, Sun X, Li Y. Probabilistic human health-risk assessment and influencing factors of aromatic hydrocarbon in groundwater near urban industrial complexes in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149484. [PMID: 34392216 DOI: 10.1016/j.scitotenv.2021.149484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/04/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Organic pollutants are common in the environment, very difficult to remove, and pose a serious threat to human health. Probabilistic risk assessment advances conservative single-point estimation and brings a new perspective to risk assessment. From 2009 to 2019, we monitored the distribution of major pollutants in an industrial park in Northeastern China. The result showed the maximum concentration of benzene reached 73,680 μg/L in 2009, benzo[a]pyrene reached 36.80 ng/L in 2016. These concentrations are significantly above the levels set by Chinese regulatory agencies. The single-factor index increases year by year, and pollutants gradually spread from the pollution leakage source to surrounding areas. A new method was used to quantify the human health risk from groundwater organic pollution accurately, based on the triangular fuzzy numbers coupled with the Monte Carlo simulation. The Monte Carlo simulation was used to simulate the triangular fuzzy numbers. This simplified the operation between the triangular fuzzy numbers and their function successfully and obtained the risk as a set of values. The results indicated that non-carcinogenic risk was negligible in all age groups (children, adolescents, and adults). Conversely, when it comes to carcinogenic risks, adults were about 50-270 times the tolerable level of risk due to long exposure years and wide skin contact areas. Oral ingestion played an essential role in total exposure (>90%) compared to dermal contact. Control of exposure duration and intake should be prioritized when making decisions to reduce risk uncertainty. Monte Carlo simulation-triangular fuzzy numbers can effectively reduce the risk of uncertainty and reflect the complex conditions of the groundwater environment for small amounts of data or inaccurate data.
Collapse
Affiliation(s)
- Juanjuan Wu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Jianmin Bian
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Hanli Wan
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Xiaoqing Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Yanmei Li
- Department of Mine, Metallurgy and Geology Engineering, Engineering Division, Campus of Guanajuato, University of Guanajuato, Guanajuato C.P. 36020, Mexico
| |
Collapse
|
15
|
Zhao H, Gu Y, Liu X, Liu J, Waigi MG. Reducing Phenanthrene Contamination in Trifolium repens L. With Root-Associated Phenanthrene-Degrading Bacterium Diaphorobacter sp. Phe15. Front Microbiol 2021; 12:792698. [PMID: 34899673 PMCID: PMC8660855 DOI: 10.3389/fmicb.2021.792698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Some root-associated bacteria could degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, their dynamic distribution and performance on root surface and in inner plant tissues are still unclear. In this study, greenhouse container experiments were conducted by inoculating the phenanthrene-degrading bacterium Diaphorobacter sp. Phe15, which was isolated from root surfaces of healthy plants contaminated with PAHs, with the white clover (Trifolium repens L.) via root irrigation or seed soaking. The dynamic colonization, distribution, and performance of Phe15 in white clover were investigated. Strain Phe15 could efficiently degrade phenanthrene in shaking flasks and produce IAA and siderophore. After cultivation for 30, 40, and 50 days, it could colonize the root surface of white clover by forming aggregates and enter its inner tissues via root irrigation or seed soaking. The number of strain Phe15 colonized on the white clover root surfaces was the highest, reaching 6.03 Log CFU⋅g–1 FW, followed by that in the roots and the least in the shoots. Colonization of Phe15 significantly reduced the contents of phenanthrene in white clover; the contents of phenanthrene in Phe15-inoculated plants roots and shoots were reduced by 29.92–43.16 and 41.36–51.29%, respectively, compared with the Phe15-free treatment. The Phe15 colonization also significantly enhanced the phenanthrene removal from rhizosphere soil. The colonization and performance of strain Phe15 in white clove inoculated via root inoculation were better than seed soaking. This study provides the technical support and the resource of strains for reducing the plant PAH pollution in PAH-contaminated areas.
Collapse
Affiliation(s)
- Hui Zhao
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Yujun Gu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Xiangyu Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Zhang X, Zhang ZF, Zhang X, Yang PF, Li YF, Cai M, Kallenborn R. Dissolved polycyclic aromatic hydrocarbons from the Northwestern Pacific to the Southern Ocean: Surface seawater distribution, source apportionment, and air-seawater exchange. WATER RESEARCH 2021; 207:117780. [PMID: 34731661 DOI: 10.1016/j.watres.2021.117780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) as a group of toxic and carcinogenic compounds are large scale globally emitted anthropogenic pollutants mainly emitted into the atmosphere. However, atmospheric transport cannot fully explain the spatial variability of PAHs in the marine atmosphere and seawater. It is hypothesized that PAHs accumulated in seawater and ocean circulation can also influence PAHs observed in air above the ocean. In order to investigate PAHs in seawater as a potential secondary source to air, we collected paired air and seawater samples during a research cruise from China to the Antarctic in 2018-2019, covering the Pacific Ocean, the Indian Ocean, and the Southern Ocean. Summed concentrations of 28 analyzed PAHs in seawater were highest in the Pacific Ocean (4000 ± 1400 pg/L), followed by the Indian Ocean (2700 ± 1000 pg/L), and the Southern Ocean (2300 ± 520 pg/L). Three-ringed PAHs dominated the composition profile. We found that PAH levels in the Pacific and Indian Oceans were strong inversely correlated with salinity and distance to the coastline. This suggests that riverine inputs and continental discharges are important sources of PAHs to the marine environment. Derived air-seawater fugacity ratios suggest that net fluxes of PAHs were from seawater to the air in the Pacific and Indian Oceans at 9.0-8100 (median: 1600) ng/m2/d and 290-2000 (median: 1300) ng/m2/d, respectively. In the Southern Ocean, the net flow of PAHs was from air to seawater with a flux of -1000-450 (median: -82) ng/m2/d. Source apportionment from two different models suggested that the largest contribution to total PAHs was from petrogenic sources (44-57%), followed by coal/wood combustion (30-31%), fossil fuel combustion (15%), and engine combustion emissions (2.8-9.5%). Higher contributions from petrogenic sources were found at sites close to coastal regions. Both coal/wood combustion and petrogenic sources are responsible for the PAH concentrations detected in the Indian and Southern Oceans.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Norway
| |
Collapse
|
17
|
Hu T, Mao Y, Liu W, Shi M, Cheng C, Xu A, Su Y, Li X, Zhang Y, Zhang Z, Qi S, Xing X. Deposition records of polycyclic aromatic hydrocarbons and black carbon in peat core from Dajiuhu, Shennongjia, Central China: human activity imprint since the industrial revolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56234-56246. [PMID: 34046838 DOI: 10.1007/s11356-021-14383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a kind of organic pollutants with carcinogenic, teratogenic, and mutagenic effects. This study aims to assess the effects of changes in China's socio-economic indicators represented by energy consumption and number of motor vehicles, on PAHs and black carbon (BC) deposition. For this, a 50-cm peat core from Dajiuhu peatland, Central China, was collected and divided into 50 subsamples to establish a sedimentary record of about 200 years with radioactive 210Pb. The Σ16PAH concentration ranged from 212.67 to 830.10 ng·g-1, mainly composed of 2- and 3-ring PAHs, and BC ranged from 7.89 to 36.48%. The deposition characteristics of BC first increased and then decreased from the core bottom to the top. The predominant of the carcinogenic PAHs (C-PAHs) was Dibenzo[a,h]anthracene (DBA) before 1949, and then changed to Benzo[b]fluoranthene (BbF). Ratio of Fla/Pyr, (3+4)-ring/(5+6)-ring PAHs, and BaA/(BaA+Chr), IcdP/(IcdP+BghiP) suggested that long-range atmospheric transmission (LRAT) and pyrogenic were the main PAHs sources, but that local PAH emission contribution gradually increased since 1990, and mixed (petroleum and combustion) sources were the dominant since 2000. The high concentration of Phenanthrene (Phe) and Naphthalene (Nap) were likely from plant product. Furthermore, increased concentrations of 4-, 5-, and 6-ring PAHs showed significant correlations with increased coal and petroleum consumption and the number of motor vehicles, respectively, and this influence has strengthened after 2000. These were caused by rapid urbanization and industrialization following the implementation of the reform and opening up policy in 1978, and a new round of urbanization after 2000.
Collapse
Affiliation(s)
- Tianpeng Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Weijie Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Mingming Shi
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Cheng Cheng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - An Xu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yewang Su
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xingyu Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yunchao Zhang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Zhiqi Zhang
- Shennongjia National Park Administration, Shennongjia, 442400, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xinli Xing
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|