1
|
Yang Q, Yang L, Zheng L, Fang H, Li X, Liu H, Chen C, Yun J, Zhao C, Wang M, Liu G, Zheng M. Atmospheric emissions of Fe-containing nanoparticles from industrial activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177840. [PMID: 39631344 DOI: 10.1016/j.scitotenv.2024.177840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Air inhalation of exogenous Fe-containing nanoparticles (NPs) can lead to their occurrence in human organs. Comprehensive recognition on unintentional releases of Fe-containing NPs from ongoing large industrial activities is urgently required for sustainable human health. Here, we quantified Fe-containing NPs emissions in fine particulate matter collected from 132 full-scale industrial plants belong to 13 industrial categories. For the 13 investigated industries, most particles had a diameter of <80 nm. The sources with the highest Fe-containing NPs concentrations were hazardous waste incineration (1.4 × 1012 particles/g), followed by blast furnace production of pig iron (6.2 × 1011 particles/g) and electric-arc furnace steelmaking (4.7 × 1011 particles/g). The annual total atmospheric emission of Fe-containing NPs from the 13 industries in China was 1.03 × 1024 particles. Emissions of Fe-containing NPs from the 13 industries contribute to elevated concentrations of these particles in the atmosphere surrounding factories, potentially posing health risks to the general population. Coal-fired power plants, cement kiln co-processing of solid waste, blast furnace production of pig iron, coking plants, iron-ore sintering, electric-arc furnace steelmaking, and hazardous waste incineration collectively contributed to 99.9 % of the total annual atmospheric emissions from the 13 industries. These results are important for evaluating emissions and enhancing the sustainability of global industrial development.
Collapse
Affiliation(s)
- Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Haogang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Changzhi Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jianghui Yun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
2
|
Yun J, Yang Q, Liu G. Rare earth elements unintentionally released from global industrial activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136146. [PMID: 39405706 DOI: 10.1016/j.jhazmat.2024.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
Exposure to rare earth elements (REY) in the environment can lead to adverse effects on human health. Industrial activities unintentionally produce fly ash, and a small fraction of fly ash that remains uncaptured by air pollution control devices can enter the atmosphere and contribute as a primary source of airborne fine particle matter (PM). The occurrence of REY in industrial sourced fine PM affects the environment and human health. There is relatively minimal information regarding the human health hazards and biological effects of REY in fine PM produced during industrial activities, especially for non-occupational people. In addition, REY are powerful source-specific tracers for airborne PM from industries. Therefore, relevant research on REY in fine PM from industrial processes not only contributes to understanding and preventing environmental pollution but can also provide basic data for reducing human exposure. This paper provides an overview of the research status and latest advances in various industrial processes, especially their distribution characteristics, influencing factors, tracer application, and biological effects of REY in fine PM from coal-fired power plants. We also suggest future research directions in light of existing problems.
Collapse
Affiliation(s)
- Jianghui Yun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
3
|
Shi Z, Xu M, Wu L, Du H, Ji T, Wu J, Niu Z, Yang Y. Magnetite nanoparticles from representative coal fired power plants in China: Dust removal capture and their final atmospheric emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175950. [PMID: 39218098 DOI: 10.1016/j.scitotenv.2024.175950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Information on the emission of coal combustion-sourced magnetite nanoparticles (MNPs) is lacking, which is critical for their health-related risks. In this study, MNPs in coal fly ashes (CFAs) from various coal-fired power plants (CFPPs) in China equipped with various dust removal devices were extracted and quantified using single particle ICP-MS. The number concentrations of MNPs in CFAs captured by dust removal increased with stage, while their size decreased. Among all the dust removal devices, electrostatic-fabric-integrated precipitators showed the best removal of MNPs. Furthermore, throughout all the coal combustion by-products in a typical CFPP, MNPs in EFA (fly ash escaped from the stack) showed the highest number concentration (1.2 × 107 particles/mg) and lowest size (78 nm). Although the mass of CFA escaping through the stack is extremely low, it still had an emission rate of 1.9 × 1015 particles/h, contributing 3.56 % of the total emissions of MNPs in number. In addition, the purity of MNPs and their associated toxic metals showed a size-dependent variation pattern. As the particle size of MNPs decreased, the proportion of Fe in MNPs increased from 43 % in bottom ash (BA) to 84 % in EFA, while the abundance of trace toxic metals in EFA was 3.3 times higher than that of BA. These MNPs with the highest purity can adsorb elevated concentrations of toxic metals, and can be discharged directly into the atmosphere, posing a risk of synergistic toxicity.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingyan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Haiyan Du
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Te Ji
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiayuan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
4
|
Shi Z, Xu M, Wu L, Peng B, Yang X, Zhang Y, Li S, Niu Z, Zhao H, Ma X, Yang Y. Size-Dependent Elemental Composition in Individual Magnetite Nanoparticles Generated from Coal-Fired Power Plant Regulating Their Pulmonary Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19774-19784. [PMID: 39351826 DOI: 10.1021/acs.est.4c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
High-resolution characterization of magnetite nanoparticles (MNPs) derived from coal combustion activities is crucial to better understand their health-related risks. In this study, size distribution and elemental composition of individual MNPs from various coal fly ashes (CFAs) collected from a representative coal-fired power plant were analyzed using a single-particle inductively coupled plasma time-of-flight mass spectrometry technique. Majority (61-80%) of MNPs were identified as multimetal (mm)-MNPs, while the contribution of single metal (sm)-MNPs to the total increased throughout all the CFAs, reaching the highest in fly ash escaped through the stack (EFA). Among Fe-rich MNPs, Fe-sole and Fe-Al matrices were predominant, and Fe-sole MNPs were identified as the important carrier for toxic metals, with the highest mass contributions of toxic metals therein. Toxic potency results showed that the oxidative stress induced by MNPs was 1.2-2.2 times greater than those of <1 μm fractions in CFAs, while the reduction in cell viability showed no significant difference, elucidating that these MNPs can induce more distinct oxidative stress compared to cell toxicity. Based on structural equation model, MNP size can both directly and indirectly regulate the toxic potency, and the indirect regulation is through a size-dependent elemental composition of MNPs, including toxic metals. sm-MNPs and Fe-rich MNPs with Fe-sole, Fe-Cr, and Fe-Zn matrices can regulate the oxidative stress, whereas Cr, Zn, and Pb associated with Fe-sole, Fe-Al, Si-Fe, and Al-Fe MNPs showed significant effects on cell viability.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingyan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bo Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaojing Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yunqi Zhang
- Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute, East China Normal University, Shanghai 200062, China
| | - Songda Li
- Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute, East China Normal University, Shanghai 200062, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hui Zhao
- Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute, East China Normal University, Shanghai 200062, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
5
|
Li K, Li Q, Zhao F, Chen Q, Fu J, Min X, Li Y, Xiang K, Wang Q, Shi M, Yan X, Chai L. Novel Strategy for Efficient Recovery of CuO-Based Multiple-Metals from Copper Smelter Dust toward CO 2 Electrocatalytic Reduction. ACS OMEGA 2024; 9:38316-38326. [PMID: 39310128 PMCID: PMC11411680 DOI: 10.1021/acsomega.4c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
Copper smelter dust, a typical hazardous waste that is abundant in valuable heavy metals, holds the potential to be regarded as a promising resource. This study introduces a new approach that integrates chlorination roasting and cascade condensation to efficiently recover heavy metals from copper smelter dust. The findings demonstrate the successful separation of heavy metals (Cu, Pb, and Zn) as chlorides at nearly 100% efficiency while also effectively converting trivalent arsenic (As(III)) into pentavalent arsenic (As(V)) and immobilizing it in the roasting residues, thereby reducing environmental risk. Through the utilization of thermogravimetric mass spectrum analysis and thermodynamic equilibrium calculations, the chlorination process for heavy metals was investigated, revealing both direct and indirect chlorination processes. Additionally, the study resulted in the development of a CuO-based multiple-metals electrocatalyst from the oxidized roasting-recovered heavy metal chlorides, exhibiting significantly enhanced catalytic activity and faradaic efficiency for the electroreduction of CO2 into CO and CH4 compared to pure CuO electrocatalyst under similar electrocatalytic conditions. Overall, this work presents a sustainable and scalable method and new insights for addressing environmental risks while repurposing copper smelter dust.
Collapse
Affiliation(s)
- Ken Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qingzhu Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Feiping Zhao
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qin Chen
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
School of Physics, Central South University, Changsha 410083, China
| | - Junwei Fu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
School of Physics, Central South University, Changsha 410083, China
| | - Xiaobo Min
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Yun Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Kaisong Xiang
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qingwei Wang
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Meiqing Shi
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Xu Yan
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
6
|
Peng B, Cai Q, Shi X, Wang Z, Yan J, Xu M, Wang M, Shi Z, Niu Z, Guo X, Yang Y. Metal-containing nanoparticles in road dust from a Chinese megacity over the last decade: Spatiotemporal variation and driving factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134970. [PMID: 38905977 DOI: 10.1016/j.jhazmat.2024.134970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
As a crucial sink of metal-containing nanoparticles (MNPs), road dust can record their spatiotemporal variations in urban environments. In this study, taking Shanghai as a representative megacity in China, a total of 272 dust samples were collected in the winter and summer of 2013 and 2021/2022 to understand the spatiotemporal variations and driving factors of MNPs. The number concentrations of Fe-, Ti-, and Zn-containing NPs were 3.8 × 106 - 8.4 × 108, 2.3 × 106-1.4 × 108, and 6.0 × 105-2.3 × 108 particles/mg, respectively, according to single particle (sp)ICP-MS analysis. These MNPs showed significantly higher number concentrations in summer than in winter. Hotspots of Fe-containing NPs were more concentrated in industrial and traffic areas, Zn-containing NPs were mainly distributed in the central urban areas, while Ti-containing NPs were abundant in areas receiving high rainfall. The structural equation model results indicates that substantial rainfall in summer can help remove MNPs from atmospheric PM2.5 into dust, while in winter industrial and traffic activities were the primary contributors for MNPs. Moreover, the contribution of traffic emissions to MNPs has surpassed industrial one over the last decade, highlighting the urgency to control traffic-sourced MNPs, especially those from non-exhaust emissions by electric vehicles.
Collapse
Affiliation(s)
- Bo Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiuyu Cai
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xu Shi
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co. Ltd., 68 South Yutian Road, Shanghai 201805, China
| | - Zhiyan Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengyuan Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiqiang Shi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
7
|
Han J, Wu X, Zhao JX, Pierce DT. An Unprecedented Metal Distribution in Silica Nanoparticles Determined by Single-Particle Inductively Coupled Plasma Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:637. [PMID: 38607171 PMCID: PMC11013762 DOI: 10.3390/nano14070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Metal-containing nanoparticles are now common in applications ranging from catalysts to biomarkers. However, little research has focused on per-particle metal content in multicomponent nanoparticles. In this work, we used single-particle inductively coupled plasma mass spectrometry (ICP-MS) to determine the per-particle metal content of silica nanoparticles doped with tris(2,2'-bipyridyl)ruthenium(II). Monodispersed silica nanoparticles with varied Ru doping levels were prepared using a water-in-oil microemulsion method. These nanoparticles were characterized using common bulk-sample methods such as absorbance spectroscopy and conventional ICP-MS, and also with single-particle ICP-MS. The results showed that averaged concentrations of metal dopant measured per-particle by single-particle ICP-MS were consistent with the bulk-sample methods over a wide range of dopant levels. However, the per-particle amount of metal varied greatly and did not adhere to the usual Gaussian distribution encountered with one-component nanoparticles, such as gold or silver. Instead, the amount of metal dopant per silica particle showed an unexpected geometric distribution regardless of the prepared doping levels. The results indicate that an unusual metal dispersal mechanism is taking place during the microemulsion synthesis, and they challenge a common assumption that doped silica nanoparticles have the same metal content as the average measured by bulk-sample methods.
Collapse
Affiliation(s)
- Juan Han
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
- New Mexico Institute of Mining & Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Xu Wu
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
- Department of Chemistry, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
| | - David T. Pierce
- Department of Chemistry, University of North Dakota, 151 Cornell Street, Stop 9024, Grand Forks, ND 58202, USA; (J.H.); (X.W.)
| |
Collapse
|
8
|
He J, Zhang B, Yan W, Lai Y, Tang Y, Han Y, Liu J. Deciphering Vanadium Speciation in Smelting Ash and Adaptive Responses of Soil Microorganisms. ACS NANO 2024; 18:2464-2474. [PMID: 38197778 DOI: 10.1021/acsnano.3c11204] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Abundant smelting ash is discharged during pyrometallurgical vanadium (V) production. However, its associated V speciation and resultant ecological impact have remained elusive. In this study, V speciation in smelting ash and its influence on the metabolism of soil microorganisms were investigated. Smelting ashes from V smelters contained abundant V (19.6-115.9 mg/g). V(V) was the dominant species for soluble V, while solid V primarily existed in bioavailable forms. Previously unrevealed V nanoparticles (V-NPs) were prevalently detected, with a peak concentration of 1.3 × 1013 particles/g, a minimal size of 136.0 ± 0.6 nm, and primary constituents comprising FeVO4, VO2, and V2O5. Incubation experiments implied that smelting ash reshaped the soil microbial community. Metagenomic binning, gene transcription, and component quantification revealed that Microbacterium sp. and Tabrizicola sp. secreted extracellular polymeric substances through epsB and yhxB gene regulation for V-NPs aggregation to alleviate toxicity under aerobic operations. The V K-edge X-ray absorption near-edge structure (XANES) spectra suggested that VO2 NPs were oxidized to V2O5 NPs. In the anaerobic case, Comamonas sp. and Achromobacter sp. reduced V(V) to V(IV) for detoxification regulated by the napA gene. This study provides a deep understanding of the V speciation in smelting ash and microbial responses, inspiring promising bioremediation strategies to reduce its negative environmental impacts.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Wenyue Yan
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Yujian Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Yawei Han
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
9
|
Wu J, Yang Y, Tou F, Yan X, Dai S, Hower JC, Saikia BK, Kersten M, Hochella MF. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130482. [PMID: 36473256 DOI: 10.1016/j.jhazmat.2022.130482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Quantitative characteristics and sizes of nanoparticles (NPs) in coal fly ash (CFA) produced in coal-fired power plants as a function of coal type and plant design will help reveal the NP emission likelihood and their environmental implications. However, little is known about how combustion conditions and types of coal regulate the NP abundance in CFAs. In this study, based on single particle (SP)-ICP-MS technology, particle number concentrations (PNCs) and sizes of Fe- and Ti-containing NPs in CFAs were determined for samples collected from power plants of different designs and burning different types of coal. The PNCs of Fe- and Ti-containing NPs in all CFAs measured were in the range of 1.3 × 107 - 3.4 × 108 and 6.8 × 106 - 2.2 × 108 particles/mg, with the average particle sizes of 111 nm and 87 nm, respectively. The highest Fe-NP PNCs likely relate to the highest contents of Fe and pyrite in the feed coal. In addition, high TOC in CFAs are associated with metal-containing NPs, resulting in elevated abundances of these NPs with relatively large sizes. Moreover, elevated PNCs of NPs were found in CFAs produced by coal-fired power plants burning low-rank coals and with small installed capacity (especially those under 100-MW units). Compared to cyclone filters, ESPs and FFs with higher removal efficiency typically retain more Fe-/Ti- containing NPs with smaller sizes. Based on a structural equation (SE) model, raw coal properties (coal rank and Fe/Ti content), boiler types, and efficiency of particulate emission control devices likely indirectly affect PNCs of Fe- and Ti-containing NPs by influencing TOC contents and their corresponding metal concentrations of CFAs. This study provides the first analytic and comprehensive information concerning the direct and indirect regulating factors on NPs in various CFAs.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyun Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Shifeng Dai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - James C Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, United States; Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506, United States
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, Jorhat 785006, India
| | - Michael Kersten
- Geosciences Institute, Johannes Gutenberg-University, J.J. Becherweg 21, Mainz D-55099, Germany
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States; Earth Systems Science Division, Energy andEnvironment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Gerardo S, Davletshin AR, Loewy SL, Song W. From Ashes to Riches: Microscale Phenomena Controlling Rare Earths Recovery from Coal Fly Ash. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16200-16208. [PMID: 36240063 DOI: 10.1021/acs.est.2c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coal fly ash is an alternative source of rare earth elements (REEs), which are critical in modern energy and electronic technologies. Current hydrometallurgical processes, however, yield variable recovery rates because of the limited understanding of the microscale phenomena controlling the extraction of REEs from fly ash. This work investigates the microscale processes that dictate the recovery of REEs from ash particulates via a spatiochemical analysis. We find that REE-bearing minerals are hosted in three modes with distinct recovery mechanisms: (i) REEs encapsulated in dense particles are recovered via the cation exchange between matrix metals (Al, Ca, Mg, etc.) and solution cations, (ii) REEs within permeable particles are recovered via intraparticle pore-scale fluid flow, and (iii) discrete and surface-bound REE-bearing minerals are recovered via direct exposure to reagents. The role of metal content and the limiting transport mechanisms are further probed for dense particles, the predominant mode of occurrence. This study highlights, for the first time, how the morphology and the elemental makeup of the ash matrix play a critical role in the accessibility of REEs, furthering the knowledge base required for the design of cost-effective and environmentally benign REEs recovery techniques.
Collapse
Affiliation(s)
- Sheila Gerardo
- Hildebrand Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Artur R Davletshin
- Hildebrand Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Staci L Loewy
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wen Song
- Hildebrand Department of Petroleum and Geosystems Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Wu J, Tou F, Guo X, Liu C, Sun Y, Xu M, Liu M, Yang Y. Vast emission of Fe- and Ti-containing nanoparticles from representative coal-fired power plants in China and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156070. [PMID: 35597359 DOI: 10.1016/j.scitotenv.2022.156070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Coal combustion is considered an important source of atmospheric nanoparticles (NPs). However, the underlying information on the emission of NPs from coal-fired power plants (CFPPs) is still lacking. Along these lines, in this study, coal fly ashes (CFAs) were collected from different multi-stage particulate emission control devices (PECDs) in three representative CFPPs in China. The particle size and particle number concentration (PNC) of typical metal-containing NPs (Fe- and Ti-containing NPs) were analyzed by using the single-particle inductively coupled plasma mass (SP-ICP-MS) technology. By increasing the stage of PECDs, the mean particle sizes of NPs gradually declined and the PNCs of Fe- and Ti-containing NPs increased significantly. Specifically, the PNC of final-stage CFA was 3 - 8 times that of the first-stage CFA. A comparison of the electrostatic precipitators (ESPs), fabric filters (FFs), and electrostatic-fabric-integrated precipitators (EFIPs) showed that the state-of-the-art EFIPs exhibited a relatively good NP-removal efficiency with the highest PNCs. In addition, NP hourly emissions in all coal combustion by-products (CCPs) were further calculated in a typical CFPP. The total emissions of Fe- and Ti-containing NPs in all CCPs were 1.87 × 1018 and 1.57 × 1018 particles/h, respectively. NPs were mainly enriched in CFA trapped by PECDs (80% of total emissions). Although the mass of the CFA that escaped through the stack was extremely low, it contained the highest PNCs of Fe- and Ti-containing NPs of all CCPs, accounting for 3.41% and 1.67% of the corresponding total NP emissions. These NPs may also coexist with various toxic metals, such as Zn and Pb, and be released directly into the atmosphere, where they pose a potential risk to human health.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
12
|
Izzotti A, Spatera P, Khalid Z, Pulliero A. Importance of Punctual Monitoring to Evaluate the Health Effects of Airborne Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10587. [PMID: 36078301 PMCID: PMC9518414 DOI: 10.3390/ijerph191710587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Spatera
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
13
|
Yu H, Xu L, Cui T, Wang Y, Wang B, Zhang Z, Su R, Zhang J, Zhang R, Wei Y, Li D, Jin X, Chen W, Zheng Y. The foam cell formation associated with imbalanced cholesterol homeostasis due to airborne magnetite nanoparticles exposure. Toxicol Sci 2022; 189:287-300. [PMID: 35913497 DOI: 10.1093/toxsci/kfac079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM exposed mice and atherosclerosis mice models, including high-fat diet (HFD)-fed mice and apolipoprotein E (ApoE)-deficient mice. The in vitro model further defined the dose-dependent response of PM treatment on foam cell formation. Interestingly, airborne magnetite NPs rather than non-magnetic NPs at the same concentration were demonstrated to be the key toxic component of PM in the promoted foam cell formation. Furthermore, magnetite NPs exposure led to abnormal cholesterol accumulation in macrophages, which was attributed to the attenuation of cholesterol efflux and enhancement of lipoprotein uptake, but independent of cholesterol esterification. The in-depth data revealed that magnetite NPs accelerated the protein ubiquitination and subsequent degradation of SR-B1, a crucial transporter of cholesterol efflux. Collectively, these findings for the first time identified magnetite NPs as one key toxic component of PM-promoted foam cell formation, and provided new insight of abnormal cholesterol metabolism into the pathogenesis of PM-induced atherosclerosis.
Collapse
Affiliation(s)
- Haiyi Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Liting Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Tenglong Cui
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Baoqiang Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Jingxu Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanhong Wei
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
14
|
Wang Y, Gao W, Zhang H, Yang Z, Zhao Z, Shao L, Sun Z, Zheng C, Gao X. Significance of ionic wind propulsion on charged particle removal during flue gas purification. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Xu M, Wu Y, Zhang P, Liu Z, Hu Z, Lu Q. Green and Moderate Activation of Coal Fly Ash and Its Application in Selective Catalytic Reduction of NO with NH 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2582-2592. [PMID: 35089688 DOI: 10.1021/acs.est.1c05516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coal fly ash (CFA) is an ideal source for the preparation of heterogeneous catalysts due to its abundant silicon and aluminum oxides, but its activity needs to be improved. In this study, a green and moderate approach for CFA activation was proposed, and a series of CFA-based catalysts were prepared for NO selective catalytic reduction (SCR). The results indicated that CFA could be well activated via mechanochemical activation with 3 h of milling duration in 1 mol/L of acetic acid, and 90% of NO removal was achieved over the CFA-based catalyst in 250 to 375 °C. Two activating mechanisms, i.e., the enhanced CFA fragmentation and the motivated Al dissolution, were revealed during the mechanochemical activation. The former facilitated the formation of mesopores and the exposure of Fe components in CFA fragments, which enhanced the capacity of oxygen storage over the as-activated catalyst. The latter motivated the formation of Si-OH groups, which promoted the migration of electrons and the dispersion of V species, thereby increasing the capacity of NH3 adsorption over the as-obtained catalyst. Therefore, the performance of NO reduction was improved. The proposed activating approach could be a promising integration for CFA disposal and NO removal from inside coal-fired power plants.
Collapse
Affiliation(s)
- Mingxin Xu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| | - Yachang Wu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| | - Pingxin Zhang
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| | - Zishu Liu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhuang Hu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
16
|
Lin JH, Shih YH, Huang CH, Lai MF, Lee SA, Shiu BC, Lou CW. Evaluations of Electrostatic Filtration Efficiency and Antibacterial Efficacy of Antibacterial Electret Polypropylene Filters: Effects of Using Low Molecular Antibacterial Agent as Additive. Polymers (Basel) 2021; 13:polym13193303. [PMID: 34641119 PMCID: PMC8512406 DOI: 10.3390/polym13193303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, air filtration has been gaining much attention, and now people are much more concerned about antibacterial filters due to the spreading of COVID-19. The electret polypropylene (PP) nonwoven fabrics possess excellent filtration efficiency but a limited antibacterial effect against S. aureus and E. coli, and therefore triclosan is used in this study. Serving as an antibacterial agent, triclosan with a low molecular weight is an effective additive for the test results, indicating that the presence of triclosan strengthens the antibacterial effects of the filters. In addition, triclosan also strengthens the PP’s crystallinity, which in turn betters the filtration efficiency of the filters concurrently. Demonstrating powerful filtration and antibacterial performances, the antibacterial electret PP filters are highly qualified for filter applications.
Collapse
Affiliation(s)
- Jia-Horng Lin
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.-H.L.); (B.-C.S.)
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
| | - Ying-Huei Shih
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: (C.-H.H.); (C.-W.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
| | - Shu-An Lee
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.-H.L.); (B.-C.S.)
| | - Ching-Wen Lou
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (C.-H.H.); (C.-W.L.)
| |
Collapse
|
17
|
Fomenko EV, Anshits NN, Solovyov LA, Knyazev YV, Semenov SV, Bayukov OA, Anshits AG. Magnetic Fractions of PM 2.5, PM 2.5-10, and PM 10 from Coal Fly Ash as Environmental Pollutants. ACS OMEGA 2021; 6:20076-20085. [PMID: 34368592 PMCID: PMC8340415 DOI: 10.1021/acsomega.1c03187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Characterization of magnetic particulate matter (PM) in coal fly ashes is critical to assessing the health risks associated with industrial coal combustion and for future applications of fine fractions that will minimize solid waste pollution. In this study, magnetic narrow fractions of fine ferrospheres related to environmentally hazardous PM2.5, PM2.5-10, and PM10 were for the first time separated from fly ash produced during combustion of Ekibastuz coal. It was determined that the average diameter of globules in narrow fractions is 1, 2, 3, and 7 μm. The major components of chemical composition are Fe2O3 (57-60) wt %, SiO2 (25-28 wt %), and Al2O3 (10-12 wt %). The phase composition is represented by crystalline phases, including ferrospinel, α-Fe2O3, ε-Fe2O3, mullite, and quartz, as well as the amorphous glass phase. Mössbauer spectroscopy and magnetic measurements confirmed the formation of nanoscale particles of ε-Fe2O3. Stabilization of the ε-Fe2O3 metastable phase, with quite ideal distribution of iron cations, occurs in the glass matrix due to the rapid cooling of fine globules during their formation from mineral components of coal.
Collapse
Affiliation(s)
- Elena V. Fomenko
- Institute
of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Natalia N. Anshits
- Institute
of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Leonid A. Solovyov
- Institute
of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Yuriy V. Knyazev
- Kirensky
Institute of Physics SB RAS, Federal Research
Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/38, Krasnoyarsk 660036, Russia
| | - Sergey V. Semenov
- Kirensky
Institute of Physics SB RAS, Federal Research
Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/38, Krasnoyarsk 660036, Russia
- Siberian
Federal University, Svobodnyi
pr. 79, Krasnoyarsk 660041, Russia
| | - Oleg A. Bayukov
- Kirensky
Institute of Physics SB RAS, Federal Research
Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/38, Krasnoyarsk 660036, Russia
| | - Alexander G. Anshits
- Institute
of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, Svobodnyi
pr. 79, Krasnoyarsk 660041, Russia
| |
Collapse
|