1
|
Zhao G, Yang J, Liu T, Li W. A Two-Phase Hydrogenation Membrane for Contaminants Reduction at High Hydrogen Reagent Utilization Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18426-18434. [PMID: 39360791 DOI: 10.1021/acs.est.4c06583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Heterogeneous hydrogenation is surging as a promising strategy for selective removal of water pollutants, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, we enhanced the mass transfer and the utilization of hydrogen reagent through construction of a two-phase flow-through membrane reaction device (Pd/SiC-MR). Pd/SiC-MR displays high efficiency and selectivity toward removal of multiple pollutants. For instance, rapid (∼0.35 s) and exclusive hydrogenation (>99%) of carbon-chlorine bond in organohalogens were realized at high water flux (220 L/m2/h). More importantly, the two-phase Pd/SiC-MR reaction system achieved 31.4% utilization of hydrogen reagent, 1-3 orders of magnitude higher than those by classical slurry or fixed-bed reactor. The high hydrogenation performance is attributed to the close proximity of the hydrogen source, reactive hydrogen atom, and pollutant under high molecular collision frequency in membrane pores. Our study opens an approach for improved hydrogen reagent utilization while reserving the high pollutant removal efficiency through altering operating conditions, beyond complex material design limitations in hydrogenation water purification.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ji Yang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wenwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
2
|
Levi J, Jung B, Jacobs HP, Luo Y, Lee CS, Hong K, Long M, Donoso J, Garcia-Segura S, Wong MS, Rittmann BE, Westerhoff P. Optimized bimetallic ratios for durable membrane catalyst-film reactors in treating nitrate-polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173711. [PMID: 38857799 DOI: 10.1016/j.scitotenv.2024.173711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Nitrate contamination of surface and ground water is a significant global challenge. Most current treatment technologies separate nitrate from water, resulting in concentrated wastestreams that need to be managed. Membrane Catalyst-film Reactors (MCfR), which utilize in-situ produced nanocatalysts attached to hydrogen-gas-permeable hollow-fiber membranes, offer a promising alternative for denitrification without generating a concentrated wastestream. In hydrogen-based MCfRs, bimetallic nano-scale catalysts reduce nitrate to nitrite and then further to di-nitrogen or ammonium. This study first investigated how different molar ratios of indium-to-palladium (In:Pd) catalytic films influenced denitrification rates in batch-mode MCfRs. We evaluated eleven In-Pd bimetallic catalyst films, with In:Pd molar ratios from 0.0029 to 0.28. Nitrate-removal exhibited a volcano-shaped dependence on In content, with the highest nitrate removal (0.19 mgNO3--N-min-1 L-1) occurring at 0.045 mol In/mol Pd. Using MCfRs with the optimal In:Pd loading, we treated nitrate-spiked tap water in continuous-flow for >60 days. Nitrate removal and reduction occurred in three stages: substantial denitrification in the first stage, a decline in denitrification efficiency in the second stage, and stabilized denitrification in the third stage. Factors contributing to the slowdown of denitrification were: loss of Pd and In catalysts from the membrane surface and elevated pH due to hydroxide ion production. Sustained nitrate removal will require that these factors be mitigated.
Collapse
Affiliation(s)
- Juliana Levi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Bongyeon Jung
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Hunter P Jacobs
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Yihao Luo
- Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Kiheon Hong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Min Long
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Bruce E Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
3
|
Ran W, Zhao H, Zhang X, Li S, Sun JF, Liu J, Liu R, Jiang G. Critical Review of Pd-Catalyzed Reduction Process for Treatment of Waterborne Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38323894 DOI: 10.1021/acs.est.3c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.
Collapse
Affiliation(s)
- Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Fang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wu C, Zhou J, Pang S, Yang L, Lichtfouse E, Liu H, Xia S, Rittmann BE. Reduction and precipitation of chromium(VI) using a palladized membrane biofilm reactor. WATER RESEARCH 2024; 249:120878. [PMID: 38007896 DOI: 10.1016/j.watres.2023.120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
H2-driven reduction of hexavalent chromium (Cr(VI)) using precious-metal catalysts is promising, but its implementation in water treatment has been restricted by poor H2-transfer efficiency and high catalyst loss. We investigated the reduction of Cr(VI) through hydrogenation catalyzed by elemental-palladium nanoparticles (PdNPs) generated in-situ within biofilm of a membrane biofilm reactor (MBfR), creating a Pd-MBfR. Experiments were conducted using a Pd-MBfR and a non-Pd MBfR. The Pd-MBfR achieved Cr(VI) (1000 μg L-1) reduction of >99 % and reduced the concentration of total Cr to below 50 μg L-1, much lower than the total Cr concentration in the non-Pd MBfR effluent (290 μg L-1). The Pd-MBfR also had a lower concentration of dissolved organic compounds compared to the non-Pd MBfR, which minimized the formation of soluble organo-Cr(III) complexes and promoted precipitation of Cr(OH)3. Solid-state characterizations documented deposition of Cr(OH)3 as the product of Cr(VI) reduction in the Pd-MBfR. Metagenomic analyses revealed that the addition and reduction of Cr(VI) had minimal impact on the microbial community (dominated by Dechloromonas) and functional genes in the biofilm of the Pd-MBfR, since the PdNP-catalyzed reduction process was rapid. This study documented efficient Cr(VI) reduction and precipitation of Cr(OH)3 by the Pd-MBfR technology.
Collapse
Affiliation(s)
- Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence 13100, France
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, USA
| |
Collapse
|
5
|
Long M, Chen Y, Senftle TP, Elias W, Heck K, Zhou C, Wong MS, Rittmann BE. Method of H 2 Transfer Is Vital for Catalytic Hydrodefluorination of Perfluorooctanoic Acid (PFOA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1390-1398. [PMID: 38165826 DOI: 10.1021/acs.est.3c07650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Chen
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Welman Elias
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kimberly Heck
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Chen Zhou
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Chen C, Lu L, Fei L, Xu J, Wang B, Li B, Shen L, Lin H. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166220. [PMID: 37591402 DOI: 10.1016/j.scitotenv.2023.166220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The integration of catalytic degradation and membrane separation processes not only enables continuous degradation of contaminants but also effectively alleviates inevitable membrane fouling, demonstrating fascinating practical value for efficient water purification. Such membrane-catalysis integrated system (MCIS) has attracted tremendous research interest from scientists in chemical engineering and environmental science recently. In this review, the advantages of MCIS are discussed, including the membrane structure regulation, stable catalyst loading, nano-confinement effect, and efficient natural organic matter (NOM) exclusion, highlighting the synergistic effect between membrane separation and catalytic process. Subsequently, the design considerations for the fabrication of catalytic membranes, including substrate membrane, catalytic material, and fabrication method, are comprehensively summarized. Afterward, the mechanisms and performance of MCIS based on different catalytic types, including liquid-phase oxidants/reductants involved MCIS, gas involved MCIS, photocatalysis involved MCIS, and electrocatalysis involved MCIS are reviewed in detail. Finally, the research direction and future perspectives of catalytic membranes for water purification are proposed. The current review provides an in-depth understanding of the design of catalytic membranes and facilitates their further development for practical applications in efficient water purification.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| |
Collapse
|
7
|
Wang Z, Li K, Guo J, Liu H, Zhang Y, Dang P, Wang J. Enhanced Mass Transfer of Ozone and Emerging Pollutants through a Gas-Solid-Liquid Reaction Interface for Efficient Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18647-18657. [PMID: 36722492 DOI: 10.1021/acs.est.2c07688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ozone (O3), as an environmentally friendly oxidant, is widely used to remove emerging pollutants and ensure the safety of the water supply, whereas the restricted accessibility of O3 and limited collision frequency between pollutants and O3 will inevitably reduce the ozonation efficiency. To promote the chemical reactions between O3 and target pollutants, here we developed a novel gas-solid-liquid reaction interface dominated triphase ozonation system using a functional hydrophobic membrane with an adsorption layer as the O3 distributor and place where chemical reactions occurred. In the triphase system, the functional hydrophobic membrane simultaneously improved the interface adsorption performance of emerging pollutants and the access pathway of O3, leading to a marked enhancement of interfacial pollutant concentration and O3 levels. These synergistic qualities result in high ciprofloxacin (CIP) removal efficiency (94.39%) and fast apparent reaction rate constant (kapp, 2.75 × 10-2 min-1) versus a traditional O3 process (41.82% and 0.48 × 10-2 min-1, respectively). In addition, this triphase system was an advanced oxidation process involving radical participation and showed excellent degradation performance of multiple emerging pollutants. Our findings highlight the importance of gas-solid-liquid triphase reaction interface design and provide new insight into the efficient removal of emerging pollutants by the ozonation process.
Collapse
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Jingjing Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Hongxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Ping Dang
- Inner Mongolia Jiuke Kangrui Environmental Protection Technology Co., LTD.North Boerdong Avenue, Equipment Manufacturing Base, Dongsheng District, Ordos, Inner Mongolia017000, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| |
Collapse
|
8
|
Rigby K, Huang D, Leshchev D, Lim HJ, Choi H, Meese AF, Weon S, Stavitski E, Kim JH. Palladium Single-Atom (In)Stability Under Aqueous Reductive Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13681-13690. [PMID: 37650677 PMCID: PMC10501378 DOI: 10.1021/acs.est.3c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.
Collapse
Affiliation(s)
- Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- NSF
Nanosystems Engineering Research Center for Nanotechnology Enabled
Water Treatment (NEWT), Houston, Texas 77005, United States
| | - Dahong Huang
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Denis Leshchev
- National
Synchrotron Light Source-II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Hyeyeon Choi
- School
of Health and Environmental Science, Korea
University, Seoul 02841, Republic
of Korea
- Department
of Health and Safety Convergence Science, Korea University, Seoul 02841, Republic
of Korea
| | - Aidan Francis Meese
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Seunghyun Weon
- School
of Health and Environmental Science, Korea
University, Seoul 02841, Republic
of Korea
- Department
of Health and Safety Convergence Science, Korea University, Seoul 02841, Republic
of Korea
| | - Eli Stavitski
- National
Synchrotron Light Source-II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- NSF
Nanosystems Engineering Research Center for Nanotechnology Enabled
Water Treatment (NEWT), Houston, Texas 77005, United States
| |
Collapse
|
9
|
Levi J, Guo S, Kavadiya S, Luo Y, Lee CS, Jacobs HP, Holman Z, Wong MS, Garcia-Segura S, Zhou C, Rittmann BE, Westerhoff P. Comparing methods to deposit Pd-In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. WATER RESEARCH 2023; 235:119877. [PMID: 36989800 DOI: 10.1016/j.watres.2023.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.
Collapse
Affiliation(s)
- Juliana Levi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Sujin Guo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shalinee Kavadiya
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yihao Luo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Hunter P Jacobs
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zachary Holman
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Bruce E Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States.
| |
Collapse
|
10
|
Luo YH, Long X, Cai Y, Zheng CW, Roldan MA, Yang S, Zhou D, Zhou C, Rittmann BE. A synergistic platform enables co-oxidation of halogenated organic pollutants without input of organic primary substrate. WATER RESEARCH 2023; 234:119801. [PMID: 36889084 DOI: 10.1016/j.watres.2023.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While co-oxidation is widely used to biodegrade halogenated organic pollutants (HOPs), a considerable amount of organic primary substrate is required. Adding organic primary substrates increases the operating cost and also leads to extra carbon dioxide release. In this study, we evaluated a two-stage Reduction and Oxidation Synergistic Platform (ROSP), which integrated catalytic reductive dehalogenation with biological co-oxidation for HOPs removal. The ROSP was a combination of an H2-based membrane catalytic-film reactor (H2-MCfR) and an O2-based membrane biofilm reactor (O2-MBfR). 4-chlorophenol (4-CP) was used as a model HOP to evaluate the performance of ROSP. In the MCfR stage, zero-valent palladium nanoparticles (Pd0NPs) catalyzed reductive hydrodechlorination that converted 4-CP to phenol, with a conversion yield over 92%. In the MBfR stage, the phenol was oxidized and used as a primary substrate that supported the co-oxidation of residual 4-CP. Genomic DNA sequencing revealed that phenol produced from 4-CP reduction enriched bacteria having genes for functional enzymes for phenol biodegradation in the biofilm community. In the ROSP, over 99% of 60 mg/L 4-CP was removed and mineralized during continuous operation: Effluent 4-CP and chemical oxygen demand concentrations were below 0.1 and 3 mg/L, respectively. H2 was the only added electron donor to the ROSP, which means no extra carbon dioxide was produced by primary-substrate oxidation.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Yuhang Cai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| |
Collapse
|
11
|
Zheng CW, Zhou C, Luo YH, Long M, Long X, Zhou D, Bi Y, Yang S, Rittmann BE. Coremoval of Energetics and Oxyanions via the In Situ Coupling of Catalytic and Enzymatic Destructions: A Solution to Ammunition Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:666-673. [PMID: 36445010 DOI: 10.1021/acs.est.2c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130024, China
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, Arizona85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
12
|
Cai Y, Luo YH, Long X, Roldan MA, Yang S, Zhou C, Zhou D, Rittmann BE. Reductive Dehalogenation of Herbicides Catalyzed by Pd 0NPs in a H 2-Based Membrane Catalyst-Film Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18030-18040. [PMID: 36383359 DOI: 10.1021/acs.est.2c07317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More food production required to feed humans will require intensive use of herbicides to protect against weeds. The widespread application and persistence of herbicides pose environmental risks for nontarget species. Elemental-palladium nanoparticles (Pd0NPs) are known to catalyze reductive dehalogenation of halogenated organic pollutants. In this study, the reductive conversion of 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in a H2-based membrane catalyst-film reactor (H2-MCfR), in which Pd0NPs were in situ-synthesized as the catalyst film and used to activate H2 on the surface of H2-delivery membranes. Batch kinetic experiments showed that 99% of 2,4-D was removed and converted to phenoxyacetic acid (POA) within 90 min with a Pd0 surface loading of 20 mg Pd/m2, achieving a catalyst specific activity of 6.6 ± 0.5 L/g-Pd-min. Continuous operation of the H2-MCfR loaded with 20 mg Pd/m2 sustained >99% removal of 50 μM 2,4-D for 20 days. A higher Pd0 surface loading, 1030 mg Pd/m2, also enabled hydrosaturation and hydrolysis of POA to cyclohexanone and glycolic acid. Density functional theory identified the reaction mechanisms and pathways, which involved reductive hydrodechlorination, hydrosaturation, and hydrolysis. Molecular electrostatic potential calculations and Fukui indices suggested that reductive dehalogenation could increase the bioavailability of herbicides. Furthermore, three other halogenated herbicides─atrazine, dicamba, and bromoxynil─were reductively dehalogenated in the H2-MCfR. This study documents a promising method for the removal and detoxification of halogenated herbicides in aqueous environments.
Collapse
Affiliation(s)
- Yuhang Cai
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
13
|
Zhang Y, Ma P, Fu H, Qu X, Zheng S. Effective catalytic hydrodechlorination removal of chloroanisole odorants in water using palladium catalyst confined in zeolite Y. CHEMOSPHERE 2022; 309:136551. [PMID: 36152833 DOI: 10.1016/j.chemosphere.2022.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Chloroanisoles is a class of odorous pollutants commonly identified in drinking water. In the present study, we confined noble metal palladium (Pd) in the micropores of zeolite Y (ie-Pd@Y) using an ion exchange method, and applied it for the catalytic hydrodechlorination removal of chloroanisoles (represented by 2,4,6-trichloroanisole/TCA) in water. Pd supported on zeolite Y surface (im-Pd/Y, prepared by conventional impregnation method) was used as the benchmarking catalyst. The characterization results revealed that ie-Pd@Y had smaller Pd particle size and higher Pdn+/Pd0 ratio than im-Pd/Y. The catalytic hydrodechlorination of TCA followed a concerted dechlorination pathway and the Langmuir-Hinshelwood model. The ie-Pd@Y catalysts with different Pd loadings exhibit excellent catalytic activities with more than 95% of TCA removed within 30 min, which is far superior to the im-Pd/Y catalysts (27-70%). Moreover, due to the confinement effect of zeolite Y, ie-Pd@Y displayed enhanced catalytic stability as compared with im-Pd/Y. The initial activity of ie-Pd@Y was more than 20 times higher than that of im-Pd/Y after five reaction cycles. Additionally, with the assistance of sieving effect, ie-Pd@Y displayed much stronger capability against the interference from dissolved organic matter than im-Pd/Y. The present results demonstrate that the confined catalysts ie-Pd@Y can be applied in liquid phase catalytic hydrogenation to effectively eliminate halogenated odorants in waters.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| |
Collapse
|
14
|
Rational design of high-performance continuous flow catalytic membrane reactor based on poly(4-vinylpyridine) brush-anchored Au nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Luo YH, Long M, Zhou Y, Zhou C, Zheng X, Rittmann BE. Hydrodehalogenation of Trichlorofluoromethane over Biogenic Palladium Nanoparticles in Ambient Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13357-13367. [PMID: 36070436 DOI: 10.1021/acs.est.2c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among a number of persistent chlorofluorocarbons (CFCs, or freons), the emissions of trichlorofluoromethane (CFCl3, CFC-11) have been increasing since 2002. Zero-valent-Pd (Pd0) catalysts are known to hydrodehalogenate CFCs; however, most studies rely on cost-inefficient and eco-unfriendly chemical synthesis of Pd0NPs and harsh reaction conditions. In this study, we synthesized Pd0 nanoparticles (Pd0NPs) using D. vulgaris biomass as the support and evaluated hydrodehalogenation of CFC-11 catalyzed by the biogenic Pd0NPs. The presence of D. vulgaris biomass stabilized and dispersed 3-6 nm Pd0NPs that were highly active. We documented, for the first time, Pd0-catalyzed simultaneous hydrodechlorination and hydrodefluorination of CFC-11 at ambient conditions (room temperature and 1 atm). More than 70% CFC-11 removal was achieved within 15 h with a catalytic activity of 1.5 L/g-Pd/h, dechlorination was 50%, defluorination was 41%, and selectivity to fully dehalogenated methane was >30%. The reaction pathway had a mixture of parallel and sequential hydrodehalogenation. In particular, hydrodefluorination was favored by higher H2 availability and Pd0:CFC-11 ratio. This study offers a promising strategy for efficient and sustainable treatment of freon-contaminated water.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University,No.1, Shizishan Street, Hongshan District, Wuhan Hubei Province 430070, P.R.China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, P.R.China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
16
|
Wu C, Zhou L, Zhou C, Zhou Y, Zhou J, Xia S, Rittmann BE. A kinetic model for 2,4-dichlorophenol adsorption and hydrodechlorination over a palladized biofilm. WATER RESEARCH 2022; 214:118201. [PMID: 35196619 DOI: 10.1016/j.watres.2022.118201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Adsorption and catalytic hydrodechlorination (HDC) of aqueous 2,4-DCP by palladium nanoparticles (Pd0NPs) associated with a biofilm (i.e., a Pd0-biofilm) was investigated in terms of the removal efficiency of 2,4-DCP, dechlorinated product selectivity, and reduction kinetics. Experiments were executed with Pd0-biofilm and with abiotic Pd0NPs-film alone. The 2,4-DCP-adsorption capacity of Pd0-biofilm was 2- to 5-fold greater than that of abiotic Pd0NPs-film, and the adsorption accelerated dechlorination by Pd0-biofilm, including selectivity to phenol instead of mono-chlorophenols. A mechanistic kinetic model was developed to represent the sequential adsorption and reduction processes. Modeling results represented well the removal of 2,4-DCP and quantified that Pd0-biofilm had a strong affinity for adsorbing 2,4-DCP. The strong adsorption increased the volume-averaged concentration of 2,4-DCP concentration inside the Pd0-biofilm, compared to the concentration in the bulk liquid. This increase in the local concentration of 2,4-DCP led to a 2- to 4-fold increase in the reduction rate of 2,4-DCP in Pd0-biofilm, compared to abiotic Pd0NPs-film. Thus, coupling Pd0NPs with the biofilm promoted 2,4-DCP removal and full dechlorination despite its low concentration in bulk water.
Collapse
Affiliation(s)
- Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Luman Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, United States
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, United States
| |
Collapse
|
17
|
Luo YH, Cai Y, Long X, Zhou D, Zhou C, Rittmann BE. Palladium (Pd 0) Loading-Controlled Catalytic Activity and Selectivity for Chlorophenol Hydrodechlorination and Hydrosaturation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4447-4456. [PMID: 35230835 DOI: 10.1021/acs.est.1c08347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive catalysis by zero-valent palladium nanoparticles (Pd0NPs) has emerged as an efficient strategy for promoting the detoxification of chlorophenols (CPs) via hydrogenation. Most studies achieved hydrodechlorination of CP to phenol for detoxification, but it requires considerably high energy input and harsh conditions to further hydrosaturate phenol to cyclohexanone (CHN) as the most desired product for resource recovery. This study documented 4-CP hydrodechlorination and hydrosaturation catalyzed by Pd0NPs deposited on H2-transfer membranes in the H2-based membrane catalyst-film reactor, which yielded up to 99% CHN selectivity under ambient conditions. It was further discovered that the Pd0 morphology and size, both determined by Pd0 loading, were the key factors controlling the catalytic activity and selectivity: while sub-nano Pd particles catalyzed only 4-CP hydrodechlorination, Pd0NPs were able to catalyze the subsequent hydrosaturation that requires more Pd0 reactive sites than hydrodechlorination. In addition, better dispersion of Pd0, caused by lower Pd0 loading, yielded higher activity for hydrodechlorination but lower activity for hydrosaturation. During the 15 day continuous tests, the substantial product from 4-CP hydrogenation was constantly phenol (>98%) for 0.2 g-Pd/m2 and CHN (>92%) for 1.0 g-Pd/m2. This study opens the door for selectively manipulating desired products from Pd0-catalyzed CP hydrogenation under ambient conditions.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5306, USA
| | - Yuhang Cai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5306, USA
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5306, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, USA
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5306, USA
| |
Collapse
|
18
|
Zheng CW, Long M, Luo YH, Long X, Bi Y, Zhou D, Zhou C, Rittmann BE. Reductive destruction of multiple nitrated energetics over palladium nanoparticles in the H 2-based membrane catalyst-film reactor (MCfR). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127055. [PMID: 34523494 DOI: 10.1016/j.jhazmat.2021.127055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrated energetics are widespread contaminants due to their improper disposal from ammunition facilities. Different classes of nitrated energetics commonly co-exist in ammunition wastewater, but co-removal of the classes has hardly been documented. In this study, we evaluated the catalytic destruction of three types of energetics using palladium (Pd0) nano-catalysts deposited on H2-transfer membranes in membrane catalyst-film reactors (MCfRs). This work documented nitro-reduction of 2,4,6-trinitrotoluene (TNT), as well as, for the first time, denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and pentaerythritol tetranitrate (PETN) over Pd0 at ambient temperature. The catalyst-specific activity was 20- to 90-fold higher than reported for other catalyst systems. Nitrite (NO2-) released from RDX and PETN also was catalytically reduced to dinitrogen gas (N2). Continuous treatment of a synthetic wastewater containing TNT, RDX, and PETN (5 mg/L each) for more than 20 hydraulic retention times yielded removals higher than 96% for all three energetics. Furthermore, the concentrations of NO2- and NH4+ were below the detection limit due to subsequent NO2- reduction with > 99% selectivity to N2. Thus, the MCfR provides a promising strategy for sustainable catalytic removal of co-existing energetics in ammunition wastewater.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Yuqiang Bi
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Long M, Elias WC, Heck KN, Luo YH, Lai YS, Jin Y, Gu H, Donoso J, Senftle TP, Zhou C, Wong MS, Rittmann BE. Hydrodefluorination of Perfluorooctanoic Acid in the H 2-Based Membrane Catalyst-Film Reactor with Platinum Group Metal Nanoparticles: Pathways and Optimal Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16699-16707. [PMID: 34874150 DOI: 10.1021/acs.est.1c06528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (Pd0NPs) in situ synthesized on H2-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions. Kinetic tests tracking PFOA removal, F- release, and hydrodefluorination intermediates documented that PFOA was hydrodefluorinated by a mixture of parallel and stepwise reactions on the Pd0NP surfaces. Slow desorption of defluorination products lowered the catalyst's activity for hydrodefluorination. Of the platinum group metals studied, Pd was overall superior to Pt, Rh, and Ru for hydrodefluorinating PFOA. pH had a strong influence on performance: PFOA was more strongly adsorbed at higher pH, but lower pH promoted defluorination. A membrane catalyst-film reactor (MCfR), containing an optimum loading of 1.2 g/m2 Pd0 for a total Pd amount of 22 mg, removed 3 mg/L PFOA during continuous flow for 90 days, and the removal flux was as high as 4 mg PFOA/m2/d at a steady state. The EPA health advisory level (70 ng/L) also was achieved over the 90 days with the influent PFOA at an environmentally relevant concentration of 500 ng/L. The results document a sustainable catalytic method for the detoxification of PFOA-contaminated water.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|