• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604935)   Today's Articles (5280)   Subscriber (49371)
For: Jeong N, Chung TH, Tong T. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable? Environ Sci Technol 2021;55:11348-11359. [PMID: 34342439 DOI: 10.1021/acs.est.1c04041] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Number Cited by Other Article(s)
1
Zeng Y, Wang H, Liang D, Yuan W, Li S, Xu H, Chen J. Navigating the difference of riverine microplastic movement footprint into the sea: Particle properties influence. JOURNAL OF HAZARDOUS MATERIALS 2024;476:134888. [PMID: 38897117 DOI: 10.1016/j.jhazmat.2024.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
2
Yogarathinam LT, Abba SI, Usman J, Lawal DU, Aljundi IH. Predicting micropollutant removal through nanopore-sized membranes using several machine-learning approaches based on feature engineering. RSC Adv 2024;14:19331-19348. [PMID: 38887641 PMCID: PMC11181297 DOI: 10.1039/d4ra02475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]  Open
3
Yang M, Zhu JJ, McGaughey AL, Priestley RD, Hoek EMV, Jassby D, Ren ZJ. Machine Learning for Polymer Design to Enhance Pervaporation-Based Organic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;58:10128-10139. [PMID: 38743597 DOI: 10.1021/acs.est.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
4
Chen K, Guo C, Wang C, Zhao S, Xiong B, Lu G, Reinfelder JR, Dang Z. Prediction of Cr(VI) and As(V) adsorption on goethite using hybrid surface complexation-machine learning model. WATER RESEARCH 2024;256:121580. [PMID: 38614029 DOI: 10.1016/j.watres.2024.121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
5
Chen J, Wang T, Dai R, Wu Z, Wang Z. Trade-off between Endocrine-Disrupting Compound Removal and Water Permeance of the Polyamide Nanofiltration Membrane: Phenomenon and Molecular Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;58:9416-9426. [PMID: 38662937 DOI: 10.1021/acs.est.4c01383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
6
Zhu H, Szymczyk A, Ghoufi A. Multiscale modelling of transport in polymer-based reverse-osmosis/nanofiltration membranes: present and future. DISCOVER NANO 2024;19:91. [PMID: 38771417 PMCID: PMC11109084 DOI: 10.1186/s11671-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
7
Sikder R, Zhang H, Gao P, Ye T. Machine learning framework for predicting cytotoxicity and identifying toxicity drivers of disinfection byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024;469:133989. [PMID: 38461660 DOI: 10.1016/j.jhazmat.2024.133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
8
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
9
Wang H, Zeng J, Dai R, Wang Z. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024;58:5878-5888. [PMID: 38498471 DOI: 10.1021/acs.est.3c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
10
Withana PA, Li J, Senadheera SS, Fan C, Wang Y, Ok YS. Machine learning prediction and interpretation of the impact of microplastics on soil properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024;341:122833. [PMID: 37931672 DOI: 10.1016/j.envpol.2023.122833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
11
Huang Y, Xie Y, Wu Y, Meng F, He C, Zou H, Wang X, Shui A, Liu S. Modeling Indirect Greenhouse Gas Emissions Sources from Urban Wastewater Treatment Plants: Integrating Machine Learning Models to Compensate for Sparse Parameters with Abundant Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:19860-19870. [PMID: 37976424 DOI: 10.1021/acs.est.3c06482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
12
Zhu JJ, Yang M, Ren ZJ. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:17671-17689. [PMID: 37384597 DOI: 10.1021/acs.est.3c00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
13
Gao H, Zhong S, Dangayach R, Chen Y. Understanding and Designing a High-Performance Ultrafiltration Membrane Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:17831-17840. [PMID: 36790106 PMCID: PMC10666290 DOI: 10.1021/acs.est.2c05404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
14
Jeong N, Epsztein R, Wang R, Park S, Lin S, Tong T. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:17851-17862. [PMID: 36917705 DOI: 10.1021/acs.est.2c08384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
15
Mousavi SL, Sajjadi SM. Predicting rejection of emerging contaminants through RO membrane filtration based on ANN-QSAR modeling approach: trends in molecular descriptors and structures towards rejections. RSC Adv 2023;13:23754-23771. [PMID: 37560620 PMCID: PMC10407621 DOI: 10.1039/d3ra03177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]  Open
16
Wang F, Wang W, Wang H, Zhao Z, Zhou T, Jiang C, Li J, Zhang X, Liang T, Dong W. Experiments and machine learning-based modeling for haloacetic acids rejection by nanofiltration: Influence of solute properties and operating conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;883:163610. [PMID: 37088392 DOI: 10.1016/j.scitotenv.2023.163610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
17
Yang M, Zhu JJ, McGaughey A, Zheng S, Priestley RD, Ren ZJ. Predicting Extraction Selectivity of Acetic Acid in Pervaporation by Machine Learning Models with Data Leakage Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:5934-5946. [PMID: 36972410 DOI: 10.1021/acs.est.2c06382] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
18
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023;312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
19
Machine learning for predicting the dynamic extraction of multiple substances by emulsion liquid membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
20
Zhu T, Zhang Y, Tao C, Chen W, Cheng H. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;857:159348. [PMID: 36228787 DOI: 10.1016/j.scitotenv.2022.159348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
21
Zhang W, Huang W, Tan J, Huang D, Ma J, Wu B. Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. CHEMOSPHERE 2023;311:137044. [PMID: 36330979 DOI: 10.1016/j.chemosphere.2022.137044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
22
Wang C, Wang L, Soo A, Bansidhar Pathak N, Kyong Shon H. Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
23
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
24
Karbassiyazdi E, Fattahi F, Yousefi N, Tahmassebi A, Taromi AA, Manzari JZ, Gandomi AH, Altaee A, Razmjou A. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions. ENVIRONMENTAL RESEARCH 2022;215:114286. [PMID: 36096170 DOI: 10.1016/j.envres.2022.114286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
25
Deep Learning-Based Predictive Control of Injection Velocity in Injection Molding Machines. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/7662264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
26
Zhu M, Wang J, Yang X, Zhang Y, Zhang L, Ren H, Wu B, Ye L. A review of the application of machine learning in water quality evaluation. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022;1:107-116. [PMID: 38075524 PMCID: PMC10702893 DOI: 10.1016/j.eehl.2022.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2023]
27
Ignacz G, Szekely G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA