2
|
Tian M, Li H, Wu S, Xi H, Wang YX, Lu YY, Wei L, Huang Q. Exposure to haloacetic acid disinfection by-products and male steroid hormones: An epidemiological and in vitro study. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133796. [PMID: 38377905 DOI: 10.1016/j.jhazmat.2024.133796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Haloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E2]) were measured among 449 Chinese men. Moreover, in vitro experiments, designed to simulate the real-world scenarios of human exposure, were conducted to assess testosterone synthesis in the Leydig cell line MLTC-1 and testosterone metabolism in the hepatic cell line HepG2 in response to low-dose HAA exposure. The DCAA and TCAA urinary concentrations were found to be positively associated with urinary T, P, and E2 levels (all p < 0.001), but negatively associated with the ratio of urinary T to E2 (p < 0.05). Combined with in vitro experiments, the results suggest that environmentally-relevant doses of HAA stimulate sex hormone synthesis and steroidogenesis pathway gene expression in MLTC-1 cells. In addition, the inhibition of the key gene CYP3A4 involved in the testosterone phase Ⅰ catabolism, and induction of the gene UGT2B15 involved in testosterone phase Ⅱ glucuronide conjugation metabolism along with the ATP-binding cassette (ABC) transport genes (ABCC4 and ABCG2) in HepG2 cells could play a role in elevation of urinary hormone excretion upon low-dose exposure to HAAs. Our novel findings highlight that exposure to HAAs at environmentally-relevant concentrations is associated with increased synthesis and excretion of sex hormones in males, which potentially provides an alternative approach involving urinary hormones for the noninvasive evaluation of male reproductive health following exposure to DBPs.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huiru Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Shuangshan Wu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hanyan Xi
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Shi Y, Wan Y, Wang D, Liu J, Yang Z, Zhao X, Xia W. Measurement of haloacetic acids in human urine samples from six megacities of China using a refined detection method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168379. [PMID: 37963519 DOI: 10.1016/j.scitotenv.2023.168379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
Haloacetic acids (HAAs) are common disinfection by-products in chlorine disinfected water. Humans are extensively exposed to them. However, nationwide biomonitoring data were not available for any country. This study developed a labor-efficient and sensitive method for the detection of urinary HAAs, including trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA), and conducted an exposure assessment in a Chinese population. A total of 850 first-morning-void urine samples were collected from adults in six megacities in China: Wuhan (central), Lanzhou (northwest), Chengdu (southwest), Taiyuan (north), Shanghai (east), and Dalian (northeast). Each participant (n = 425) provided a pair of urine samples during the warm (September to October 2018) and cold (December 2018 to January 2019) seasons. The detection method achieved good retention of the target analytes using a Fluoro-Phenyl column and excellent selectivity using in-source fragmentation ions as precursor ions in multiple reaction monitoring. The detection rate of urinary TCAA in Chinese populations was high (78.5%) but varied among different regions (54.0% to 98.0%). DCAA was rarely detected (<10%). The overall median value of specific gravity adjusted TCAA concentrations was 5.70 μg/L in the warm season and 3.87 μg/L in the cold season, respectively. Higher urinary TCAA concentrations were more likely to occur in Wuhan (Yangtze River Basin), urban areas, and during the warm season. The upstream region of the Yangtze River Basin (Chengdu) typically has lower TCAA concentrations. TCAA formation in coastal cities such as Shanghai and Dalian may be impacted by seawater intrusion. Estimated daily intakes of TCAA were lower than its chronic reference dose of 20 μg/kg-bw/day. This detection method can be applied to future biomonitoring of urinary HAAs. More attention should be paid to the highly exposed subgroups when exploring the health effects of long-term TCAA exposure.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, China.
| | - Danlu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Deng YL, Liu C, Yuan XQ, Luo Q, Miao Y, Chen PP, Cui FP, Zhang M, Zeng JY, Shi T, Lu TT, Li YF, Lu WQ, Zeng Q. Associations between Urinary Concentrations of Disinfection Byproducts and in Vitro Fertilization Outcomes: A Prospective Cohort Study in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97003. [PMID: 37671782 PMCID: PMC10481678 DOI: 10.1289/ehp12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Experimental studies show that disinfection byproducts (DBPs) can inhibit oocyte maturation, decrease fertilization capacity, and impair embryo development, but human evidence is lacking. OBJECTIVES We aimed to evaluate the associations between exposure to drinking water DBPs and in vitro fertilization (IVF) outcomes. METHODS The study included 1,048 women undergoing assisted reproductive technology (ART) treatment between December 2018 and January 2020 from a prospective cohort study, the Tongji Reproductive and Environmental study in Wuhan, China. Exposure to DBPs was assessed by dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in up to four urine samples, which were collected on the day of both enrollment and oocyte retrieval. Multivariable generalized linear mixed models, accounting for multiple IVF cycles per woman, were applied to evaluate the associations between urinary biomarkers of DBP exposures and IVF outcomes. Stratified analyses were used to explore the potential effect modifiers. RESULTS The included 1,048 women underwent 1,136 IVF cycles, with 960 (91.6%), 84 (8.0%), and 4 (0.4%) women contributing one cycle, two cycles, and three cycles, respectively. We found that elevated quartiles of urinary DCAA and TCAA concentrations were associated with reduced numbers of total oocytes and metaphase II oocytes and that urinary DCAA concentrations with a lower proportion of best-quality embryos (all p for trends < 0.05 ). Moreover, elevated quartiles of urinary DCAA concentrations were associated with decreased proportions of successful implantation, clinical pregnancy, and live birth (14%, 15%, and 15% decreases in adjusted means comparing the extreme quartiles, respectively; all p for trends < 0.05 ). Stratification analyses showed that the inverse associations of urinary TCAA concentrations with multiple IVF outcomes were stronger among women ≥ 30 y of age (p for interactions < 0.05 ). DISCUSSION Exposure to drinking water DBPs was inversely associated with some IVF outcomes among women undergoing ART treatment. Further study is necessary to confirm our findings. https://doi.org/10.1289/EHP12447.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. CHEMOSPHERE 2023; 331:138808. [PMID: 37121289 DOI: 10.1016/j.chemosphere.2023.138808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Disinfection byproducts (DBPs) are a class of ubiquitous chemicals in drinking water and inevitably result in widespread human exposures. Potentially adverse health effects of DBP exposures, including reproductive and developmental outcomes, have been increasing public concerns. Several reviews have focused on the adverse pregnancy outcomes of DBPs. This review summarized current evidence on male reproduction health upon exposure to DBPs from toxicological and epidemiological literature. Based on existing experimental studies, there are sufficient evidence showing that haloacetic acids (HAAs) are male reproductive toxicants, including reduced epididymal weight, decreased semen parameters and sperm protein 22, and declined testosterone levels. However, epidemiological evidence remains insufficient to support a link of DBP exposures with adverse male reproductive outcomes, despite that blood and urinary DBP biomarkers are associated with decreased semen quality. Eight potential mechanisms, including germ/somatic cell dysfunction, oxidative stress, genotoxicity, inflammation, endocrine hormones, folate metabolism, epigenetic alterations, and gut microbiota, are likely involved in male reproductive toxicity of DBPs. We also identified knowledge gaps in toxicological and epidemiological studies to enhance future needs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Wei C, Chen Y, Yang Y, Ni D, Huang Y, Wang M, Yang X, Chen Z. Assessing volatile organic compounds exposure and prostate-specific antigen: National Health and Nutrition Examination Survey, 2001-2010. Front Public Health 2022; 10:957069. [PMID: 35968491 PMCID: PMC9372286 DOI: 10.3389/fpubh.2022.957069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Volatile organic compounds (VOCs) are a large group of chemicals widely used in people's daily routines. Increasing evidence revealed the VOCs' accumulating toxicity. However, the VOCs toxicity in male prostate has not been reported previously. Thus, we comprehensively evaluated the association between VOCs and prostate-specific antigen (PSA). Methods A total of 2016 subjects were included in our study from the National Health and Nutrition Examination Survey with VOCs, PSA, and other variables among U.S. average population. We constructed XGBoost Algorithm Model, Regression Model, and Generalized linear Model (GAM) to analyze the potential association. Stratified analysis was used to identify high-risk populations. Results XGBoost Algorithm model identified blood chloroform as the most critical variable in the PSA concentration. Regression analysis suggested that blood chloroform was a positive association with PSA, which showed that environmental chloroform exposure is an independent risk factor that may cause prostate gland changes [β, (95% CI), P = 0.007, (0.003, 0.011), 0.00019]. GAM observed the linear relationship between blood chloroform and PSA concentration. Meanwhile, blood chloroform linear correlated with water chloroform in the lower dose range, indicating that the absorption of water may be the primary origin of chloroform. Stratified associations analysis identified the high-risk group on the chloroform exposures. Conclusion This study revealed that blood chloroform was positively and independently associated with total PSA level, suggesting that long-term environmental chloroform exposure may cause changes in the prostate gland.
Collapse
Affiliation(s)
- Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumao Chen
- Department of Urology, Ezhou Central Hospital, Ezhou, China
| | - Yu Yang
- Department of Pathologist and Laboratory Medicine, Staff Pathologist, Deaconess Hospital, Evansville, IN, United States
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|