1
|
Birch H, Dyhr KS, Antoniotti S, Thierry M, Lapczynski A, Mayer P. Whole UVCB tests can yield biotic and abiotic degradation kinetics of known and unknown constituents for an enhanced UVCB degradation profile. CHEMOSPHERE 2024; 368:143675. [PMID: 39500410 DOI: 10.1016/j.chemosphere.2024.143675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/12/2024]
Abstract
The green transition and move towards safe and sustainable-by-design chemicals entail the need for new methods to study the biodegradability of UVCBs (substances of Unknown or Variable composition, Complex reaction products, and Biological materials). Standard simulation biodegradation tests have been developed for single substances and are generally not applicable for UVCBs. The aims of this study were (1) to combine a whole UVCB biodegradation test with a sensitive constituent-specific analytical technique, (2) to measure biotic and abiotic degradation of known and unknown UVCB constituents, and (3) to determine the impact of a wastewater treatment plant (WWTP) discharge on the constituent specific biodegradation in stream water. Lavender oil and black pepper oil are of significance in the perfume and cosmetics industries and served as model UVCBs. Stream water sampled upstream and downstream of a WWTP discharge point was characterized and used as inoculum (i.e., naturally and wastewater-adapted bacterial consortia). Tests were conducted in gastight headspace vials, and automated Arrow Solid Phase Microextraction GC-MS-scan was applied on unopened vials. Peak area ratios between biotic test systems and abiotic controls were used to determine primary biodegradation kinetics, and freshly spiked analytical references to separate biotic from abiotic degradation. Biodegradation half-times were below 20 days for all known (8-12) and unknown constituents (>78) in the essential oils. A dual-column GC-MS analysis produced a level 2 identification of 16 unknown lavender constituents. Biodegradation kinetics were similar in inoculum taken before and after the WWTP outlet, confirming that native stream microorganisms were competent degraders.
Collapse
Affiliation(s)
- Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark.
| | - Karen Scharling Dyhr
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark.
| | - Sylvain Antoniotti
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Parc Valrose, 06108 Nice cedex 2, France; Université Côte d'Azur, Institut d'Innovation et de Partenariats, Espace J.-L. Lions, 4 Traverse Dupont, 06130, Grasse, France.
| | - Marina Thierry
- Université Côte d'Azur, Institut d'Innovation et de Partenariats, Espace J.-L. Lions, 4 Traverse Dupont, 06130, Grasse, France.
| | - Aurelia Lapczynski
- Research Institute for Fragrance Materials, 1200 MacArthur Blvd, Suite 306, Mahwah, NJ, 07430-2322, USA.
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Møller MT, Birch H, Sjøholm KK, Skjolding LM, Xie H, Papazian S, Mayer P. Determining Marine Biodegradation Kinetics of Chemicals Discharged from Offshore Oil Platforms─Whole Mixture Testing at High Dilutions Increases Environmental Relevance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17454-17463. [PMID: 39292649 DOI: 10.1021/acs.est.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Offshore oil platforms discharge enormous volumes of produced water that contain mixtures of petrochemicals and production chemicals. It is crucial to avoid the discharge of particularly those chemicals that are persistent in the marine environment. This study aims to (1) develop a biodegradation testing approach for discharged chemicals by native marine microorganism, (2) determine how dilution affects biodegradation, and (3) determine biodegradation kinetics for many discharged chemicals at low and noninhibitory concentrations. Produced water from an offshore oil platform was diluted in the ratio of 1:20, 1:60, and 1:200 in seawater from the same location and incubated for 60 days at 10 °C. Automated solid-phase microextraction GC-MS was used as a sensitive analytical technique, and chemical-specific primary degradation was determined based on peak area ratios between biotic test systems and abiotic controls. Biodegradation was inhibited at lower dilutions, consistent with ecotoxicity tests. Biodegradation kinetics were determined at the highest dilution for 139 chemicals (43 tentatively identified), and 6 chemicals were found persistent (half-life >60 days). Nontargeted analysis by liquid chromatography-high-resolution MS was demonstrated as a proof-of-principle for a comprehensive assessment. Biodegradation testing of chemicals in discharges provides the possibility to assess hundreds of chemicals at once and find the persistent ones.
Collapse
Affiliation(s)
- Mette T Møller
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Karina K Sjøholm
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Lars M Skjolding
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Cheng Y, Zhang K, Huang K, Zhang H. Meta-Analysis and Machine Learning Models for Anaerobic Biodegradation Rates of Organic Contaminants in Sediments and Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12976-12988. [PMID: 38988037 DOI: 10.1021/acs.est.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic biodegradation rates (half-lives) of organic chemicals are pivotal for environmental risk assessment and remediation. Traditional experimental evaluation, constrained by prolonged, oxygen-free conditions, struggles to keep pace with emerging contaminants. Data-driven machine learning (ML) models serve as promising complements. However, reported quantitative structure-biodegradation relationships or ML models on anaerobic biodegradation are mostly based on small data sets (<100 records) and neglect experimental conditions, usually achieving compromised predictions. This work aimed to develop ML models for predicting the biodegradation half-lives of organic pollutants in anaerobic environments (i.e., sediment/soil and sludge). Focusing on important features of both chemicals and experimental conditions, we first curated two data sets, one for sediment/soil (SED) and the other for sludge (SLD), covering 978 records for 206 chemicals from the literature, and then conducted a meta-analysis. Next, we built a binary classification (half-life of 30 days as the cutoff) model with an accuracy of 81% and a regression model with R2 of 0.56 for SED based on LightGBM (80% and 0.31 for SLD based on Extra tree, respectively). The model interpretations underscored the significance of experimental conditions (e.g., temperature and inoculum dosage), as evidenced by their high feature importance, and the models were found to correctly capture the effects of chemical substructures, for example, branched structures and aromatic rings prolonged half-lives while methyl group and ortho-substitution on rings shortened half-lives. The applicability domains of the models were also defined, resulting in reasonable prediction for the half-lives of 41% (SED) or 67% (SLD) of over 4000 persistent, bioaccumulative, and toxic chemicals. Overall, this study pioneers ML models for predicting the anaerobic degradation half-lives, offering valuable support for future evaluation and implementation of chemical anaerobic biodegradation.
Collapse
Affiliation(s)
- Yushu Cheng
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kai Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kuan Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Davis CW, Brown DM, Swansborough C, Hughes CB, Camenzuli L, Saunders LJ, Lyon DY. Predicting Hydrocarbon Primary Biodegradation in Soil and Sediment Systems Using System Parameterization and Machine Learning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1352-1363. [PMID: 38546229 DOI: 10.1002/etc.5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 02/24/2024] [Indexed: 06/04/2024]
Abstract
Technical complexity associated with biodegradation testing, particularly for substances of unknown or variable composition, complex reaction products, or biological materials (UVCB), necessitates the advancement of non-testing methods such as quantitative structure-property relationships (QSPRs). Models for describing the biodegradation of petroleum hydrocarbons (HCs) have been previously developed. A critical limitation of available models is their inability to capture the variability in biodegradation rates associated with variable test systems and environmental conditions. Recently, the Hydrocarbon Biodegradation System Integrated Model (HC-BioSIM) was developed to characterize the biodegradation of HCs in aquatic systems with the inclusion of key test system variables. The present study further expands the HC-BioSIM methodology to soil and sediment systems using a database of 2195 half-life (i.e., degradation time [DT]50) entries for HCs in soil and sediment. Relevance and reliability criteria were defined based on similarity to standard testing guidelines for biodegradation testing and applied to all entries in the database. The HC-BioSIM soil and sediment models significantly outperformed the existing biodegradation HC half-life (BioHCWin) and virtual evaluation of chemical properties and toxicities (VEGA) quantitative Mario Negri Institute for Pharmacological Research (IRFMN) models in soil and sediment. Average errors in predicted DT50s were reduced by up to 6.3- and 8.7-fold for soil and sediment, respectively. No significant bias as a function of HC class, carbon number, or test system parameters was observed. Model diagnostics demonstrated low variability in performance and high consistency of parameter usage/importance and rule structure, supporting the generalizability and stability of the models for application to external data sets. The HC-BioSIM provides improved accuracy of Persistence categorization, with correct classification rates of 83.9%, and 90.6% for soil and sediment, respectively, demonstrating a significant improvement over the existing BioHCWin (70.7% and 58.6%) and VEGA (59.5% and 18.5%) models. Environ Toxicol Chem 2024;43:1352-1363. © 2024 Concawe. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Craig W Davis
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Deng Z, Yu T, Li S, He C, Hu B, Zhang X. Effects of 2,6-di-tert-butyl-hydroxytotulene and mineral-lubricant base oils on microbial communities during lubricants biodegradation. ENVIRONMENTAL RESEARCH 2023; 231:116120. [PMID: 37182830 DOI: 10.1016/j.envres.2023.116120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
2,6-Di-tert-butyl-hydroxytotulene (BHT) is an additive commonly used in the manufacturing of lubricants to improve their antioxidant properties. However, in this study, we found that BHT affects the biodegradation of bio-lubricants by influencing the microbial community during the degradation of bio-lubricants. Specifically, BHT was found to reduce bacterial richness in activated sludge, but it increased the relative abundance of Actinobacteria (from 21.24% to 40.89%), Rhodococcus (from 17.15% to 31.25%), Dietzia (from 0.069% to 6.49%), and Aequorivita (from 0.90% to 1.85%). LEfSe analysis and co-occurrence network analysis suggested that Actinobacteria could be potential biomarkers and keystone taxa in microbial communities. Using the MetaCyc pathway database, the study found that BHT interfered with cellular biosynthetic processes. Additionally, the study also showed that mineral-lubricant base oils, which are difficult to degrade, significantly altered the diversity and composition of the microbiome. Overall, the findings demonstrate that BHT and mineral-lubricant base oils can substantially alter bacterial richness, structure, and function, potentially contributing to the difficulty in degrading lubricants. These findings have implications for the development of more biodegradable lubricants and the management of industrial waste containing lubricants.
Collapse
Affiliation(s)
- Zhenkun Deng
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tong Yu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuai Li
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changliu He
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bing Hu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
6
|
Liu X, Liu Y, Tang H, Zhang A, Liu Z, Li Z. Microbial metabolism regulation on the efficient degradation of aromatic compounds for biochemical treatment process of coal chemical wastewater in pilot scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121872. [PMID: 37225073 DOI: 10.1016/j.envpol.2023.121872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
At present, the common problems of biochemical treatment systems of coal chemical wastewater were the poor system stability and the difficulty in reaching COD discharge standards. Aromatic compounds were the main contributors to COD value. The effective removal of aromatic compounds was an urgent problem in the biochemical treatment systems of coal chemical wastewater. In this study, the dominant microbial strains that could degrade phenol, quinoline, and phenanthrene were isolated respectively and inoculated into the pilot scale biochemical tank of coal chemical wastewater. The regulation effect and mechanism of microbial metabolism on the efficient degradation of aromatic compounds were studied. The results indicated that the various aromatic compounds were significantly removed under the regulation of microbial metabolism, the removal efficiencies of COD, TOC, phenols, benzenes, N-CHs, and PAHs were increased by about 25%, 20%, 33%, 25%, 42%, and 45%, respectively, and their biotoxicity was also drastically reduced. Moreover, the abundance and diversity of microbial community, and the microbial activity were obviously improved, as well as the various functional strains were selectively enriched, suggesting that the regulation system could resist environmental stresses with high substrate concentration and toxicity, which could lead to more enhanced performance for aromatic compounds removal. In addition, the microbial EPS content was significantly increased, implying the formation of microbial hydrophobic cell surfaces, which could improve the bioavailability of aromatic compounds. Furthermore, the enzymatic activity analysis revealed that the relative abundance and activity of key enzymes were all obviously improved. In conclusion, multiple lines of evidence were provided to clarify the regulation mechanism of microbial metabolism on the efficient degradation of aromatic compounds for biochemical treatment process of coal chemical wastewater in pilot scale. The results laid a good foundation for realizing the harmless treatment of coal chemical wastewater.
Collapse
Affiliation(s)
- Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Hui Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
7
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Birch H, Teixeira A, van Egmond R, Mayer P. Closed aerobic biodegradation kinetics test with activated sludge and low concentration chemical mixtures. CHEMOSPHERE 2023; 330:138752. [PMID: 37086980 DOI: 10.1016/j.chemosphere.2023.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The activated sludge process at wastewater treatment plants is important to prevent discharge of organic pollutants to the environment. Determination of biodegradation kinetics in activated sludge is challenging for mixtures that cover a diverse range of structures. The aims of this study were to (1) design a closed aerobic biodegradation batch test with activated sludge and (2) develop a sample preparation procedure that is compatible with LC-MS and Solid Phase Microextraction (SPME) coupled to GC-MS. A headspace:sludge ratio of 4:1 was sufficient to ensure aerobic conditions in activated sludge for 7 days at co-solvent concentrations <0.01%. Ethanol was added to sub-samples (50%) to stop biodegradation, extract sorbed chemicals and allow storage at -18 °C without ice formation. The ethanol extracted the chemicals from the sludge before filtration (0.2 μm). The filtrate was diluted in ultrapure water to <12% ethanol before analysis by SPME GC-MS/MS and was suitable for direct injection on LC-MS/MS. Biodegradation was distinguished from sorption through abiotic controls using autoclaved poisoned sludge. Linalool, naphthalene, α-isomethylionone, phenanthrene, citronellol, drometrizole, 2-ethylhexyl 4-methoxycinnamate, dicyclohexyl phthalate, BP-1, BP-3, methyl-, ethyl-, propylparaben, alkyl sulfates and isethionates degraded within 48 h in activated sludge, while musk ketone, tonalide and 1,3,5-trichlorobenzene did not. A 10 times reduction of sludge density did not markedly affect the microbial diversity but slowed biodegradation kinetics (partly explained by theory). This study demonstrated a 'cold' alternative to an OECD 314b test and how biodegradation kinetics can be determined for mixtures of diverse chemicals in closed batch tests with activated sludge.
Collapse
Affiliation(s)
- Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| | - Alexandre Teixeira
- Unilever, Safety & Environmental Assurance Centre, Bedford, MK44 1LQ, UK
| | - Roger van Egmond
- Unilever, Safety & Environmental Assurance Centre, Bedford, MK44 1LQ, UK
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Biodegradation of chemicals tested in mixtures and individually: mixture effects on biodegradation kinetics and microbial composition. Biodegradation 2023; 34:139-153. [PMID: 36595149 DOI: 10.1007/s10532-022-10009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Biodegradation in the aquatic environment occurs in the presence of many chemicals, while standard simulation biodegradation tests are conducted with single chemicals. This study aimed to investigate the effect of the presence of additional chemicals on (1) biodegradation kinetics of individual chemicals and (2) the microbial composition in test systems. Parallel mixture and single substance experiments were conducted for 9 chemicals (phenethyl benzoate, oxacycloheptadec-10-en-2-one, α-ionone, methyl 2-naphthyl ether, decan-5-olide, octan-2-one, 2'-acetonaphthanone, methyl N-methylanthranilate, (+)-menthone) using inoculum from a Danish stream. Biotic and abiotic test systems were incubated at 12 °C for 1-30 days. Primary biodegradation kinetics were then determined from biotic/abiotic peak area ratios using SPME GC/MS analysis. The effect of the mixture on biodegradation varied with test chemical and was more pronounced for chemicals with lag-phases above 14 days: two chemicals degraded in the mixture but not when tested alone (i.e., positive mixture effect), and two degraded when tested alone but not in the mixture (i.e., negative mixture effect). Microbial composition (16S rRNA gene amplicon sequencing) was highly affected by 14 days incubation and the presence of the mixture (significant carbon source), but less by single chemicals (low carbon source). Growth on chemical mixtures resulted in consistent proliferation of Pseudomonas and Malikia, while specific chemicals increased the abundance of putative degraders belonging to Novosphingobium and Zoogloea. The chemical and microbiological results support (1) that simulation biodegradation kinetics should be determined in mixtures at low environmentally relevant concentrations and (2) that degradation times beyond some weeks are associated with more uncertainty.
Collapse
|
10
|
Li D, Li K, Liu Y, Wang L, Liu N, Huang S. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24606-24616. [PMID: 36344887 DOI: 10.1007/s11356-022-23960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in the environment involves multiple PAHs and various intermediates produced during the microbial metabolic process. A multi-substrate enrichment approach was proposed to develop a mixed bacterial community (MBC) from the activated sludge of a coking wastewater plant. The degradation performance of MBC was evaluated under different initial concentrations of PAHs (25-200 mg/L), temperature (20-35 °C), pH (5.0-9.0), salinity (0-10 g/L NaCl), and coexisting substrates (catechol, salicylic acid, and phthalic acid). The results showed that the degradation rates of phenanthrene and pyrene in all treatments were up to (99 ± 0.71)% and (99 ± 0.90)% after incubation of 5 days, respectively, indicating excellent biodegradation ability of PAHs by MBC. Furthermore, 16S rRNA gene amplicon sequencing analysis revealed that Pseudomonas was dominant, while Burkholderia had the largest proportion in acidic (pH = 5.0) and saline (10 g/L NaCl) environments. However, the proportion of dominant bacteria in MBC was markedly affected by intermediate metabolites. It was shown that MBC had a higher degradation rate of PAHs in the coexisting matrix due to the timely clearance of intermediates reducing the metabolic burden. Overall, our study provided valuable information to help design an effective strategy for the bioremediation of PAHs in complex environments.
Collapse
Affiliation(s)
- Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yanzehua Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| |
Collapse
|
11
|
Birch H, Hammershøj R, Møller MT, Mayer P. Technical guidance on biodegradation testing of difficult substances and mixtures in surface water. MethodsX 2023; 10:102138. [PMID: 37007616 PMCID: PMC10050768 DOI: 10.1016/j.mex.2023.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
The aim of this article is to address critical challenges in the OECD 309 "Aerobic mineralization in surface water - simulation biodegradation test" for volatile chemicals, highly hydrophobic chemicals, mixtures or UVCBs (unknown or variable composition, complex reaction products or biological materials). Several modifications are presented to address technical challenges (minimize and account for losses), make testing more environmentally relevant (lower concentrations) and generate data for multiple substances (more and better aligned data):•Minimizing and accounting for test substance losses: Aqueous solutions are handled using gas tight syringes, tests are conducted in gas tight vials, and automated analysis is performed directly on unopened test vials. Abiotic losses are accounted for via concentration ratios between test systems and abiotic controls that are incubated and measured in parallel.•Testing at low environmentally relevant concentrations: Substances are tested at low concentrations to avoid toxicity and solubility artefacts and analyzed using a sensitive analytical method. Substances are added without co-solvent (using passive dosing) or with a minimum of co-solvent (using microvolume spiking).•Testing of multiple chemicals in mixtures combined with constituent specific analysis: Primary biodegradation kinetics of chemicals are determined in tests of multi-constituent mixtures or UVCBs using constituent specific analysis.
Collapse
Affiliation(s)
- Heidi Birch
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kgs, Lyngby, Denmark
- Corresponding author.
| | - Rikke Hammershøj
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Mette Torsbjerg Møller
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet, Building 115, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|