1
|
Yao M, Zhang C, Xu Y, Yue Z, Pei M, Liu W, Zhang L, Chen X, Lei S, Zhu L, Wang J, Gao P. Butyl benzyl phthalate induces neurotoxicity in Eisenia fetida: Mechanisms revealed by biochemical and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176972. [PMID: 39419222 DOI: 10.1016/j.scitotenv.2024.176972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Phthalates, particularly butyl benzyl phthalate (BBP), are ubiquitous environmental contaminants with potential neurotoxic effects. However, their impact on soil organisms, especially earthworms (Eisenia fetida), remains poorly understood. The current study investigated the neurotoxic effects of BBP on Eisenia fetida in artificial and red soils using an integrated approach combining biochemical assays, metabolomics, and molecular docking. Earthworms were exposed to 0, 1, and 10 mg kg-1 BBP for 14 and 28 days. Biochemical assays revealed significant increases in oxidative stress markers and disruptions in neurotransmission-related enzyme activities. Metabolomic analysis of the cerebral ganglia identified alterations in energy metabolism, lipid metabolism, and neuroactive ligand-receptor interaction signaling pathways. Molecular docking studies corroborated these findings, showing strong interactions between BBP and essential neuronal proteins, particularly the sodium pump. The integration of these data suggests that BBP-induced neurotoxicity in Eisenia fetida is primarily mediated by calcium signaling pathway dysfunction and calcium homeostasis imbalance. Notably, neurotoxic effects were more pronounced in red soil than in artificial soil, highlighting the importance of considering soil type in ecotoxicological assessments. The current study provides novel insights into the mechanisms of BBP-induced neurotoxicity in soil invertebrates and underscores the potential ecological risks associated with phthalate contamination in agricultural environments.
Collapse
Affiliation(s)
- Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Wanjing Liu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Shuhan Lei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Wuxi Branch of Jiangsu Academy of Agricultural Sciences, Wuxi 214000, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Peng Gao
- Department of Environmental and Occupational Health, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
2
|
Wang X, Chen H, Qian Y, Li X, Li X, Xu X, Wu Y, Zhang W, Xue G. Sludge-derived hydrochar modulates complete nonradical electron transfer in peroxydisulfate activation via pyrrolic-N and carbon defect: Implication for degrading electron-rich ionizable anilines compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135724. [PMID: 39236539 DOI: 10.1016/j.jhazmat.2024.135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation. Degradation of anilines IOC was not only affected by the electron-donating capacity but also proton concentration in solution because of the ionizable amino group (-NH2). Diverse effects including proton favor, insusceptible and inhibition were observed. Impressively, addition of HCO3 with strong proton binding capacity boosted aniline degradation nearly 10 times. Moreover, characterizations and theoretical calculations demonstrated that pyrrolic-N increased electron density and created positively charged surface, profoundly promoting generation of SDHC-N-S2O82-* complexes. More delocalized electrons around carbon defect could enhance electron mobility. This work guides a rational design of sludge-derived hydrochar to mediate nonradical ETP oxidation, and provides insights into the impacts of proton on anilines IOC degradation.
Collapse
Affiliation(s)
- Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianying Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Chi T, Liu Z, Zhang B, Zhu L, Dong C, Li H, Jin Y, Zhu L, Hu B. Fluoranthene slow down sulfamethazine migration in soil via π-π interaction to increase the abundance of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124532. [PMID: 38996991 DOI: 10.1016/j.envpol.2024.124532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.
Collapse
Affiliation(s)
- Taolve Chi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baofeng Zhang
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, China.
| | - Lin Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Chifei Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Haofei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
4
|
Pan Y, Yu SS, Xiao ZC, Min Y, Tian T, Zheng YM, Zhao QB, Yuan ZH, Yu HQ. Re-evaluation and modification of dehydrogenase activity tests in assessing microbial activity for wastewater treatment plant operation. WATER RESEARCH 2023; 246:120737. [PMID: 37857011 DOI: 10.1016/j.watres.2023.120737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Reliable and cost-effective methods for monitoring microbial activity are critical for process control in wastewater treatment plants. The dehydrogenase activity (DHA) test has been recognized as an efficient measure of biological activity due to its simplicity and broad applicability. Nevertheless, the existing DHA test methods suffer from imperfections and are difficult to implement as routine monitoring techniques. In this work, an accurate and cost-effective modified DHA approach was developed and the procedure for the DHA test was critically evaluated with respect to the standard construction, sample pretreatment, incubation and extraction conditions. The feasibility of the modified DHA test was demonstrated by comparison with the oxygen uptake rate and adenosine triphosphate in a sequencing batch reactor. The sensitivities of the two typical tetrazolium salts to toxicant inhibition by heavy metals and antibiotics were compared, revealing that 2,3,5-triphenyltetrazolium chloride (TTC) exhibited a higher sensitivity. Furthermore, the sensitivity mechanism of the two DHA tests was elucidated through electrochemical experiments, theoretical analysis and molecular simulations. Both tetrazolium salts were found to be effective artificial electron acceptors due to their low redox potentials. Molecular docking simulations revealed that TTC could outperform other tetrazolium salts in accepting electrons and hydrogens from dehydrogenase. Overall, the modified DHA approach presents an accurate and cost-effective way to measure microbial activity, making it a practical tool for wastewater treatment plants.
Collapse
Affiliation(s)
- Yuan Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Chao Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhi-Hua Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban and Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Wang C, He M, Wu C, Chen Z, Jiang L, Wang C. Toxicity interaction of polystyrene nanoplastics with sulfamethoxazole on the microalgae Chlamydomonas reinhardtii: A closer look at effect of light availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117969. [PMID: 37084645 DOI: 10.1016/j.jenvman.2023.117969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The coexistence of nanoplastics and antibiotics in the aquatic environment has raised a complicated risk for ecosystems and human health. How the environmental factors e.g., light, regulate the interaction between nanoplastics and antibiotics and the resulting combined toxicity is poorly understood. Here, we investigated the individual and combined toxicity of polystyrene nanoplastics (nPS, 100 mg L1) and sulfamethoxazole (SMX, 2.5 and 10 mg L-1) toward the microalgae Chlamydomonas reinhardtii under low (LL, 16 μmol m-2·s-1), normal (NL, 40 μmol m-2·s-1), and high light (HL, 150 μmol m-2·s-1) in terms of cellular responses. Results indicated that the joint toxicity of nPS and SMX commonly exhibited a strong antagonistic/mitigative effect under LL/NL at 24 h, and under NL at 72 h. nPS could adsorb more SMX under LL/NL at 24 h (1.90/1.33 mg g-1) and under NL at 72 h (1.01 mg g-1), thereby alleviating SMX toxicity to C. reinhardtii. However, the self-toxicity of nPS had a negative influence on the degree of antagonism between nPS and SMX. The experimental results coupled with computational chemistry further revealed that the adsorption capacity of SMX on nPS was stimulated by low pH under LL/NL at 24 h (∼7.5), while by less co-existing saline ions (0.83 ppt) and algae-derived dissolved organic matter (9.04 mg L-1) under NL at 72 h. nPS toxicity that was responsible for the toxic action modes was mainly attributed to the shading effect induced by hetero-aggregation and hindrance of light transmittance (>60%), as well as being regulated by additives leaching (0.49-1.07 mg L-1) and oxidative stress. Overall, these findings provided a critical basis for the risk assessment and management of multiple pollutants in the complex natural environment.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chonglin Wu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijuan Jiang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Lemay AC, Sontarp EJ, Martinez D, Maruri P, Mohammed R, Neapole R, Wiese M, Willemsen JAR, Bourg IC. Molecular Dynamics Simulation Prediction of the Partitioning Constants ( KH, Kiw, Kia) of 82 Legacy and Emerging Organic Contaminants at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6296-6308. [PMID: 37014786 DOI: 10.1021/acs.est.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs. Here, we use established MD simulation approaches to examine the partitioning of 82 OCs, including many compounds of critical concern, at the water-air interface. Our predictions of the Henry's law constant (KH) and interfacial adsorption coefficients (Kiw, Kia) correlate strongly with experimental results, indicating that MD simulations can be used to predict KH, Kiw, and Kia values with mean absolute deviations of 1.1, 0.3, and 0.3 logarithmic units after correcting for systematic bias, respectively. A library of MD simulation input files for the examined OCs is provided to facilitate future investigations of the partitioning of these compounds in the presence of other phases.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ethan J Sontarp
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela Martinez
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Maruri
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Raneem Mohammed
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan Neapole
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Morgan Wiese
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jennifer A R Willemsen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Agles AA, Bourg IC. Structure-Thermodynamic Relationship of a Polysaccharide Gel (Alginate) as a Function of Water Content and Counterion Type (Na vs Ca). J Phys Chem B 2023; 127:1828-1841. [PMID: 36791328 PMCID: PMC10159261 DOI: 10.1021/acs.jpcb.2c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering and High Meadows Environmental
Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Yu M, Hua Y, Sarwar MT, Yang H. Nanoscale Interactions of Humic Acid and Minerals Reveal Mechanisms of Carbon Protection in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:286-296. [PMID: 36524600 DOI: 10.1021/acs.est.2c06814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The concentrations of terrestrially sourced dissolved organic matter (DOM) have expanded throughout aquatic ecosystems in recent decades. Although sorption to minerals in soils is one major pathway to sequestrate soil organic matter, the mechanisms of organic matter-mineral interactions are not thoroughly understood. Here, we investigated the effect of calcium phosphate mineralization on humic acid (HA) fixation in simulated soil solutions, either with or without clay mineral montmorillonite (Mt). We found that Mt in solution promoted nucleation and crystallization of calcium phosphate (CaP) due to amorphous calcium phosphate clustering and coalescence on Mt surface, which contributed to the long-term persistence and accumulation of HA. Organic ligands with specific chemical groups on HA have higher binding energies to CaP-Mt than to CaP/Mt, according to dynamic force spectroscopy observations. Moreover, CaP-Mt formed in solution showed a great capacity for HA adsorption with a maximum adsorption quantity of 156.89 mg/g. Our findings directly support that Mt is crucial for DOM sequestration by facilitating CaP precipitation/transformation. This has an impact on how effectively we understand the long-term turnover of DOM and highlights knowledge gaps that might assist in resolving essential soil C sequestration issues.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|