1
|
Su P, Lu X, Song G, Zhang Q, Leng Q, Zhou M. Synergy of atomic hydrogen reduction and reactive oxygen species oxidation over confined Mn bifunctional site for electrocatalytic deep mineralization. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135521. [PMID: 39154475 DOI: 10.1016/j.jhazmat.2024.135521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Traditional reduction or oxidation processes generating one-component free radicals face challenges in deep dechlorination and mineralization of chlorophenols from wastewater. Herein, an efficient electrocatalytic process has been developed, which couples atomic H* reduction with reactive oxidation species (•OH and 1O2) oxidation on a bifunctional cathode for 4 -chlorophenol (4 -CP) removal. The N - doped carbon nanotubes encapsulated manganese nanoparticles was fabricated as cathode, which could generate atomic H* , initiating nucleophilic hydrodechlorination in presence of confined MnO sites. Subsequently, electrophilic oxidation by generating mainly 1O2 on confined Mn7C3 sites and •OH on confined MnO sites, facilitating the oxidative processes. Experimental results and theory calculations demonstrated that reductive dechlorination and oxidative mineralization processes could mutually promote each other, resulting in an enhancement factor of 2.90. At pH 7, this process achieved 100 % removal for 4 -CP, 84 % dechlorination, 76 % total organic carbon (TOC) removal and low energy consumption (0.76 kWh g-1TOC) within 120 min. Notably, TOC for chlorophenols containing Cl substituents at different positions and real lake water containing 4 -CP could be almost completely removed. This research establishes confined non-noble bifunctional active sites that synergistically enhance reductive dechlorination and oxidative degradation processes, holding significant treatment potential for application in deep mineralization of organochlorine from water/wastewater.
Collapse
Affiliation(s)
- Pei Su
- Hebei Key Laboratory of Applied Chemistry and Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xifeng Lu
- Hebei Key Laboratory of Applied Chemistry and Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry and Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuxia Leng
- Hebei Key Laboratory of Applied Chemistry and Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Lau CY, Yeung CS, Tse HY, Luk HL, Yu CY, Yuen CB, Phillips DL, Leu SY. Macrocyclic porphyrin photocatalysts without metal chelation: A novel pathway for complete degradation of tough halophenols with longwave visible LED light source. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135342. [PMID: 39126850 DOI: 10.1016/j.jhazmat.2024.135342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Halophenols are toxic and persistent pollutants in water environments which poses harm to various organisms. Due to their high stability and long residence time, ultraviolet radiation, heavy metals and oxidizing agents have been largely adopted on treating these compounds. However, these treatment methods could pose toxicity or hazardous risks to the marine environment and plant operators. In this study, a water-soluble porphyrin photocatalyst was synthesized and introduced for halophenol treatment using UV-free LED white light. The porphyrin catalyst is a macrocyclic ring consisting of pyrroles linked with methine bridges, the highly conjugated ring provided the superior functionality of visible light absorption. Surprisingly, over 99 % degradation of halophenols and over 90 % dehalogenation have been achieved without metal chelation, even higher than those of transition metal porphyrins with inclusion of Fe3+, Zn2+, Cu2+, Co2+, Ni2+, and Mn2+. Ring-opening reactions were confirmed with the formation of carboxylic acids; dicarboxylic acids like acrylic acid, and malonic acid; while fumaric acid was the main product. Total organic carbon results indicated no CO2 produced during the reaction. Triplet absorbance and scavenger studies also indicated that singlet oxygen and conduction band electrons are the main radical species for halophenol degradation. The 100-fold singlet emission quenching over triplet absorption quenching indicated that the excited electrons tend to be transferred via singlet state. This concept brings along new approaches detoxifying halophenol-related wastewater without UV, metals and other additives, which is more environmentally-friendly and sheds light to the conversion of toxic materials into useful chemical precursors.
Collapse
Affiliation(s)
- Chun-Yin Lau
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chi Shun Yeung
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Ho-Yin Tse
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA; Yale School of the Environment, 195 Prospect St, New Haven, CT, USA
| | - Hoi Ling Luk
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Chung Yin Yu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - Chun Bong Yuen
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong
| | - David Lee Phillips
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
3
|
Xin H, Zhang W, Zhang X, Zhang G, Ji Q, Liu H, Qu J. Energy Recovery from Hexavalent Chromium Reduction for In Situ Electrocatalytic Hydrogen Peroxide Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17485-17496. [PMID: 39290141 DOI: 10.1021/acs.est.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.
Collapse
Affiliation(s)
- Huaijia Xin
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofeng Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Liu X, Wang Y, Duan H. Recent Progress in Electrocatalytic Conversion of Lignin: From Monomers, Dimers, to Raw Lignin. PRECISION CHEMISTRY 2024; 2:428-446. [PMID: 39478938 PMCID: PMC11524326 DOI: 10.1021/prechem.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 11/02/2024]
Abstract
Lignin, as the second largest renewable biomass resource in nature, has increasingly received significant interest for its potential to be transformed into valuable chemicals, potentially contributing to carbon neutrality. Among different approaches, renewable electricity-driven biomass conversion holds great promise to substitute a petroleum resource-driven one, owing to its characteristics of environmental friendliness, high energy efficiency, and tunable reactivity. The challenges lie on the polymeric structure and complex functional groups in lignin, requiring the development of efficient electrocatalysts for lignin valorization with enhanced activity and selectivity toward targeted chemicals. In this Review, we focus on the advancement of electrocatalytic valorization of lignin, from monomers, to dimers and to raw lignin, toward various value-added chemicals, with emphasis on catalyst design, reaction innovation, and mechanistic study. The general strategies for catalyst design are also summarized, offering insights into enhancing the activity and selectivity. Finally, challenges and perspectives for the electrocatalytic conversion of lignin are proposed.
Collapse
Affiliation(s)
- Xiang Liu
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Ye Wang
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Haohong Duan
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Engineering
Research Center of Advanced Rare Earth Materials, (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chang J, Hu R, Zhang J, Hou T, Li F. Two-dimensional metal-organic framework nanozyme-mediated portable paper-based analytical device for dichlorophen assay. Biosens Bioelectron 2024; 255:116271. [PMID: 38583355 DOI: 10.1016/j.bios.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.
Collapse
Affiliation(s)
- Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ruixian Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jinyan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
6
|
Chen H, Iyer J, Liu Y, Krebs S, Deng F, Jentys A, Searles DJ, Haider MA, Khare R, Lercher JA. Mechanism of Electrocatalytic H 2 Evolution, Carbonyl Hydrogenation, and Carbon-Carbon Coupling on Cu. J Am Chem Soc 2024; 146:13949-13961. [PMID: 38739624 PMCID: PMC11117180 DOI: 10.1021/jacs.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.
Collapse
Affiliation(s)
- Hongwen Chen
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Jayendran Iyer
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Yue Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| | - Simon Krebs
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Fuli Deng
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Debra J. Searles
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia
- ARC Centre
of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane 4072, QLD, Australia
| | - M. Ali Haider
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Renewable
Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Indian
Institute of Technology Delhi−Abu Dhabi, Khalifa City B, Abu Dhabi, United Arab Emirates
| | - Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Garching 85748, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland 99352, Washington, United States
| |
Collapse
|
7
|
Sun S, Wang S, Yin Y, Yang Y, Wang Y, Zhang J, Wang W. Competitive mechanism of salt-tolerance/degradation-performance of organic pollutant in bacteria: Na +/H + antiporters contribute to salt-stress resistance but impact phenol degradation. WATER RESEARCH 2024; 255:121448. [PMID: 38503180 DOI: 10.1016/j.watres.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Phenolic-laden wastewater is typically characterized by its high toxicity and high salinity, imposing serious limits on the application of bioremediation. Although a few halotolerant microorganisms have been reported to degrade phenol, their removal efficiency on high concentrations of phenol remains unsatisfactory. What's more, the deep interaction molecular mechanism of salt-tolerance/phenol-degradation performance has not been clearly revealed. Here, a halotolerant strain Aeribacillus pallidus W-12 employed a meta-pathway to efficiently degrade high concentration of phenol even under high salinity conditions. Investigation of salt-tolerance strategy indicated that four Na+/H+ antiporters, which are widely distributed in bacteria, synergistically endowed the strain with excellent salt adaptability. All these antiporters differentially but positively responded to salinity changes and induction of phenol, forming a synergistic transport effect on salt ions and phenol. In-depth analysis revealed a competitive relationship between salt tolerance and degradation performance, which significantly impaired the degradation efficiency at relatively high salinity. The efficient degradation performance of W-12 under different phenol concentrations and salinity conditions indicated its bioremediation potential for multiple types of phenolic wastewater. Collectively, the competitive mechanism of salt tolerance and degradation performance enlightens a new strategy of introducing or re-constructing Na+/H+ antiporters to further improve bioremediation efficiency of hypersaline organic wastewater.
Collapse
Affiliation(s)
- Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yue Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Zhang Y, He L, Liu S, Yang KL. Amperometry for real-time and on-site monitoring of phenol and H 2O 2 during the treatments. Anal Chim Acta 2024; 1295:342305. [PMID: 38355232 DOI: 10.1016/j.aca.2024.342305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
In conventional wastewater treatment processes, a predetermined quantity of chemicals is introduced at the onset, without ongoing monitoring of the treatment progress. Thus, it is difficult to perform timely intervention in the treatment process. Herein, we develop an amperometry-guided wastewater treatment strategy based on a green oxidation process with H2O2 and an iron-tetraamidomacrocyclic ligand (Fe-TAML) catalyst. During the process, users can monitor both phenol and H2O2 concentrations in real time and then intervene by adding more H2O2 to accelerate the reaction. As a proof of concept, a wastewater sample containing 9.3 ppm of phenol is treated by using the amperometry-guided strategy with 1 dosage of Fe-TAML (0.45 ppm) and 3 dosages of H2O2 (1.86 ppm). After the treatment, phenol concentration in the wastewater decreases to 0 ppm after 21 min. In contrast, with only 1 dosage of Fe-TAML (0.45 ppm) and 1 dosage of H2O2 (1.86 ppm), the reaction slows down after 5 min and stops prematurely. After that, the reaction kinetics of ppb-level phenol are investigated, in which the phenol rate and the rate constant are estimated. Compared to conventional detections, the designed amperometry shows faster response, lower limit of detection (LOD, phenol: 11 ppb, H2O2: 80 ppb) and consumable cost, easier operation, and no pollution generated. This example demonstrates the importance of early intervention during wastewater treatment with the help of real-time information.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineerin Drive 4, 117576, Singapore; School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450000, China
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineerin Drive 4, 117576, Singapore.
| |
Collapse
|
9
|
Chen Y, Tian L, Liu W, Mei Y, Xing QJ, Mu Y, Zheng LL, Fu Q, Zou JP, Wu D. Controllable Pyridine N-Oxidation-Nucleophilic Dechlorination Process for Enhanced Dechlorination of Chloropyridines: The Cooperation of HCO 4- and HO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4438-4449. [PMID: 38330552 DOI: 10.1021/acs.est.3c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.
Collapse
Affiliation(s)
- Ying Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Mei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qiu-Ju Xing
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yi Mu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ling-Ling Zheng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, P. R. China
| |
Collapse
|
10
|
Liu F, Dong H, Zhong S, Wu X, Wang T, Wang X, Liu Y, Zhu M, Lo IMC, Zhan S, Guan X. Selective electrocatalytic transformation of highly toxic phenols in wastewater to para-benzoquinone at ambient conditions. WATER RESEARCH 2024; 251:121106. [PMID: 38183841 DOI: 10.1016/j.watres.2024.121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The selective transformation of organics from wastewater to value-added chemicals is considered an upcycling process beneficial for carbon neutrality. Herein, we present an innovative electrocatalytic oxidation (ECO) system aimed at achieving the selective conversion of phenols in wastewater to para-benzoquinone (p-BQ), a valuable chemical widely utilized in the manufacturing and chemical industries. Notably, 96.4% of phenol abatement and 78.9% of p-BQ yield are synchronously obtained over a preferred carbon cloth-supported ruthenium nanoparticles (Ru/C) anode. Such unprecedented results stem from the weak Ru-O bond between the Ru active sites and generated p-BQ, which facilitates the desorption of p-BQ from the anode surface. This property not only prevents the excessive oxidation of the generated p-BQ but also reinstates the Ru active sites essential for the rapid ECO of phenol. Furthermore, this ECO system operates at ambient conditions and obviates the need for potent chemical oxidants, establishing a sustainable avenue for p-BQ production. Importantly, the system efficacy can be adaptable in actual phenol-containing coking wastewater, highlighting its potential practical application prospect. As a proof of concept, we construct an electrified Ru/C membrane for ECO of phenol, attaining phenol removal of 95.8% coupled with p-BQ selectivity of 73.1%, which demonstrates the feasibility of the ECO system in a scalable flow-through operation mode. This work provides a promising ECO strategy for realizing both phenols removal and valuable organics recovery from phenolic wastewater.
Collapse
Affiliation(s)
- Fuqiang Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shifa Zhong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xuechen Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xuelu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Ran W, Zhao H, Zhang X, Li S, Sun JF, Liu J, Liu R, Jiang G. Critical Review of Pd-Catalyzed Reduction Process for Treatment of Waterborne Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38323894 DOI: 10.1021/acs.est.3c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.
Collapse
Affiliation(s)
- Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Fang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Kong X, Garg S, Mortazavi M, Ma J, Waite TD. Heterogenous Iron Oxide Assemblages for Use in Catalytic Ozonation: Reactivity, Kinetics, and Reaction Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18636-18646. [PMID: 36648439 DOI: 10.1021/acs.est.2c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.
Collapse
Affiliation(s)
- Xiangtong Kong
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Shikha Garg
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Mahshid Mortazavi
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou510006, P.R. China
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province214206, P.R. China
| |
Collapse
|
13
|
Gu Z, Ni N, He G, Shan Y, Wu K, Hu C, Qu J. Enhanced Hydrosaturation Selectivity and Electron Transfer for Electrocatalytic Chlorophenols Hydrogenation on Ru Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16695-16706. [PMID: 37844151 DOI: 10.1021/acs.est.3c06669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Electrocatalytic hydrogenation is acknowledged as a promising strategy for chlorophenol dechlorination. However, the widely used Pd catalysts exhibit drawbacks, such as high costs and low selectivity for phenol hydrosaturation. Herein, we demonstrate the potential and mechanism of Ru in serving as a Pd substitute using 2,4,6-trichlorophenol (TCP) as a model pollutant. Up to 99.8% TCP removal efficiency and 99% selectivity to cyclohexanol, a value-added compound with an extremely low toxicity, were achieved on the Ru electrode. In contrast, only 66% of TCP was removed on the Pd electrode, with almost no hydrosaturation selectivity. The superiority of Ru over Pd was especially noteworthy in alkaline conditions or the presence of interfering species such as S2-. The theoretical simulation demonstrates that Ru possesses a hydrodechlorination energy barrier of 0.72 eV, which is comparable to that on Pd. Meanwhile, hydrosaturation requires an activation energy of 0.69 eV on Ru, which is much lower than that on Pd (0.92 eV). The main reaction mechanism on Ru is direct electron transfer, which is distinct from that on Pd (indirect pathway via atomic hydrogen, H*). This work thereby provides new insights into designing cost-effective electrocatalysts for halogenated phenol detoxification and resource recovery.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Nan Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Kang Y, Gu Z, Ma B, Zhang W, Sun J, Huang X, Hu C, Choi W, Qu J. Unveiling the spatially confined oxidation processes in reactive electrochemical membranes. Nat Commun 2023; 14:6590. [PMID: 37852952 PMCID: PMC10584896 DOI: 10.1038/s41467-023-42224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Electrocatalytic oxidation offers opportunities for sustainable environmental remediation, but it is often hampered by the slow mass transfer and short lives of electro-generated radicals. Here, we achieve a four times higher kinetic constant (18.9 min-1) for the oxidation of 4-chlorophenol on the reactive electrochemical membrane by reducing the pore size from 105 to 7 μm, with the predominate mechanism shifting from hydroxyl radical oxidation to direct electron transfer. More interestingly, such an enhancement effect is largely dependent on the molecular structure and its sensitivity to the direct electron transfer process. The spatial distributions of reactant and hydroxyl radicals are visualized via multiphysics simulation, revealing the compressed diffusion layer and restricted hydroxyl radical generation in the microchannels. This study demonstrates that both the reaction kinetics and the electron transfer pathway can be effectively regulated by the spatial confinement effect, which sheds light on the design of cost-effective electrochemical platforms for water purification and chemical synthesis.
Collapse
Affiliation(s)
- Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China.
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Wei Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Huang
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing, 100085, China
| | - Wonyong Choi
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Korea
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
An X, Xu X, Guo W, Chen Z, Miao Z, Yuan J, Wu Z. Bi-functional biochar-g-C 3N 4-MgO composites for simultaneously minimizing pollution:Photocatalytic degradation of pesticide and phosphorus recovery as slow-release fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118489. [PMID: 37393880 DOI: 10.1016/j.jenvman.2023.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Significant progress has been made in the development of phosphorus recovery adsorbents and photocatalysts for degradation of pesticides. However, the bifunctional materials for phosphorus recovery and photocatalytic degradation of pesticides have not been designed, and the mechanism of the interaction between photocatalysis and P adsorption remains unexplored. Herein, we develop biochar-g-C3N4-MgO composites (BC-g-C3N4-MgO) with bi-function application to minimize water toxicity and eutrophication. The results show phosphorus adsorption capacity of the BC-g-C3N4-MgO composite reaches 111.0 mg·g-1, and its degradation ratio of dinotefuran reaches 80.1% within 260 min. The mechanism studies show that MgO can play variety roles in BC-g-C3N4-MgO composite, in which can improve the adsorption capacity of phosphorus, enhance the utilization efficiency of visible light and the separation efficiency of photoinduced electron-hole pairs. The biochar existed in BC-g-C3N4-MgO serves as charge transporter with a good conductivity, which promotes the fluent transfer of photo-generated charge carriers. The ESR indicates that both •O2- and •OH generated from BC-g-C3N4-MgO are responsible for dinotefuran degradation. Finally, pot experiments reveal that P laden BC-g-C3N4-MgO promotes the growth of pepper seedlings with high P utilization efficiency of 49.27%.
Collapse
Affiliation(s)
- Xiongfang An
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Weijie Guo
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zepu Chen
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhiyin Miao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Jiayi Yuan
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| |
Collapse
|
16
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
El-Qelish M, Elgarahy AM, Ibrahim HS, El-Kholly HK, Gad M, M. Ali ME. Multi-functional core-shell pomegranate peel amended alginate beads for phenol decontamination and bio-hydrogen production: Synthesis, characterization, and kinetics investigation. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Chen Y, Mu Y, Tian L, Zheng LL, Mei Y, Xing QJ, Liu W, Zou JP, Yang L, Luo S, Wu D. Targeted Decomplexation of Metal Complexes for Efficient Metal Recovery by Ozone/Percarbonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5034-5045. [PMID: 36916663 DOI: 10.1021/acs.est.3c00190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Traditional methods cannot efficiently recover Cu from Cu(II)-EDTA wastewater and encounter the formation of secondary contaminants. In this study, an ozone/percarbonate (O3/SPC) process was proposed to efficiently decomplex Cu(II)-EDTA and simultaneously recover Cu. The results demonstrate that the O3/SPC process achieves 100% recovery of Cu with the corresponding kobs value of 0.103 min-1 compared with the typical •OH-based O3/H2O2 process (81.2%, 0.042 min-1). The carbonate radical anion (CO3•-) is generated from the O3/SPC process and carries out the targeted attack of amino groups of Cu(II)-EDTA for decarboxylation and deamination processes, resulting in successive cleavage of Cu-O and Cu-N bonds. In comparison, the •OH-based O3/H2O2 process is predominantly responsible for the breakage of Cu-O bonds via decarboxylation and formic acid removal. Moreover, the released Cu(II) can be transformed into stable copper precipitates by employing an endogenous precipitant (CO32-), accompanied by toxic-free byproducts in the O3/SPC process. More importantly, the O3/SPC process exhibits excellent metal recovery in the treatment of real copper electroplating wastewater and other metal-EDTA complexes. This study provides a promising technology and opens a new avenue for the efficient decomplexation of metal-organic complexes with simultaneous recovery of valuable metal resources.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Yi Mu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ling-Ling Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yi Mei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qiu-Ju Xing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Lixia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, P. R. China
| |
Collapse
|
19
|
Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving High-Efficient Photoelectrocatalytic Degradation of 4-Chlorophenol via Functional Reformation of Titanium-Oxo Clusters. J Am Chem Soc 2023; 145:6112-6122. [PMID: 36883963 DOI: 10.1021/jacs.2c11509] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rational design of crystalline catalysts with superior light absorption and charge transfer for efficient photoelectrocatalytic (PEC) reaction coupled with energy recovery remains a great challenge. In this work, we elaborately construct three stable titanium-oxo clusters (TOCs, Ti10Ac6, Ti10Fc8, and Ti12Fc2Ac4) modified with a monofunctionalized ligand (9-anthracenecarboxylic acid (Ac) or ferrocenecarboxylic acid (Fc)) and bifunctionalized ligands (Ac and Fc). They have tunable light-harvesting and charge transfer capacities and thus can serve as outstanding crystalline catalysts to achieve efficient PEC overall reaction, that is, the integration of anodic organic pollutant 4-chlorophenol (4-CP) degradation and cathodic wastewater-to-H2 conversion. These TOCs can all exhibit very high PEC activity and degradation efficiency of 4-CP. Especially, Ti12Fc2Ac4 decorated with bifunctionalized ligands exhibits better PEC degradation efficiency (over 99%) and H2 generation than Ti10Ac6 and Ti10Fc8 modified with a monofunctionalized ligand. The study of the 4-CP degradation pathway and mechanism revealed that such better PEC performance of Ti12Fc2Ac4 is probably due to its stronger interactions with the 4-CP molecule and better •OH radical production. This work not only presents the effective combination of organic pollutant degradation and simultaneously H2 evolution reaction using crystalline coordination clusters as both anodic and cathodic catalyst but also develops a new PEC application for crystalline coordination compounds.
Collapse
Affiliation(s)
- Jing-Jing Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Nan Sun
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yi Kuang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jing-Wen Shi
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Zhang Dong
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jia-Ni Lu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiao-Min Lin
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
20
|
Gao J, Chen L, Xing W, Yu C, Yan Y, Wu Y. “Nanomagnet-inspired” design on molecularly imprinted nanofiber membrane: Mechanisms for improved transport selectivity of sufficient specific sites. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Du Y, Chen X, Liang C. Selective electrocatalytic hydrogenation of phenols over ternary Pt3RuSn alloy. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
22
|
Zhang X, Shu X, Zhou X, Zhou C, Yang P, Diao M, Hu H, Gan X, Zhao C, Fan C. Magnetic reed biochar materials as adsorbents for aqueous copper and phenol removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3659-3667. [PMID: 35953746 DOI: 10.1007/s11356-022-22474-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Organics and heavy metals are common pollutants in many wastewaters and water bodies. Adsorption processes by magnetic materials can rapidly remove these pollutants from water and effectively recycle adsorbent. In this study, magnetic analyzer, X-ray diffraction, Flourier transform infrared spectroscopy, and granulometry were used to characterize the synthesized magnetic reed biochar materials (ZnFe2O4/biochar). Influences of adsorption time, pH, temperature, initial solution concentration, and adsorption equilibrium concentration on adsorption performances were investigated for Cu2+ and phenol adsorption by ZnFe2O4/biochar. Adsorption kinetic and isotherm models were used to describe the adsorption processes. Adsorption of phenol and Cu2+ by ZnFe2O4/biochar reached saturation within 45 min and increased slightly with the increase of temperature from 15 to 45 °C. Adsorption of Cu2+ increased with the increase of pH, while the adsorption of phenol peaked at pH = 6. The adsorption processes fit the pseudo-second order kinetics model, and both conformed to the Langmuir model. The fitting results show that the maximum single-component adsorption capacity of phenol and Cu2+ by ZnFe2O4/biochar is 63.29 and 12.20 mg/g, and the maximum bi-component adsorption capacity reaches 40.16 and 9.48 mg/g, respectively. All the findings demonstrate that ZnFe2O4/biochar has good adsorption performance for phenol and Cu2+.
Collapse
Affiliation(s)
- Xu Zhang
- Dongguan Environmental Protection Industry Promotion Centre, Sheng'an Building, Middle Section of Hongwei 2nd Road, Dongguan, 523070, People's Republic of China
| | - Xin Shu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaolin Zhou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, People's Republic of China
| | - Cheng Zhou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, People's Republic of China
| | - Pu Yang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, People's Republic of China
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Haiyang Hu
- Faculty of Physics, University of Munich, 80539, Munich, Germany
| | - Xinyu Gan
- Institute of Bio- and Geosciences / Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Chen Zhao
- Department of Applied Computing, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
23
|
Qiu Y, Ren LF, Xia L, Zhong C, Shao J, Zhao Y, Van der Bruggen B. Recovery of Fluoride-Rich and Silica-Rich Wastewaters as Valuable Resources: A Resource Capture Ultrafiltration-Bipolar Membrane Electrodialysis-Based Closed-Loop Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16221-16229. [PMID: 36287592 DOI: 10.1021/acs.est.2c04704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional technologies such as precipitation and coagulation have been adopted for fluoride-rich and silica-rich wastewater treatment, respectively, but waste solid generation and low wastewater processing efficiency are still the looming concern. Efficient resource recovery technologies for different wastewater treatments are scarce for environment and industry sustainability. Herein, a resource capture ultrafiltration-bipolar membrane electrodialysis (RCUF-BMED) system was designed into a closed-loop process for simultaneous capture and recovery of fluoride and silica as sodium silicofluoride (Na2SiF6) from mixed fluoride-rich and silica-rich wastewaters, as well as achieving zero liquid discharge. This RCUF-BMED system comprised two key parts: (1) capture of fluoride and silica from two wastewaters using acid, and recovery of the Na2SiF6 using base by UF and (2) UF permeate conversion for acid/base and freshwater generation by BMED. With the optimized RCUF-BMED system, fluoride and silica can be selectively captured from wastewater with removal efficiencies higher than 99%. The Na2SiF6 recovery was around 72% with a high purity of 99.1%. The aging and cyclic experiments demonstrated the high stability and recyclability of the RCUF-BMED system. This RCUF-BMED system has successfully achieved the conversion of toxic fluoride and silica into valuable Na2SiF6 from mixed wastewaters, which shows great application potential in the industry-resource-environment nexus.
Collapse
Affiliation(s)
- Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
- Chongqing Research Institute of Shanghai Jiao Tong University, No. 168 Liangjiang Road, Chongqing401120, P. R. China
| | - Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001Leuven, Belgium
| | - Changmei Zhong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai200240, P. R. China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001Leuven, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001Leuven, Belgium
| |
Collapse
|
24
|
Yang X, Hu J, Wu L, Hou H, Liang S, Yang J. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120097. [PMID: 36089136 DOI: 10.1016/j.envpol.2022.120097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The narrow acid pH range and the nonselectivity of the dominant •OH limit the Fenton systems to remediate the organic wastewater. Inspired by the role of heme in physiological processes, we employed iron porphyrin as a novel homogeneous catalyst to address this issue. Multiple active species are identified during the activation of H2O2, including high-valent iron porphyrin ((por)Fe(IV)) species ((por)Fe(IV)-OH, (por)+•Fe(IV)=O) and oxygen-centered radicals (•OH, HO2•/•O2-), as well as atomic hydrogen (*H) and carbon-centered radicals. With the cooperation of these active species, the degradation of pollutants could be resistant to the interference of concomitant ions and proceed over a wide pH range. This cooperative behavior is further verified by intermediates identified from bisphenol A degradation. Specifically, the presence of *H could facilitate the cleavage of the C-C bond and the addition of unsaturated or aromatic molecules. (Por)+•Fe(IV)=O could hydroxylate substrates with an oxygen rebound mechanism. Hydrogen atom abstraction of contaminants could be performed by (por)Fe(IV)-OH to form desaturated products by attacking oxygen-centered radicals. The ecotoxicity of bisphenol A could be significantly decreased through degradation. This study would provide a new approach to wastewater treatment and shed light on the interaction between metalloporphyrin and peroxide in an aqueous solution.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
25
|
Xue Y, Yu Q, Ma Q, Chen Y, Zhang C, Teng W, Fan J, Zhang WX. Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N 3C 1 Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14797-14807. [PMID: 36175172 DOI: 10.1021/acs.est.2c04456] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The conversion of nitrate to ammonia can serve two important functions: mitigating nitrate pollution and offering a low energy intensity pathway for ammonia synthesis. Conventional ammonia synthesis from electrocatalytic nitrate reduction reactions (NO3RR) is often impeded by incomplete nitrate conversion, sluggish kinetics, and the competition of hydrogen evolution reactions. Herein, atomic Cu sites anchored on micro-/mesoporous nitrogen-doped carbon (Cu MNC) with fine-tuned hydrophilicity, micro-/mesoporous channels, and abundant Cu(I) sites were synthesized for selective nitrate reduction to ammonia, achieving ambient temperature and pressure hydrogenation of nitrate. Laboratory experiments demonstrated that the catalyst has an ammonia yield rate per active site of 5466 mmol gCu-1 h-1 and transformed 94.8% nitrate in wastewater containing 100 mg-N L-1 to near drinking water standard (MCL of 5 mg-N L-1) at -0.64 V vs RHE. Extended X-ray absorption fine structure (EXAFS) and theoretical calculations showed that the coordination environment of Cu(I) sites (Cu(I)-N3C1) localizes the charge around the central Cu atoms and adsorbs *NO3 and *H onto neighboring Cu and C sites with balanced adsorption energy. The Cu(I)-N3C1 moieties reduce the activation energy of rate-limiting steps (*HNO3 → *NO2, *NH2 → *NH3) compared with conventional Cu(II)-N4 and lead to a thermodynamically favorable process to NH3. The as-prepared electrocatalytic cell can run continuously for 84 h (14 cycles) and produce 21.7 mgNH3 with only 5.64 × 10-3 kWh energy consumption, suitable for decentralized nitrate removal and ammonia synthesis from nitrate-containing wastewater.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Qihui Yu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, P. R. China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|