1
|
Lin J, Shen Y, Wu F, Zhu Q, Huang J, Cai J, Lin J. Maternal exposure to ambient particulate matter on the growth of twin fetuses after in vitro fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176014. [PMID: 39241881 DOI: 10.1016/j.scitotenv.2024.176014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND While ambient air pollution has been associated with fetal growth in singletons, its correlation among twins is not well-established due to limited research in this area. METHODS The effects of exposure to PM2.5 particulate matter and its main components during pregnancy on birth weight and the incidence of large for gestational age (LGA) were investigated in 6177 twins born after in vitro fertilization at the Center for Reproductive Medicine of Shanghai Ninth People's Hospital (Shanghai, China) between 2007 and 2021. Other birth weight-related outcomes included macrosomia, low birth weight, very low birth weight, and small for gestational age (SGA). The associations of PM2.5 exposure with birth weight outcomes were analyzed using linear mixed-effect models and random-effect logistic regression models. Distributed lag models were incorporated to estimate the time-varying associations. RESULTS The findings revealed that an interquartile range (IQR) increase (18 μg/m3) in PM2.5 exposure over the entire pregnancy was associated with a significant increase (57.06 g, 95 % confidence interval [CI]: 30.91, 83.22) in the total birth weight of twins. The effect was more pronounced in larger fetuses (34.93 g, 95 % CI: 21.13, 48.72) compared to smaller fetuses (21.77 g, 95 % CI: 6.94, 36.60) within twin pregnancies. Additionally, an IQR increase in PM2.5 exposure over the entire pregnancy was associated with a 34 % increase in the risk of LGA (95 % CI: 11 %, 63 %). Furthermore, specific chemical components of PM2.5, such as sulfate (SO42-), exhibited effect estimates comparable to the PM2.5 total mass. CONCLUSION Overall, the findings indicate that exposures to PM2.5 and its specific components are associated with fetal overgrowth in twins.
Collapse
Affiliation(s)
- Jing Lin
- Center for Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Fenglu Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang University School of Medicine, Nanchang 330006, China.
| | - Jing Cai
- School of Public Health, Fudan University, Shanghai 200032, China.
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Duan S, Zheng Y, Tian J, Zhang L. Single-cell RNA sequencing of estrual mice reveals PM2.5-induced uterine cell heterogeneity and reproductive toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116968. [PMID: 39236655 DOI: 10.1016/j.ecoenv.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fine particulate matter (PM2.5) exposure has been extensively linked to reproductive and developmental dysfunctions, yet the underlying mechanisms remain elusive. This study employed single-cell RNA sequencing (scRNA-seq) to investigate PM2.5-induced changes in uterine cell populations and gene expression profiles in mice during estrus and early pregnancy. Methodologically, we intranasally inoculated mice with 20 μL of 4.0 mg/mL PM2.5 suspension during their estrus and early pregnancy periods. Utilizing scRNA-seq analysis, we revealed significant alterations in cell type composition following PM2.5 exposure. Notably, we observed a marked decrease in the proportion of natural killer (NK) cells in PM2.5-exposed mice (2.00 % vs. 8.97 % in controls). Further functional enrichment analysis identified suppression of the IL-17 signaling pathway in NK cells as a key mechanism of PM2.5-induced toxicity. GSEA analysis showed in-depth details of the downregulated genes in this pathway, including Fosb, S100a8, Tnfaip3, IL-17a, and S100a9. PM2.5 exposure also disrupted intercellular communication within the uterine microenvironment, with the number of cell interactions decreasing from 483 to 315 and interaction strength reducing from 12.43 to 6.78 compared to controls. Histological examination revealed that PM2.5 exposure led to thinning of the endometrium and less prominent main branches in uterine tissues, and immunofluorescence assays corroborated the altered expression of IL-17 pathway components, showing enhanced Hsp90ab1 expression and reduced FOSB, S100A8, and S100A9 expression in PM2.5-exposed uterine tissues. These findings provide novel insights into the cellular mechanisms of PM2.5-induced reproductive toxicity, highlighting the IL-17 signaling pathway in uterine NK cells as a potential target for therapeutic interventions. Our results underscore the need for air quality regulations and open new avenues for developing biomarkers and targeted therapies to mitigate the reproductive risks associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Shuyin Duan
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Yongfei Zheng
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai 200032, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai 200032, China; Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan 250001, China.
| |
Collapse
|
3
|
Rahnemaei FA, Aghapour E, Asgharpoor H, Ardabili NS, Kashani ZA, Abdi F. Prenatal exposure to ambient air pollution and risk of fetal overgrowth: Systematic review of cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116526. [PMID: 38823346 DOI: 10.1016/j.ecoenv.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES Fetal overgrowth has detrimental effects on both the mother and the fetus. The global issue of ambient air pollution has been found to contribute to fetal overgrowth through various pathways. This study aimed to identify the association between prenatal exposure to ambient air pollution and the risk of fetal overgrowth. METHODS We identified articles between January 2013 and February 2024 by searching the Web of Sciences(WoS), PubMed, Proquest, Scopus, and Google Scholar databases. Quality assessment was performed using the Newcastle Ottawa scale. This review was provided based on the PRISMA guideline and registered with PROSPERO, "CRD42023488936". RESULTS The search generated 1719 studies, of which 22 cohort studies were included involving 3,480,041 participants. Results on the effects of air pollutants on fetal overgrowth are inconsistent because they vary in population and geographic region. But in general, the results indicate that prenatal exposure to air pollutants, specifically PM2.5, NO2, and SO2, is linked to a higher likelihood of fetal overgrowth(macrosomia and large for gestational age). Nevertheless, the relationship between CO and O3 pollution and fetal overgrowth remains uncertain. Furthermore, PM10 has a limited effect on fetal overgrowth. It is essential to consider the time that reproductive-age women are exposed to air pollution. Exposure to air pollutants before conception and throughout pregnancy has a substantial impact on the fetus's vulnerability to overgrowth. CONCLUSIONS Fetal overgrowth has implications for the health of both mother and fetus. fetal overgrowth can cause cardiovascular diseases, obesity, type 2 diabetes, and other diseases in adulthood, so it is considered an important issue for the health of the future generation. Contrary to popular belief that air pollution leads to intrauterine growth restriction and low birth weight, this study highlights that one of the adverse consequences of air pollution is macrosomia or LGA during pregnancy. Therefore governments must focus on implementing initiatives that aim to reduce pregnant women's exposure to ambient air pollution to ensure the health of future generations.
Collapse
Affiliation(s)
- Fatemeh Alsadat Rahnemaei
- Mother and Child Welfare Research Center,Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ehsan Aghapour
- Department of Social Welfare Management, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Homeira Asgharpoor
- Reproductive Health Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | | | | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Okui T, Nakashima N. Effects of ambient air pollution on the risk of small- and large-for-gestational-age births: an analysis using national birth data in Japan. Int Arch Occup Environ Health 2024; 97:545-555. [PMID: 38602525 DOI: 10.1007/s00420-024-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES Small-for-gestational-age (SGA) and large-for-gestational-age (LGA) births are major adverse birth outcomes related to newborn health. In contrast, the association between ambient air pollution levels and SGA or LGA births has not been investigated in Japan; hence, the purpose of our study is to investigate this association. METHODS We used birth data from Vital Statistics in Japan from 2017 to 2021 and municipality-level data on air pollutants, including nitrogen dioxide (NO2), sulfur dioxide (SO2), photochemical oxidants, and particulate matter 2.5 (PM2.5). Ambient air pollution levels throughout the first, second, and third trimesters, as well as the whole pregnancy, were calculated for each birth. The association between SGA/LGA and ambient levels of the air pollutants was investigated using crude and adjusted log-binomial regression models. In addition, a regression model with spline functions was also used to detect the non-linear association. RESULTS We analyzed data from 2,434,217 births. Adjusted regression analyses revealed statistically significant and positive associations between SGA birth and SO2 level, regardless of the exposure period. Specifically, the risk ratio for average SO2 values throughout the whole pregnancy was 1.014 (95% confidence interval [CI] 1.009, 1.019) per 1 ppb increase. In addition, regression analysis with spline functions indicated that an increase in risk ratio for SGA birth depending on SO2 level was linear. Furthermore, statistically significant and negative associations were observed between LGA birth and SO2 except for the third trimester. CONCLUSIONS It was suggested that ambient level of SO2 during the pregnancy term is a risk factor for SGA birth in Japan.
Collapse
Affiliation(s)
- Tasuku Okui
- Medical Information Center, Kyushu University Hospital, Maidashi 3-1-1 Higashi-ku, Fukuoka City , Fukuoka prefecture, 812-8582, Japan.
| | - Naoki Nakashima
- Medical Information Center, Kyushu University Hospital, Maidashi 3-1-1 Higashi-ku, Fukuoka City , Fukuoka prefecture, 812-8582, Japan
| |
Collapse
|
5
|
Grabowski B, Feduniw S, Orzel A, Drab M, Modzelewski J, Pruc M, Gaca Z, Szarpak L, Rabijewski M, Baran A, Scholz A. Does Exposure to Ambient Air Pollution Affect Gestational Age and Newborn Weight?-A Systematic Review. Healthcare (Basel) 2024; 12:1176. [PMID: 38921290 PMCID: PMC11203000 DOI: 10.3390/healthcare12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Current evidence suggests that airborne pollutants have a detrimental effect on fetal growth through the emergence of small for gestational age (SGA) or term low birth weight (TLBW). The study's objective was to critically evaluate the available literature on the association between environmental pollution and the incidence of SGA or TLBW occurrence. A comprehensive literature search was conducted across Pubmed/MEDLINE, Web of Science, Cochrane Library, EMBASE, and Google Scholar using predefined inclusion and exclusion criteria. The methodology adhered to the PRISMA guidelines. The systematic review protocol was registered in PROSPERO with ID number: CRD42022329624. As a result, 69 selected papers described the influence of environmental pollutants on SGA and TLBW occurrence with an Odds Ratios (ORs) of 1.138 for particulate matter ≤ 10 μm (PM10), 1.338 for particulate matter ≤ 2.5 μm (PM2.5), 1.173 for ozone (O3), 1.287 for sulfur dioxide (SO2), and 1.226 for carbon monoxide (CO). All eight studies analyzed validated that exposure to volatile organic compounds (VOCs) is a risk factor for SGA or TLBW. Pregnant women in the high-risk group of SGA occurrence, i.e., those living in urban areas or close to sources of pollution, are at an increased risk of complications. Understanding the exact exposure time of pregnant women could help improve prenatal care and timely intervention for fetuses with SGA. Nevertheless, the pervasive air pollution underscored in our findings suggests a pressing need for adaptive measures in everyday life to mitigate worldwide environmental pollution.
Collapse
Affiliation(s)
- Bartlomiej Grabowski
- Department of Urology, Military Institute of Medicine, Szaserow 128, 04-349 Warsaw, Poland;
| | - Stepan Feduniw
- Department of Gynecology, University Hospital Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland
| | - Anna Orzel
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Marcin Drab
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Jan Modzelewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| | - Michal Pruc
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland; (M.P.); (Z.G.)
- Department of Public Health, International European University, 03187 Kyiv, Ukraine
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland;
| | - Zuzanna Gaca
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland; (M.P.); (Z.G.)
| | - Lukasz Szarpak
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland;
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michal Rabijewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| | - Arkadiusz Baran
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Anna Scholz
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| |
Collapse
|
6
|
Chen L, Yuan W, Geng M, Xu R, Xing Y, Wen B, Wu Y, Ren X, Shi Y, Zhang Y, Song X, Qin Y, Wang R, Jiang J, Dong Z, Liu J, Guo T, Song Z, Wang L, Ma Y, Dong Y, Song Y, Ma J. Differentiated impacts of short-term exposure to fine particulate constituents on infectious diseases in 507 cities of Chinese children and adolescents: A nationwide time-stratified case-crossover study from 2008 to 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172299. [PMID: 38614340 DOI: 10.1016/j.scitotenv.2024.172299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 μm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008-2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3-), organic matter (OM), and sulfate (SO42-)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3- (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3- to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42-). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Mengjie Geng
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Xiang Ren
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue Shi
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Xinli Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yang Qin
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - RuoLin Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ziqi Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Zhiying Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Liping Wang
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China.
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; UNESCO Chair on Global Health and Education of Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Park S, Shim M, Lee G, You YA, Kim SM, Hur YM, Ko H, Park MH, Na SH, Kim YH, Cho GJ, Bae JG, Lee SJ, Lee SH, Lee DK, Kim YJ. Urinary metabolite biomarkers of pregnancy complications associated with maternal exposure to particulate matter. Reprod Toxicol 2024; 124:108550. [PMID: 38280687 DOI: 10.1016/j.reprotox.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Particulate matter 2.5 (PM2.5) is associated with reproductive health and adverse pregnancy outcomes. However, studies evaluating biological markers of PM2.5 are lacking, and identifying biomarkers for estimating prenatal exposure to prevent pregnancy complications is essential. Therefore, we aimed to explore urine metabolites that are easy to measure as biomarkers of exposure. In this matched case-control study based on the PM2.5 exposure, 30 high PM2.5 group (>15 μg/m3) and 30 low PM2.5 group (<15 μg/m3) were selected from air pollution on pregnancy outcome (APPO) cohort study. We used a time-weighted average model to estimate individual PM exposure, which used indoor PM2.5 and outdoor PM2.5 concentrations by atmospheric measurement network based on residential addresses. Clinical characteristics and urine samples were collected from participants during the second trimester of pregnancy. Urine metabolites were quantitatively measured using gas chromatography-mass spectrometry following multistep chemical derivatization. Statistical analyses were conducted using SPSS version 21 and MetaboAnalyst 5.0. Small for gestational age and gestational diabetes (GDM) were significantly increased in the high PM2.5 group, respectively (P = 0.042, and 0.022). Fifteen metabolites showed significant differences between the two groups (P < 0.05). Subsequent pathway enrichment revealed that four pathways, including pentose and glucuronate interconversion with three pentose sugars (ribose, arabinose, and xylose; P < 0.05). The concentration of ribose increased preterm births (PTB) and GDM (P = 0.044 and 0.049, respectively), and the arabinose concentration showed a tendency to increase in PTB (P = 0.044). Therefore, we identified urinary pentose metabolites as biomarkers of PM2.5 and confirmed the possibility of their relationship with pregnancy complications.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Minki Shim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Gain Lee
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Hyejin Ko
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University, School of Medicine, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Dongsan Medical Center, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Korea
| | | | - Dong-Kyu Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea; Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
8
|
Shi TS, Ma HP, Li DH, Pan L, Wang TR, Li R, Ren XW. Prenatal exposure to PM 2.5 components and the risk of different types of preterm birth and the mediating effect of pregnancy complications: a cohort study. Public Health 2024; 227:202-209. [PMID: 38241901 DOI: 10.1016/j.puhe.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVES This study aims to reveal the single and mixed associations of PM2.5 and its components with very, moderately, and late preterm births and to explore the potential mediating role of pregnancy complications in PM2.5-induced preterm birth. STUDY DESIGN This was a retrospective cohort study. METHODS We enrolled 168,852 mothers and matched the concentrations of PM2.5 and its five components (OM, SO42-, BC, NO3-, and NH4+) based on their geographical location. Next, we used generalized linear models, quantile g-computation, and mediation analysis to evaluate the associations of PM2.5 and its components with very, moderately, and late preterm births and the mediating role of pregnancy complications. RESULTS Prenatal exposure to PM2.5 and its components was associated with preterm birth, and the association was strongest in the third trimester. Preterm birth was associated with co-exposure to a mixture of PM2.5 components in the third trimester, and the contributions of NO3-, NH4+, and BC to the risk of preterm birth were positive. Meanwhile, pregnancy complications mediated PM2.5-induced preterm birth. Moreover, very and moderately preterm births were associated with PM2.5 and its components in the second and third trimesters, and very and late preterm births were associated with co-exposure to a mixture of PM2.5 components in the third trimester. CONCLUSIONS Later exposure to PM2.5 during pregnancy will cause earlier preterm birth. Targeted and positive interventions for anthropogenic sources of specific PM2.5 components and pregnancy complications are helpful for preterm birth prevention.
Collapse
Affiliation(s)
- T S Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - H P Ma
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, China
| | - D H Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - L Pan
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, China
| | - T R Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - R Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - X W Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Shi T, Ma H, Li D, Pan L, Wang T, Li R, Ren X. Prenatal exposure to fine particulate matter chemical constituents and the risk of stillbirth and the mediating role of pregnancy complications: A cohort study. CHEMOSPHERE 2024; 349:140858. [PMID: 38048830 DOI: 10.1016/j.chemosphere.2023.140858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Evidence on the association of fine particulate matter (PM2.5) exposure with stillbirth is limited and inconsistent, which is largely attributed to differences in PM2.5 constituents. Studies have found that the hazards of certain PM2.5 constituents to the fetus are comparable to or even higher than total PM2.5 mass. However, few studies have linked PM2.5 constituents to stillbirth. Moreover, the mediating role of pregnancy complications in PM2.5-related stillbirth remains unclear. To our knowledge, this study was the first to explore the individual and mixed associations of PM2.5 and its constituents with stillbirth in China. After matching the concentrations of PM2.5 and its constituents (sulfate [SO42-], nitrate [NO3-], ammonium [NH4+], organic matter [OM], and black carbon [BC]) for participants according to their geographical location, there were 170,507 participants included in this study. We found that stillbirth was associated with exposure to PM2.5 and its constituents in the year before pregnancy and during the entire pregnancy, and the associations in trimester 1 were strongest. The risk of stillbirth increased sharply when PM2.5 and its constituents during pregnancy exceeded the median concentrations. Moreover, stillbirth was associated with exposure to the mixtures of SO42-, NO3-, NH4+, OM, and BC before and during pregnancy (trimesters 1 and 2). Meanwhile, two-pollutant models also suggested stillbirth was associated with PM2.5 and its constituents in the year before and during pregnancy. The associations of PM2.5 and its constituents with stillbirth were stronger in mothers with advanced age and without cesarean delivery history. Additionally, hypertensive disorders in pregnancy, gestational diabetes, and placental abruption mediated the association of PM2.5 with stillbirth. Therefore, enhanced protection against PM2.5 for pregnant women before and during pregnancy and targeted interventions for pregnancy complications and anthropogenic sources of PM2.5 constituents are important to reduce stillbirth risk.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hanping Ma
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, 730000, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Pan
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, 730000, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
10
|
Pang L, Jiang M, Sui X, Dou Y, Yu W, Huxley R, Saldiva P, Hu J, Schikowski T, Krafft T, Gao P, Zhao Y, Zhao H, Zhao Q, Chen ZJ. Association of PM 2.5 mass and its components with ovarian reserve in a northern peninsular province, China: The critical exposure period and components. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132735. [PMID: 37832436 DOI: 10.1016/j.jhazmat.2023.132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND A possible role of PM2.5 components on ovarian reserve has not been adequately unexplored. OBJECTIVE To evaluate the association between PM2.5 components and women' ovarian reserve over critical exposure periods in northern China, where the level of air pollution is among the nation's highest. METHODS We included 15,102 women with serum anti-Müllerian hormone (AMH) measurements from the Center for Reproductive Medicine of Shandong University during 2015-2019. Concentrations of PM2.5 and its five major components (0.1° × 0.1°), including sulfate, nitrate, ammonium, organic matter, and black carbon, were assigned to each residential address. Multivariable linear mixed effect models combined with constituent-residual models were performed to estimate the effect sizes of essential components over six short- to long-term exposure periods. RESULTS The strength of association was stronger during the process from primary to small antral follicle compared with other longer windows. For every interquartile range increase in PM2.5 mass was associated with - 8.7% (95%CI: -12.3%, -4.9%) change in AMH and the effect size was greatest for sulfate. Women with the lower level of attained education and those living inland were more susceptible compared with other population subgroups. CONCLUSION Exposure to specific components of air pollution during critical exposure windows is associated with a decline in ovarian reserve. These data add to the growing body of evidence that environmental factors have adverse effects on reproductive health, particularly for vulnerable population subgroups.
Collapse
Affiliation(s)
- Lihong Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mingdong Jiang
- Dezhou Center for Disease Control and Prevention, Dezhou, Shandong 253000, China
| | - Xinlei Sui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rachel Huxley
- Faculty of Health, Deakin University, Melbourne 3000, Australia
| | - Paulo Saldiva
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo 01000, Brazil
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Thomas Krafft
- Department of Health, Ethics & Society, Care and Public Health Research Institute CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6211, the Netherlands
| | - Panjun Gao
- Department of Health, Ethics & Society, Care and Public Health Research Institute CAPHRI, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6211, the Netherlands
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Faculty of Health, Deakin University, Melbourne 3000, Australia.
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| |
Collapse
|
11
|
Liu S, Zhao J, Ye X, Fu M, Zhang K, Wang H, Zou Y, Yu K. Fine particulate matter and its constituent on ovarian reserve: Identifying susceptible windows of exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166744. [PMID: 37659528 DOI: 10.1016/j.scitotenv.2023.166744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Little is known about the associations of exposure to fine particulate matter (PM2.5) and its constituents with ovarian reserve, and the potential susceptible window of exposure remains unclear. METHODS We performed a retrospective cohort study of 5189 women who attended a fertility center in Hubei, China, during 2019-2022, and estimated concentrations of PM2.5 and its major constituents during the development of follicles (4th-6th month [W1], 0-4th month [W2], 0-6th month [W3]) and 1-year before measurement (W4) based on Tracking Air Pollution in China database. We used multivariable linear regression and logistic regression models to examine the associations of PM2.5 and its constituent exposures with anti-Müllerian hormone (AMH), the preferred indicator of ovarian reserve. RESULTS We observed significantly decreased AMH levels associated with increasing PM2.5 concentrations, with the percent changes (95 % confidence intervals [CIs]) of 1.99 % (0.24 %-3.71 %) during W1 and 3.99 % (0.74 %-7.15 %) during W4 for per 10 μg/m3 increases in PM2.5.When PM2.5 exposure levels were equal to 50th percentile (32.6-42.3 μg/m3) or more, monotonically decreased AMH levels and increased risks of low AMH were seen with increasing PM2.5 concentrations during W1 and W4 (P < 0.05). Black carbon (BC), ammonium (NH4+), nitrate (NO3-), and organic matter (OM) during W1, and NH4+, NO3-, as well as sulfate (SO42-) during W4 were significantly associated with decreased AMH. Moreover, PM2.5 and SO42- exposures during W4 were positively associated with low AMH. Additionally, the associations were stronger among women aged <35 years, lived in urban regions, or measured AMH in cold-season (P for interaction <0.05). CONCLUSION PM2.5 and specific chemical components (particularly NH4+, NO3-, and SO42-) exposure during the secondary to antral follicle stage and 1-year before measurement were associated with diminished ovarian reserve (DOR), indicating the adverse impact of PM2.5 and its constituent exposures on female reproductive potential.
Collapse
Affiliation(s)
- Shuangyan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Ye
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjian Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Park S, Kwon E, Lee G, You YA, Kim SM, Hur YM, Jung S, Jee Y, Park MH, Na SH, Kim YH, Cho GJ, Bae JG, Lee SJ, Lee SH, Kim YJ. Effect of Particulate Matter 2.5 on Fetal Growth in Male and Preterm Infants through Oxidative Stress. Antioxidants (Basel) 2023; 12:1916. [PMID: 38001768 PMCID: PMC10669397 DOI: 10.3390/antiox12111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Particulate matter 2.5 (PM2.5) levels are associated with adverse pregnancy outcomes. In this retrospective cohort study, we examined whether the concentration of indoor PM2.5 affected pregnancy outcomes. Additionally, we evaluated biomarkers of pregnancy-related complications caused by fine dust. We collected clinical information and data based on residential addresses from the Air Korea database to assess PM2.5 exposure levels. As a multicenter prospective cohort study, we measured the indoor PM2.5 concentration and inflammatory and oxidative stress markers. The PM2.5 concentration of the low-birth-weight (LBW) delivery group was 27.21 μg/m3, which was significantly higher than that of the normal-birth-weight (NBW) group (26.23 μg/m3) (p = 0.02). When the newborns were divided by sex, the PM2.5 concentration of the LBW group was 27.89 μg/m3 in male infants, which was significantly higher than that of the NBW group (26.26 μg/m3) (p = 0.01). In the prospective study, 8-hydroxy-2-deoxyguanosine significantly increased in the high-concentration group (113.55 ng/mL, compared with 92.20 ng/mL in the low-concentration group); in the high-concentration group, the rates of preterm birth (PTB) and small size for gestational age significantly increased (p < 0.01, p = 0.01). This study showed an association between PM2.5, oxidative stress, and fetal growth, with the PTB group being more vulnerable.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Eunjin Kwon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea;
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Sooyoung Jung
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
| | - Yongho Jee
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon-si 24289, Republic of Korea;
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu 42601, Republic of Korea;
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ulsan University, Ulsan 44610, Republic of Korea;
| | - Sun Hwa Lee
- Seegene Medical Foundation, Seoul 04805, Republic of Korea;
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (S.P.); (Y.-A.Y.); (Y.M.H.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07985, Republic of Korea; (G.L.); (S.M.K.)
| |
Collapse
|
13
|
Tan Y, Yang Y, Zhang Y, Peng C, Zhang Y, He M, Peng A. Prenatal ambient air pollutants exposure and the risk of stillbirth in Wuhan, central of China. ENVIRONMENTAL RESEARCH 2023; 228:115841. [PMID: 37028538 DOI: 10.1016/j.envres.2023.115841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The existing studies on the relationships of prenatal ambient air pollutants exposure with stillbirth in the Chinese population are very limited and the results are inconsistent, and the susceptible windows and potential modifiers for air pollutants exposure on stillbirth remain unanswered. OBJECTIVE We aimed to determine the relationships between exposure to ambient air pollutants and stillbirth, and explored the susceptible windows and potential modifiers for air pollutants exposure on stillbirth. METHODS A population-based cohort was established through the Wuhan Maternal and Child Health Management Information System involving 509,057 mother-infant pairs in Wuhan from January 1, 2011 through September 30, 2017. Personal exposure concentrations of fine particles (PM2.5), inhalable particles (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) for mothers were estimated based on their residential address during pregnancy using the inverse distance weighted (IDW) method. We used the logistic regression models to determine the associations at different stages of pregnancy with adjustment for confounding factors. RESULTS There were 3218 stillbirths and 505,839 live births among the participants. For each 100 μg/m3 of CO and 10 μg/m3 of O3 increase in the first trimester (conception to 13+6 weeks), the risk of stillbirth increased by 1.0% (OR = 1.01, 95%CI: 1.00-1.03) and 7.0% (OR = 1.07, 95%CI: 1.05-1.09). In the second trimester (14 weeks-27+6 weeks), PM2.5, PM10, CO, and O3 exposure were closely related to the risk of stillbirth (P<0.05). In the third trimester (28 weeks to delivery), for each 10 μg/m3 increase in exposure concentrations of PM2.5, SO2, and O3, the risk of stillbirth increased by 3.4%, 5.9%, and 4.0%, respectively. O3 exposure was positively relevant to the risk of stillbirth (OR = 1.11, 95%CI: 1.08-1.14) in the whole pregnancy. Exposure to NO2 was not significantly associated with the risk of stillbirth. Stratified analyses also presented a stronger association among mothers with boy infant, living in rural areas, delivering between 2011 and 2013, and those without gestational hypertension and history of stillbirth. CONCLUSION This study provides evidence that maternal exposure to PM2.5, PM10, SO2, CO, and O3 were related to the increased risk of stillbirth. Both the second and third trimesters might be vital susceptible windows for stillbirth. Our findings expand the evidence base for the important impacts of air pollution on fetal growth.
Collapse
Affiliation(s)
- Yafei Tan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yifan Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yu Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Chang Peng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Meian He
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Anna Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China.
| |
Collapse
|