1
|
Yan Z, Liao W, Liu H, Zhang X, Lin Q, Feng C, Wu F. Temperature dependent cholinergic synapse induced by triphenyl phosphate and tris(1.3-dichloroisopropyl) phosphate via thyroid hormone synthesis in Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135822. [PMID: 39276737 DOI: 10.1016/j.jhazmat.2024.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Triphenyl phosphate (TPHP) and tris(1.3-dichloroisopropyl) phosphate (TDCIPP) are emerging contaminants that pervade diverse ecosystems and impair the thyroid and neural signaling pathways. The intricate interactions between thyroid and neurodevelopmental effects mediated by TPHP and TDCIPP remain elusive. This study integrates in vivo, in vitro, and in silico approaches to elucidate these mechanisms in Cyprinus carpio at varying temperatures. It showed that TPHP and TDCIPP hindered fish growth, particularly at low temperatures, by interfering with thyroid hormone synthesis and transport processes. Both compounds have been identified as environmental hormones that mimic thyroid hormone activity and potentially inhibit acetylcholinesterase, leading to neurodevelopmental disorders characterized by brain tissue damage and disrupted cholinergic synapses, such as axon guidance and regeneration. Notably, the bioaccumulation of TPHP was 881.54 % higher than that of TDCIPP, exhibiting temperature-dependent variations with higher levels of TDCIPP at low temperatures (20.50 % and 250.84 % above optimum and high temperatures, respectively), suggesting that temperature could exacerbate the toxicity effects of OPEs. This study sheds new light on the mechanisms underlying thyroid endocrine disruption and neurodevelopmental toxicity in C. carpio. More importantly, these findings indicate that temperature affects the environmental fate and effects of TPHP and TDCIPP, which could provide an important basis for ecological environmental zoning control of emerging contaminants in the future.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liao
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Hangshuo Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyi Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Huang R, Liu Z, Pan Y, Ma Z, Wang H, Wan B, Li J, Chang J. Mechanistic insight into the neurodevelopmental toxicity of the novel pesticide pyrifluquinazon (PFQ) and its major metabolite in early-life stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125469. [PMID: 39643230 DOI: 10.1016/j.envpol.2024.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Pyrifluquinazon (PFQ), a novel insecticide containing a heptafluoroisopropyl moiety, has seen increasing use. However, limited research has been conducted on the toxicological effects and mechanisms of PFQ in aquatic organisms. To investigate the toxicity and underlying mechanisms of PFQ and its primary metabolite dPFQ in aquatic organisms, morphological, behavioral, hormonal, multi-omics analyses, and molecular docking studies were conducted on zebrafish larvae after exposure. The results showed that both PFQ and dPFQ induced developmental abnormalities, behavioral impairment, hormonal disruptions, and alterations in neurologically related metabolites and gene expression in early-stage zebrafish. Notably, delayed retinal vascular development was observed, which is also likely linked to the neurodevelopmental toxicity. Subsequently, identification and relative quantification of PFQ metabolites suggested that its toxicity might be primarily attributed to dPFQ. Finally, an Adverse Outcome Pathway (AOP) was proposed, initiating with the binding of dPFQ to the TRPV4 protein and ultimately leading to neurodevelopmental toxicity. This study delineated the neurodevelopmental toxicity of PFQ and its toxicological mechanisms in zebrafish, emphasizing the hazards posed by pesticide metabolites to non-target organisms and highlighting inherent limitations of extrapolating in vitro toxicity experiments.
Collapse
Affiliation(s)
- Rui Huang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zijun Liu
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yunrui Pan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zheng Ma
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
3
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R, Hwang JS. Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. CHEMOSPHERE 2024; 369:143851. [PMID: 39622455 DOI: 10.1016/j.chemosphere.2024.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Cadmium oxide nanoparticles (CdO-NPs) play an important role in health applications due to their antibacterial properties. However, ecotoxicological investigations of these NPs and their adverse effects on aquatic organisms are necessary to protect the environment. Zebrafish is widely used as a model organism to explore toxic effects at multiple levels of integration. Hence, the objective of this work was to pursue possible harmful impacts of CdO -NPs that have been produced through biosynthesis, utilizing extract from the lily plant Gloriosa superba leaves, on the growth and biochemical changes in zebrafish (Danio rerio) embryos and larvae. UV, SEM, TEM, FTIR, EDAX, DLS, and ZETA-potential techniques were employed to examine the structure and morphology of the biosynthesized CdO-NPs. The identification of bioactive chemicals from the leaf extract of G. superba was conducted using GC-MS. To study the in vivo toxicity of CdO-NPs, zebrafish embryos and larvae were treated with two different concentrations of G. superba leave extract (0.5 and 1.0 mg/mL) at 96 h after fertilization (hpf). Bended tail, pericardial edema, shortened yolk sac extension, scoliosis, and damaged eyes were observed in the CdO-NPs treated groups. In addition, there was a considerable decrease in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and lipid peroxidation (LPO). The CdO-NPs treated groups showed significant alterations in biochemical markers, including protein levels, glucose levels, and acetylcholinesterase (AChE) activity. Overall, our findings indicated that CdO-NPs induced a dose-dependent toxicity in zebrafish embryos. The investigated parameters serve as reliable biomarkers for the surveillance of CdO-NPs in aquatic ecosystems and their impact on living animals.
Collapse
Affiliation(s)
- Murugan Vasanthakumaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
4
|
Bouly L, Jacquin L, Chapeau F, Bonmatin JM, Cousseau M, Hagimont A, Laffaille P, Lalot B, Lemarié A, Pasquet C, Huc L, Jean S. Fluopyram SDHI pesticide alters fish physiology and behaviour despite low in vitro effects on mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117400. [PMID: 39612682 DOI: 10.1016/j.ecoenv.2024.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Pollution from pesticides is an increasing concern for human health and biodiversity conservation. However, there is lack of knowledge about some emerging molecules such as SDHI fungicides (succinate dehydrogenase inhibitors) that are widely used but potentially highly toxic for vertebrates. Boscalid, fluopyram, and bixafen are 3 frequent SDHI molecules commonly detected in surface waters, which may pose risks to aquatic species. This study aimed to (1) test the in vitro effects of SDHI on mitochondrial activities (inhibition of succinate dehydrogenase SDH, also named respiratory chain complex II) and (2) assess the in vivo effects of sublethal SDHI concentrations on fish physiology and behaviour over 96 hours of exposure, using Carassius auratus fish as a model species. Results show that bixafen and boscalid inhibited complex II activities in vitro as expected (bixafen > boscalid), while fluopyram had no in vitro effects. In contrast, in vivo studies showed that fluopyram strongly altered fish behaviour (enhanced activity, social and feeding behaviours), likely explained by reduced AChE enzymatic activity. In addition, fluopyram increased muscle lipid content, suggesting metabolic disruption. These findings raise serious concern about the toxic effects of SDHI pesticides, especially fluopyram, although its underpinning molecular mechanisms remain to be explored. We thus encourage further research on the long-term impacts of SDHI pesticides to improve existing regulation and prevent adverse effects on wildlife.
Collapse
Affiliation(s)
- Lucie Bouly
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Lisa Jacquin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Florian Chapeau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Marc Bonmatin
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Myriam Cousseau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Aurianne Hagimont
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Pascal Laffaille
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Bénédicte Lalot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Camille Pasquet
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, Marne-La-Vallée 77454, France
| | - Séverine Jean
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
5
|
Torres MDA, Dax A, Grand I, Vom Berg C, Pinto E, Janssen EML. Lethal and behavioral effects of semi-purified microcystins, Micropeptin and apolar compounds from cyanobacteria on freshwater microcrustacean Thamnocephalus platyurus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106983. [PMID: 38852545 DOI: 10.1016/j.aquatox.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
The mass proliferation of cyanobacteria, episodes known as blooms, is a concern worldwide. One of the most critical aspects during these blooms is the production of toxic secondary metabolites that are not limited to the four cyanotoxins recognized by the World Health Organization. These metabolites comprise a wide range of structurally diverse compounds that possess bioactive functions. Potential human and ecosystem health risks posed by these metabolites and co-produced mixtures remain largely unknown. We studied acute lethal and sublethal effects measured as impaired mobility on the freshwater microcrustaceans Thamnocephalus platyurus for metabolite mixtures from two cyanobacterial strains, a microcystin (MC) producer and a non-MC producer. Both cyanobacterial extracts, from the MC-producer and non-MC-producer, caused acute toxicity with LC50 (24 h) values of 0.50 and 2.55 mgdw_biomass/mL, respectively, and decreased locomotor activity. Evaluating the contribution of different cyanopeptides revealed that the Micropeptin-K139-dominated fraction from the MC-producer extract contributed significantly to mortality and locomotor impairment of the microcrustaceans, with potential mixture effect with other cyanopeptolins present in this fraction. In the non-MC-producer extract, compounds present in the apolar fraction contributed mainly to mortality, locomotor impairment, and morphological changes in the antennae of the microcrustacean. No lethal or sublethal effects were observed in the fractions dominated by other cyanopetides (Cyanopeptolin 959, Nostoginin BN741). Our findings contribute to the growing body of research indicating that cyanobacterial metabolites beyond traditional cyanotoxins cause detrimental effects. This underscores the importance of toxicological assessments of such compounds, also at sublethal levels.
Collapse
Affiliation(s)
| | - Anne Dax
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Ingrid Grand
- Wasserversorgung Zürich (WVZ), Zürich 8021, Switzerland
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13418-260, Brazil
| | - Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland.
| |
Collapse
|
6
|
Hu J, Wang WX. Cadmium impacts on calcium mineralization of zebrafish skeletal development and behavioral impairment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107033. [PMID: 39084117 DOI: 10.1016/j.aquatox.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.
Collapse
Affiliation(s)
- Jingyi Hu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
7
|
Adedara IA, Gonçalves FL, Mohammed KA, Borba JV, Canzian J, Resmim CM, Claro MT, Macedo GT, Mostardeiro VB, Assmann CE, Monteiro CS, Emanuelli T, Schetinger MRC, Barbosa NV, Rosemberg DB. Waterborne atenolol disrupts neurobehavioral and neurochemical responses in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34428-x. [PMID: 39048857 DOI: 10.1007/s11356-024-34428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Environmental contamination by pharmaceuticals from industrial waste and anthropogenic activities poses adverse health effects on non-target organisms. We evaluated the neurobehavioral and biochemical responses accompanying exposure to ecological relevant concentrations of atenolol (0, 0.1, 1.0, and 10 µg/L) for seven uninterrupted days in adult zebrafish (Danio rerio). Atenolol-exposed fish exhibited anxiety-like behavior, characterized by significant bottom-dwelling with marked reduction in vertical exploration. Atenolol-exposed fish exhibited marked increase in the duration and frequency of aggressive events without altering their preference for conspecifics. Biochemical data using brain samples indicated that atenolol disrupted antioxidant enzyme activities and induced oxidative stress. Exposure to atenolol markedly decreased ATP and AMP hydrolysis without affecting ADP hydrolysis and acetylcholinesterase (AChE) activity. Atenolol significantly upregulated tryptophan hydroxylase 1 (tph1) mRNA expression but downregulated brain-derived neurotrophic factor (bdnf) mRNA. Collectively, waterborne atenolol elicits aggressive and anxiety-like responses in adult zebrafish, accompanied by oxidative stress, reduced nucleotide hydrolysis, altered tph1 and bdnf mRNA expression, which may impact the survival and health of fish in aquatic environment.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Mariana T Claro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Gabriel T Macedo
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vitor B Mostardeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Charles E Assmann
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Camila S Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria R C Schetinger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Nilda V Barbosa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Camobi, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| |
Collapse
|
8
|
Quiroga LB, Gordillo LF, Aragon-Traverso JH, Iribas FJ, Sanabria EA. Thermal sensitivity of Rhinella arenarum tadpole at low concentrations of dimethoate pesticides. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109884. [PMID: 38437997 DOI: 10.1016/j.cbpc.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
One of the main causes of contamination of aquatic environments, which affects biotic communities, is the use of pesticides in agricultural regions. Amphibians are considered good bio-indicators of aquatic pollution, because they are one of the most susceptible groups to pollution. Several studies suggest that both pollution and climate change produce synergistic effects in amphibians which amplify the toxicity afecting survival, and malformations with an increase in temperature. We studied the sensitivity of sublethal concentrations of dimethoate in Rhinella arenarum tadpoles on two fitness related thermal traits including locomotor swimming performance and thermal tolerance limits (CTmax = critical thermal maximum and CTmin = critical thermal minimum). The locomotor performance of R. arenarum tadpoles decreased with increasing sublethal dimethoate concentrations up to ∼60 % at intermediates dimethoate concentration. The tadpoles showed a tendency to decrease their tolerance to high temperatures (CTmax) with increasing dimethoate concentration around ∼0.5 °C, however no significant differences were found among treatments. Similarly, tadpoles showed decreases in their cold resistance (CTmin) with dimethoate concentrations, around 1 °C the high concentrations of dimethoate. The increase of atypical climatic events, such as heat waves may put R. arenarum tadpoles at greater risk when exposed to dimethoate. Our results show that the sublethal concentrations of the dimethoate pesticide may affect the fitness and survival of the larvae of R. arenarum in natural, and seminatural enviroments.
Collapse
Affiliation(s)
- Lorena B Quiroga
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana F Gordillo
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina.
| | - Juan H Aragon-Traverso
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco J Iribas
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo A Sanabria
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina.
| |
Collapse
|
9
|
Barathi S, Sabapathi N, Kandasamy S, Lee J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. ENVIRONMENTAL RESEARCH 2024; 240:117432. [PMID: 37865327 DOI: 10.1016/j.envres.2023.117432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming, 518107, China
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
10
|
Lee H, An G, Park J, You J, Song G, Lim W. Mevinphos induces developmental defects via inflammation, apoptosis, and altered MAPK and Akt signaling pathways in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109768. [PMID: 37858660 DOI: 10.1016/j.cbpc.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Mevinphos, an organophosphate insecticide, is widely used to control pests and enhance crop yield. Because of its high solubility, it can easily flow into water and threaten the aquatic environment, and it is known to be hazardous to non-target organisms. However, little is known about its developmental toxicity and the underlying toxic mechanisms. In this study, we utilized zebrafish, which is frequently used for toxicological research to estimate the toxicity in other aquatic organisms or vertebrates including humans, to elucidate the developmental defects induced by mevinphos. Here, we observed that mevinphos induced various phenotypical abnormalities, such as diminished eyes and head sizes, shortened body length, loss of swim bladder, and increased pericardiac edema. Also, exposure to mevinphos triggered inflammation, apoptosis, and DNA fragmentation in zebrafish larvae. In addition, MAPK and Akt signaling pathways, which control apoptosis, inflammation, and proper development of various organs, were also altered by the treatment of mevinphos. Furthermore, these factors induced various organ defects which were confirmed by various transgenic models. We identified neuronal toxicity through transgenic olig2:dsRed zebrafish, cardiovascular toxicity through transgenic fli1:eGFP zebrafish, and hepatotoxicity and pancreatic toxicity through transgenic lfabp:dsRed;elastase:GFP zebrafish. Overall, our results elucidated the developmental toxicities of mevinphos in zebrafish and provided the parameters for the assessment of toxicities in aquatic environments.
Collapse
Affiliation(s)
- Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Jeninga AJ, Wallace Z, Victoria S, Harrahy E, King-Heiden TC. Chronic Exposure to Environmentally Relevant Concentrations of Imidacloprid Impact Survival and Ecologically Relevant Behaviors of Fathead Minnow Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2184-2192. [PMID: 37401861 DOI: 10.1002/etc.5710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Imidacloprid (IM) has emerged as a contaminant of concern in several areas within the United States due to its frequent detection in aquatic ecosystems and its pseudo-persistence, which pose potential risks to nontarget species. We evaluated the sublethal toxicity of IM to fathead minnow larvae following chronic exposure beginning just after fertilization. Our in silico analysis and in vivo bioassays suggest that IM has a low binding affinity for the vertebrate nicotinate acetylcholine receptor (nAChR), as expected. However, chronic exposure to ≥0.16 µg IM/L reduced survival by 10%, and exposure to ≥18 µg IM/L reduced survival by approximately 20%-40%. Surviving fish exposed to ≥0.16 µg IM/L showed reduced growth, altered embryonic motor activity, and premature hatching. Furthermore, a significant proportion of fish exposed to ≥0.16 µg IM/L were slower to respond to vibrational stimuli and slower to swim away, indicating that chronic exposure to IM has the potential to impair the ability of larvae to escape predation. The adverse health effects we observed indicate that chronic exposure to environmentally relevant concentrations of IM may elicit sublethal responses that culminate in a significant increase in mortality during early life stages, ultimately translating to reduced recruitment in wild fish populations. Environ Toxicol Chem 2023;42:2184-2192. © 2023 SETAC.
Collapse
Affiliation(s)
- Anya J Jeninga
- Department of Biology, River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Zion Wallace
- Department of Biology, River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Shayla Victoria
- Department of Biomolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Elisabeth Harrahy
- Department of Biology, University of Wisconsin-Whitewater, Whitewater, Wisconsin, USA
| | - Tisha C King-Heiden
- Department of Biology, River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
12
|
Torres MDA, Jones MR, Vom Berg C, Pinto E, Janssen EML. Lethal and sublethal effects towards zebrafish larvae of microcystins and other cyanopeptides produced by cyanobacteria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106689. [PMID: 37713741 DOI: 10.1016/j.aquatox.2023.106689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Cyanobacterial blooms affect aquatic ecosystems across the globe and one major concern relates to their toxins such as microcystins (MC). Yet, the ecotoxicological risks, particularly non-lethal effects, associated with other co-produced secondary metabolites remain mostly unknown. Here, we assessed survival, morphological alterations, swimming behaviour and cardiovascular functions of zebrafish (Danio rerio) upon exposure to cyanobacterial extracts of two Brazilian Microcystis strains. We verified that only MIRS-04 produced MCs and identified other co-produced cyanopeptides also for the MC non-producer NPCD-01 by LC-HRMS/MS analysis. Both cyanobacterial extracts, from the MC-producer and non-producer, caused acute toxicity in zebrafish with LC50 values of 0.49 and 0.98 mgdw_biomass/mL, respectively. After exposure to MC-producer extract, additional decreased locomotor activity was observed. The cyanopeptolin (micropeptin K139) contributed 52% of the overall mortality and caused oedemas of the pericardial region. Oedemas of the pericardial area and prevented hatching were also observed upon exposure to the fraction with high abundance of a microginin (Nostoginin BN741) in the extract of the MC non-producer. Our results further add to the yet sparse understanding of lethal and sublethal effects caused by cyanobacterial metabolites other than MCs and the need to better understand the underlying mechanisms of the toxicity. We emphasize the importance of considering mixture toxicity of co-produced metabolites in the ecotoxicological risk assessment of cyanobacterial bloom events, given the importance for predicting adverse outcomes in fish and other organisms.
Collapse
Affiliation(s)
| | - Martin R Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, B15 2TT
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, 13418-260, Piracicaba, Brazil
| | - Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| |
Collapse
|
13
|
Hema T, Poopal RK, Ramesh M, Ren Z, Li B. Developmental toxicity of the emerging contaminant cyclophosphamide and the integrated biomarker response (IBRv2) in zebrafish. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1391-1406. [PMID: 37539704 DOI: 10.1039/d3em00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The safety of cyclophosphamide (CP) in the early developmental stages is not studied yet; it is important to study the responses at these stages because they might have relevance to CP-administered humans. We studied the developmental toxicity of CP by analysing physiological, morphological, and oxidative stress, neurotransmission enzymes, gene expression and histological endpoints in zebrafish embryos/larvae. The study lasted for 120 hpf at environmentally relevant concentrations of CP. No visible alterations were noticed in the control group. Delayed hatching, slow heart rate, yolk sac oedema, pericardial oedema, morphological deformities, the incompetence of oxidative stress biomarkers, excessive generation of ROS, apoptosis, inhibition of neurotransmitters and histopathological anomalies were observed in CP-treated groups. These alterations were found to be concentration- and duration-dependent effects for physiological and morphological endpoints, whereas concentration-dependent effects were antioxidants, ROS, apoptosis and histological endpoints. Biomarkers and gene expression were standardised using the integrated biomarker response-IBRv2 index. The IBRv2 index showed a concentration-dependent behaviour. A non-lethal developmental and teratogenic effect was observed in CP-treated zebrafish embryos/larvae at the studied concentrations. The studied biomarkers are sensitive, and the responses are interrelated; thus, their responses are useful to assess veiled and unseen hazards of pharmaceuticals.
Collapse
Affiliation(s)
- Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
14
|
Cho Y, Jeon HJ, Kim K, Kim C, Lee SE. Developmental toxicity of a pymetrozine photo-metabolite, 3-pyridinecarboxaldehyde, in zebrafish (Danio rerio) embryos: Abnormal cardiac development and occurrence of heart dysfunction via differential expression of heart formation-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114654. [PMID: 36801540 DOI: 10.1016/j.ecoenv.2023.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Pymetrozine (PYM) is worldwide used to control sucking insect pests in rice-cultivated fields and it is degraded into various metabolites including 3-pyridinecarboxaldehyde (3-PCA). These two pyridine compounds were used to determine their impacts on aquatic environments, particularly on the aquatic animal model zebrafish (Danio rerio). PYM did not show acute toxicities in terms of lethality, hatching rate, and phenotypic changes in zebrafish embryos in the tested ranges up to a concentration of 20 mg/L. 3-PCA exhibited acute toxicity with LC50 and EC50 values of 10.7 and 2.07 mg/L, respectively. 3-PCA treatment caused phenotypic changes including pericardial edema, yolk sac edema, hyperemia, and curved spine, at a concentration of 10 mg/L after 48 h of exposure. Abnormal cardiac development was observed in 3-PCA-treated zebrafish embryos at a concentration of 5 mg/L with reduced heart function. In a molecular analysis, cacna1c, encoding a voltage-dependent calcium channel, was significantly down-regulated in the 3-PCA-treated embryos, indicating synaptic and behavioral defects. Hyperemia and incomplete intersegmental vessels were observed in 3-PCA-treated embryos. Based on these results, it is necessary to generate scientific information on the acute and chronic toxicity of PYM and its metabolites with regular monitoring of their residues in aquatic environments.
Collapse
Affiliation(s)
- Yerin Cho
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwang-Ju Jeon
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA, USA
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
von Wyl M, Könemann S, Vom Berg C. Different developmental insecticide exposure windows trigger distinct locomotor phenotypes in the early life stages of zebrafish. CHEMOSPHERE 2023; 317:137874. [PMID: 36646183 DOI: 10.1016/j.chemosphere.2023.137874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Due to their extensive use and high biological activity, insecticides largely contribute to loss of biodiversity and environmental pollution. The regulation of insecticides by authorities is mainly focused on lethal concentrations. However, sub-lethal effects such as alterations in behavior and neurodevelopment can significantly affect the fitness of individual fish and their population dynamics and therefore deserve consideration. Moreover, it is important to understand the impact of exposure timing during development, about which there is currently a lack of relevant knowledge. Here, we investigated whether there are periods during neurodevelopment of fish, which are particularly vulnerable to insecticide exposure. Therefore, we exposed zebrafish embryos to six different insecticides with cholinergic mode of action for 24 h during different periods of neurodevelopment and measured locomotor output using an age-matched behavior assay. We used the organophosphates diazinon and dimethoate, the carbamates pirimicarb and methomyl as well as the neonicotinoids thiacloprid and imidacloprid because they are abundant in the environment and cholinergic signaling plays a major role during key processes of neurodevelopment. We found that early embryonic motor behaviors, as measured by spontaneous tail coiling, increased upon exposure to most insecticides, while later movements, measured through touch-evoked response and a light-dark transition assay, rather decreased for the same insecticides and exposure duration. Moreover, the observed effects were more pronounced when exposure windows were temporally closer to the performing of the respective behavioral assay. However, the measured behavioral effects recovered after a short period, indicating that none of the exposure windows chosen here are particularly critical, but rather that insecticides acutely interfere with neuronal function at all stages as long as they are present. Overall, our results contribute to a better understanding of risks posed by cholinergic insecticides to fish and provide an important basis for the development of safe regulations to improve environmental health.
Collapse
Affiliation(s)
- Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| |
Collapse
|
16
|
Cai W, MacIsaac HJ, Xu R, Zhang J, Pan X, Zhang Y, Yang J, Dixon B, Li J, Zi Y, Chang X. Abnormal neurobehavior in fish early life stages after exposure to cyanobacterial exudates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114119. [PMID: 36174318 DOI: 10.1016/j.ecoenv.2022.114119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cHABs) pose a risk to exposed aquatic and terrestrial species. Numerous studies have addressed effects of single toxins while much less attention has been devoted to mixtures of cHAB metabolites that are continually released by living cyanobacteria. Neuro-impairment associated with cHABs has been reported in fish, though the mechanism remains unclear. Here we exposed embryos of Sinocyclocheilus grahami, an endangered fish, to Microcystis aeruginosa exudates (MaE) to evaluate neurotoxicity and the toxicity mechanism(s). We found that MaE affected embryonic development by increasing malformation and mortality rates and decreasing the fertilization rate. MaE also inhibited fish neurobehavior including touch response, social frequency, swimming distance, and aggravated light-stimulation response. Neurobehavior suppression resulted from a decrease in excitatory neurotransmitters acetylcholine and dopamine, even though receptors increased. MaE also affected gene and protein expression of neurotransmitters, synthetic and/or degrading enzymes, and receptors. Our findings shed light on specific mechanisms by which MaE induces neurotoxicity in early life stages in fish and contributes to improvement of the conservation strategy for this species.
Collapse
Affiliation(s)
- Wenwen Cai
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xiaofu Pan
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuanwei Zhang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Junxing Yang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuanyan Zi
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
17
|
Xie Z, Lu G, Yu Y. Early-Stage High-Concentration Thiacloprid Exposure Induced Persistent Behavioral Alterations in Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710920. [PMID: 36078631 PMCID: PMC9518391 DOI: 10.3390/ijerph191710920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 05/04/2023]
Abstract
As a major neonicotinoid insecticide, thiacloprid (THCP) is frequently detected in aquatic environments worldwide due to its heavy use, posing potential threats to aquatic organisms. In this study, zebrafish (Danio rerio) embryos were exposed to THCP (1, 10, 100, 1000 and 10,000 μg/L) for 5 days and then recovered in THCP-free water for 20 days to investigate the effects of early-stage THCP exposure on the development, antioxidant defense, and neurotransmitter systems of zebrafish, and explore their recovery mechanism. The results show that THCP exposure induced developmental toxicity and oxidative stress in zebrafish. The hypoactivity, behavioral alterations (decreased avoidance and edge preference behaviors) and neurotoxicity were found throughout the exposure-recovery experiments. THCP exposure altered the expression of γ-aminobutyric acid (GABA)- and serotonin (5-HT)-related genes accompanied by the decrease in GABA and 5-HT contents. However, after recovery, GABA content returned to the control level, but 5-HT did not, indicating that only the serotonergic system was persistently disrupted. Overall, our results suggest that the disruption of the serotonergic system and oxidative stress may aggravate neurotoxicity and that the former was the main reason for the depressive-like behavior. This study could help to unravel the mechanisms of the behavioral alterations induced by early-stage THCP exposure in zebrafish.
Collapse
|