1
|
Wang A, Huang Y, Song X, Zeng J, Zhu L, Wang B, Wu Y, Xu Z, Zheng R, Qin Y, Wang J, Yao W, Wan X, Li H, Zhuang P, Jiao J, Zhang Y, Wu Y. Parental exposure to acrylamide disrupts sphingolipid metabolism and impairs transgenerational neurodevelopment in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175134. [PMID: 39084380 DOI: 10.1016/j.scitotenv.2024.175134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Acrylamide exposure has become an emerging environmental and food safety issue, and its toxicity poses a potential threat to public health worldwide. However, limited studies have paid attention to the detrimental effects of parental exposure to acrylamide on the neurodevelopment in zebrafish offspring. In this study, the embryos were life-cycle exposed to acrylamide (0.125 and 0.25 mM) for 180 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water from embryos to adults. We employed developmental and morphological observations, behavioral profiles, metabolomics analyses, and transcriptional level examinations to investigate the transgenerational neurotoxicity with parental exposure to acrylamide. Our results showed that parental exposure to acrylamide harms the birth, development, and behavior characterization of the F1 zebrafish larvae, including poor egg quality, increased mortality rates, abnormal heart rates, slowed swimming activity, and heightened anxiety behavior, and continuously disturbs mental health in F1 adult zebrafish. The transcriptional analysis showed that parental chronic exposure to acrylamide deteriorates the neurodevelopment in F1 larvae. In addition, metabolomics analyses revealed that sphingolipid metabolism disruption may be associated with the observed abnormal development and behavioral response in unexposed F1 offspring. Overall, the present study provides pioneer evidence that acrylamide induces transgenerational neurotoxicity via targeting and disrupting sphingolipid metabolism, which reveals intergenerational transmission of acrylamide exposure and unravels its spatiotemporal toxicological effect on neurodevelopment.
Collapse
Affiliation(s)
- Anli Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yingyu Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoran Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jia Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Ruonan Zheng
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, Zhejiang, China
| | - Xuzhi Wan
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Haoyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
2
|
Magnuson JT, Sy ND, Tanabe P, Ji C, Gan J, Schlenk D. Dopaminergic and anti-estrogenic responses in juvenile steelhead (Oncorhynchus mykiss) exposed to bifenthrin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109995. [PMID: 39111515 DOI: 10.1016/j.cbpc.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (Oncorhynchus mykiss), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-o-methyltransferase (comt) and monoamine oxidase (mao). Vitellogenin (vtg) and estrogenic receptors (ERα1, ERβ1, and ERβ2) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of comt with increased bifenthrin concentration. Hepatic expression of ERα1 and ERβ2 mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.
Collapse
Affiliation(s)
- Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA; Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Chenyang Ji
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
3
|
Zhang Y, Zhang B. Bifenthrin Caused Parkinson's-Like Symptoms Via Mitochondrial Autophagy and Ferroptosis Pathway Stereoselectively in Parkin -/- Mice and C57BL/6 Mice. Mol Neurobiol 2024; 61:9694-9707. [PMID: 38691300 DOI: 10.1007/s12035-024-04140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
It has been proposed that pyrethroid exposure contributes to the increasing prevalence of neurodegenerative diseases. However, the potential mechanisms remain unclear. The current study aimed to investigate the effects of the widely used pyrethroid bifenthrin on Parkinson's disease (PD) risk. Bifenthrin (1S-cis-bifenthrin, 1R-cis-bifenthrin, raceme) was administered to male Parkin-/- mice and C57BL/6 mice by oral gavage at a dose of 10 mg/kg bw/day for 28 days. Bifenthrin exposure significantly increased the time of pole climbing and decreased the period of rotarod running, indicating that bifenthrin decreased motor coordination in Parkin-/- mice, which was more evident by 1S-cis-bifenthrin. Furthermore, administration of bifenthrin induced obvious decreases in tyrosine hydroxylase (TH)+ cell count and the protein expression of TH. Increased protein of mitochondrial autophagy LC3B and p62 was observed after exposure to bifenthrin. Increased iron deposition and protein expression of iron transport transferrin (Tf) and transferrin receptor 2 (TfR2) was detected. 1S-cis-bifenthrin bound with Tf, TfR2, and GPX4 with lower binding energies than 1R-cis-bifenthrin, resulting in stronger interactions with these proteins. These results show structure-dependent PD-like effects of bifenthrin on motor activity and coordination associated with the disturbed mitochondrial autophagy and ferroptosis-related pathway. These data demonstrate that pyrethroid exposure increases the potential of Parkinson's-like symptoms via the ferroptosis pathway in Parkin-/- mice that is more pronounced than in C57BL/6 mice, providing a prospective enantioselective toxic effect of environmental neurotoxins on PD risk.
Collapse
Affiliation(s)
- Ying Zhang
- Neuroscience Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
He YJ, Liao H, Yang G, Qiu W, Xuan R, Zheng G, Xu B, Yang X, Magnuson JT, Schlenk D, Zheng C. Perfluorohexanesulfonic Acid (PFHxS) Impairs Lipid Homeostasis in Zebrafish Larvae through Activation of PPARα. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16258-16268. [PMID: 39146316 DOI: 10.1021/acs.est.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 μg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.
Collapse
Affiliation(s)
- Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haolin Liao
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ge Yang
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| |
Collapse
|
5
|
Han G, Bu D, Kong R, Huang K, Liu C. Toxic responses of environmental concentrations of bifenthrin in larval freshwater snail Bellamya aeruginosa. CHEMOSPHERE 2024; 355:141863. [PMID: 38579955 DOI: 10.1016/j.chemosphere.2024.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.
Collapse
Affiliation(s)
- Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianping Bu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Kai Huang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
6
|
Anzalone SE, Fuller NW, Hartz KEH, Whitledge GW, Magnuson JT, Schlenk D, Acuña S, Whiles MR, Lydy MJ. The Roles of Diet and Habitat Use in Pesticide Bioaccumulation by Juvenile Chinook Salmon: Insights from Stable Isotopes and Fatty Acid Biomarkers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:234-248. [PMID: 38555540 DOI: 10.1007/s00244-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish. Relationships between DDX and both sulfur (δ34S) and carbon (δ13C) SI ratios in salmon indicated that diet is a major exposure route for DDX, particularly for individuals with a benthic detrital energy base. Greater use of a benthic detrital energy base likely accounted for the higher frequency of salmon with DDX concentrations > 60 ng/g dw in the Yolo Bypass compared to the Sacramento River. Chironomid larvae and zooplankton were implicated as prey items likely responsible for trophic transfer of DDX to salmon. Sulfur SI ratios enabled identification of hatchery-origin fish that had likely spent insufficient time in the wild to substantially bioaccumulate DDX. Bifenthrin concentration was unrelated to SI or FA biomarkers in salmon, potentially due to aqueous uptake, biotransformation and elimination of the pesticide, or indistinct biomarker compositions among invertebrates with low and high bifenthrin concentrations. One FA [docosahexaenoic acid (DHA)] and DDX were negatively correlated in salmon, potentially due to a greater uptake of DDX from invertebrates with low DHA or effects of DDX on FA metabolism. Trophic biomarkers may be useful indicators of DDX accumulation and effects in juvenile Chinook Salmon in the Sacramento River Delta.
Collapse
Affiliation(s)
- Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Matt R Whiles
- Department of Soil and Water Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
7
|
Liu C, Zhang Z, Li B, Huang K, Zhang Y, Li M, Letcher RJ. Lipid Metabolic Disorders Induced by Organophosphate Esters in Silver Carp from the Middle Reaches of the Yangtze River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4904-4913. [PMID: 38437168 DOI: 10.1021/acs.est.3c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.
Collapse
Affiliation(s)
- Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6 Ontario, Canada
| |
Collapse
|
8
|
Eghan K, Lee S, Yoo D, Kim CH, Kim WK. Adverse effects of bifenthrin exposure on neurobehavior and neurodevelopment in a zebrafish embryo/larvae model. CHEMOSPHERE 2023; 341:140099. [PMID: 37690556 DOI: 10.1016/j.chemosphere.2023.140099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 μg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Donggon Yoo
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| |
Collapse
|
9
|
Das A, Bank S, Chatterjee S, Paul N, Sarkar K, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase activity and reduces mitochondrial DNA copy number through oxidative damage in pool barb (Puntius sophore). CHEMOSPHERE 2023; 332:138848. [PMID: 37156291 DOI: 10.1016/j.chemosphere.2023.138848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bifenthrin (BF), a synthetic pyrethroid is used worldwide for both agricultural and non-agricultural purposes due to its high insecticidal activity and low toxicity in mammals. However, its improper usage implies a possible risk to aquatic life. The Study was aimed to correlate the association of BF toxicity with mitochondrial DNA copy number variation in edible fish Punitus sophore. The 96-h LC 50 of BF in P. sophore was 3.4 μg/L, fish was treated with sub-lethal doses (0.34 μg/L,0.68 μg/L) of BF for 15 days. The activity and expression level of cytochrome c oxidase (Mt-COI) were measured to assess mitochondrial dysfunction caused by BF. Results showed BF reduced the level of Mt-COI mRNA in treated groups, hindered complex IV activity and increased ROS generation leading to oxidative damage. mtDNAcn was decreased in the muscle, brain and liver after BF treatment. Furthermore, BF induced neurotoxicity in brain and muscle cells through the inhibition of AchE activity. The treated groups showed elevated level of malondialdehyde (MDA) and an imbalance of antioxidant enzymes activity. Molecular docking and simulation analysis also predicted that BF binds to the active sites of the enzyme and restricts the fluctuation of active sites' residues. Hence, outcome of the study suggests reduction of mtDNAcn could be a potential biomarker to assess Bifenthrin induced toxicity in aquatic ecosystem.
Collapse
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Arindam Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Santanu Chakraborty
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Chaitali Banerjee
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Anasuya Majumdar
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|