1
|
Pilecky M, Kainz MJ, Wassenaar LI. Exploring hydrogen isotope fractionation in lipid biomolecules of freshwater algae: implications for ecological and paleoenvironmental studies. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024:1-11. [PMID: 39470225 DOI: 10.1080/10256016.2024.2419880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Understanding the stable hydrogen isotope (δ2H) composition and fractionation in lipid biomolecules of primary producers, such as terrestrial and aquatic plants, is crucial for deciphering past environmental conditions, as well as applying compound-specific stable isotope analysis for the study of metabolic and ecological processes. We conducted a new tracer experiment to explore the δ2H composition of algal fatty acid biomarkers, focusing on freshwater algae, which form the base of aquatic food webs. We selected a range of algal species widely found in freshwater ecosystems and cultivated them under controlled conditions. First, we added 2H2O to ambient water as a tracer to investigate the net hydrogen isotope fractionation during algal lipid synthesis at isotopic equilibrium, which is particularly informative for paleo-geochemical studies. Then, we conducted kinetic experiments to quantify the time needed for algal fatty acids to achieve isotopic steady-state conditions in response to the change in ambient water δ2H values. Our findings revealed substantial variability in hydrogen isotope fractionation among different algal taxa and various fatty acids. Based on taxa, different fatty acids exhibited faster integration of water hydrogen than others, but they were not necessarily in the order of the biosynthetic pathway. This experiment underscores the complexity of hydrogen isotope fractionation and the requirement for controlled laboratory studies to properly apply compound-specific stable H isotope analysis techniques in ecological and paleo-environmental studies.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Lunz/See, Austria
- Research Lab for Aquatic Ecosystem Research and -Health, University for Continuing Education Krems, Krems, Austria
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Lunz/See, Austria
- Research Lab for Aquatic Ecosystem Research and -Health, University for Continuing Education Krems, Krems, Austria
| | - Leonard I Wassenaar
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Lunz/See, Austria
- Research Lab for Aquatic Ecosystem Research and -Health, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
2
|
Pilecky M, Kämmer SK, Winter K, Ptacnikova R, Meador TB, Wassenaar LI, Fink P, Kainz MJ. Compound-specific stable isotope analyses of fatty acids indicate feeding zones of zooplankton across the water column of a subalpine lake. Oecologia 2024; 205:325-337. [PMID: 38829405 DOI: 10.1007/s00442-024-05574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Spatial and temporal zooplankton feeding dynamics across the water column of lakes are key for understanding site-specific acquisition of diet sources. During this 6-week lake study, we examined stable carbon (δ13C) and nitrogen (δ15N) isotopes and conducted compound-specific fatty acid (FA) stable isotope analysis (CSIA) of edible seston in the epi-, meta-, and hypolimnion, and zooplankton of Lake Lunz, Austria. We predicted that CSIA of essential FA can discern the foraging grounds of zooplankton more accurately than the commonly used bulk stable isotopes. The δ13C and δ15N values of seston from different lake strata were similar, whereas a dual CSIA approach using stable carbon and hydrogen isotopes of FA (δ13CFA and δ2HFA) provided sufficient isotopic difference in essential FA to discern different lake strata-specific diet sources throughout the study period. We present a CSIA model that suggests strata-specific foraging grounds for different zooplankton groups, indicating higher preference of cladocerans for feeding on epilimnetic diet sources, while calanoid copepods retained more hypolimnetic resources. The CSIA approach thus yields strata-specific information on foraging strategies of different zooplankton taxa and provides more details on the spatial and temporal trophodynamics of planktonic food webs than commonly used bulk stable isotopes.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria.
- Research Lab for Aquatic Ecosystem Research and Health, Donau-Universität Krems, Dr. Karl-Dorrek Straße 30, 3500, Krems, Austria.
| | - Samuel K Kämmer
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria
| | - Katharina Winter
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria
| | - Radka Ptacnikova
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria
| | - Travis B Meador
- University of Southern Bohemia, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Biology Center CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Leonard I Wassenaar
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria
| | - Patrick Fink
- Department River Ecology, Helmholtz Centre for Environmental Research, UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
- Department Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research, UFZ, Brückstraße 3a, 39114, Magdeburg, Germany
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station GmbH, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293, Lunz/See, Austria
- Research Lab for Aquatic Ecosystem Research and Health, Donau-Universität Krems, Dr. Karl-Dorrek Straße 30, 3500, Krems, Austria
| |
Collapse
|
3
|
Pilecky M, Kainz MJ, Wassenaar LI. Evaluation of lipid extraction methods for fatty acid quantification and compound-specific δ 13C and δ 2H n analyses. Anal Biochem 2024; 687:115455. [PMID: 38163617 DOI: 10.1016/j.ab.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lipids, with fatty acids (FA) as a crucial subset, have become a focal point for diverse medical, physiological, and ecological studies. However, a comprehensive assessment of the various pre-analytical FA extraction methods published in the scientific literature remains lacking. In this study, we examined the efficacy of seven well-established sample preparation methods, specifically focusing on their effectiveness in total lipid and fatty acid extraction and their impact on compound-specific stable hydrogen (δ2H) and carbon (δ13C) isotope values. We also considered the repercussions of FA removal efficacy on residual bulk tissue δ2Hn analysis, because lipids typically have low δ2H values. Our findings showed that in most cases chloroform-based extraction methods outperformed those without chloroform. While discrepancies were not as evident for smaller organisms, such as plankton, marked variations were discernible in the extraction efficiencies for muscle and liver samples, which was also manifested in the residual bulk tissue δ2Hn results. Notably, most extraction methods had little effect on specific δ13C or δ2H isotope values of FA; instead, an emphasis should be on using an extraction method that achieves optimal baseline peak separation of the chromatograms for C and H isotope measurements.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria; Danube University Krems, Research Lab for Aquatic Ecosystems Research and -Health, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria.
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria; Danube University Krems, Research Lab for Aquatic Ecosystems Research and -Health, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Leonard I Wassenaar
- WasserCluster Lunz - Biologische Station, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria; Danube University Krems, Research Lab for Aquatic Ecosystems Research and -Health, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| |
Collapse
|
4
|
Pilecky M, Wassenaar LI, Taipale S, Kainz MJ. Protocols for sample preparation and compound-specific stable-isotope analyses (δ 2H, δ 13C) of fatty acids in biological and environmental samples. MethodsX 2023; 11:102283. [PMID: 38098777 PMCID: PMC10719507 DOI: 10.1016/j.mex.2023.102283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/07/2023] [Indexed: 12/17/2023] Open
Abstract
Compound-specific stable-isotope analysis (CSIA) of fatty acids is a powerful tool to better understand the trophic transfer of fatty acids and their biochemical fate in and across ecosystems, including tracing animal migration and understanding physiological processes. The non-exchangeable nature of C-H bonds in acyl chains, hydrogen (δ2H) and carbon (δ13C) stable-isotope values of fatty acids (FA) provide independent information about the origins of fatty acids. Several technical obstacles must be overcome to ensure accurate and reproducible measurements of FA-CSIA can be made. This protocol describes the sample preparation process for successful stable-isotope analyses of fatty acids obtained from environmental and biological samples. Numerous techniques for the preanalytical processing of fatty acid samples are available, and these often have minimal impact on δ values. Here, we provide an in-depth guide detailing our well-established laboratory protocols, ranging from the initial sample preparation, lipid extraction, and transmethylation to the instrumental arrangement, data collection, and analysis.•Protocol from obtaining a sample to standardized fatty acid specific δ2H and δ13C values.•Separate GC analysis procedures for C and H are recommended for optimal performance.
Collapse
Affiliation(s)
- Matthias Pilecky
- WasserCluster Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz/See, Austria
- Research lab of Aquatic Ecosystem Research and -Health, Danube University Krems, 3500 Krems, Austria
| | - Leonard I. Wassenaar
- WasserCluster Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz/See, Austria
- Research lab of Aquatic Ecosystem Research and -Health, Danube University Krems, 3500 Krems, Austria
| | - Sami Taipale
- University of Jyväskylä, Department of Biological and Environmental Science, Survontie 9C, Finland
| | - Martin J. Kainz
- WasserCluster Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz/See, Austria
- Research lab of Aquatic Ecosystem Research and -Health, Danube University Krems, 3500 Krems, Austria
| |
Collapse
|
5
|
Chen DK, Metherel AH, Rezaei K, Parzanini C, Chen CT, Ramsden CE, Horowitz M, Faurot KR, MacIntosh B, Zamora D, Bazinet RP. Analysis of omega-3 and omega-6 polyunsaturated fatty acid metabolism by compound-specific isotope analysis in humans. J Lipid Res 2023; 64:100424. [PMID: 37572791 PMCID: PMC10507585 DOI: 10.1016/j.jlr.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.
Collapse
Affiliation(s)
- Daniel K Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Adam H Metherel
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Kimia Rezaei
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Camilla Parzanini
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA; Department of Psychiatry, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Richard P Bazinet
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Závorka L, Blanco A, Chaguaceda F, Cucherousset J, Killen SS, Liénart C, Mathieu-Resuge M, Němec P, Pilecky M, Scharnweber K, Twining CW, Kainz MJ. The role of vital dietary biomolecules in eco-evo-devo dynamics. Trends Ecol Evol 2023; 38:72-84. [PMID: 36182405 DOI: 10.1016/j.tree.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022]
Abstract
The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator-prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization.
Collapse
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria.
| | - Andreu Blanco
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Fernando Chaguaceda
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique (UMR 5174 EDB), CNRS, Université Paul Sabatier - Toulouse III, 31062 Toulouse, France
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Camilla Liénart
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Margaux Mathieu-Resuge
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Université de Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, Brittany, France; UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, CZ-12844 Prague, Czech Republic
| | - Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Kristin Scharnweber
- University of Potsdam, Plant Ecology and Nature Conservation, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Cornelia W Twining
- Department of Fish Ecology and Evolution, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| |
Collapse
|