1
|
Duan J, Huang RJ, Lin C, Shen J, Yang L, Yuan W, Wang Y, Liu Y, Xu W. Aromatic Nitration Enhances Absorption of Biomass Burning Brown Carbon in an Oxidizing Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17344-17354. [PMID: 39300776 DOI: 10.1021/acs.est.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Brown carbon (BrC) from biomass burning constitutes a significant portion of light-absorbing components in the atmosphere. Although the aging of BrC surrogates from biomass burning has been studied in many laboratory settings, BrC aging behavior in real-world urban environments is not well understood. In this study, through a combination of online dynamic monitoring and offline molecular characterization, the ambient optical aging of BrC was linked to its dynamic changes in molecular composition. Enhanced light absorption by BrC was consistently observed during the periods dominated by oxygenated biomass burning organic aerosol (BBOA), in contrast to periods dominated by primary emissions or secondary formation in aqueous-phase. This enhancement was linked to the formation of nitrogen-containing compounds during the ambient aging of BBOA. Detailed molecular characterization, alongside analysis of environmental parameters, revealed that an increased atmospheric oxidizing capacity, marked by elevated levels of ozone and nighttime NO3 radicals, facilitated the formation of nitrated aromatic BrC chromophores. These chromophores were primarily responsible for the enhanced light absorption during the ambient aging of BBOA. This study elucidates the nitration processes that enhance BrC light absorption for ambient BBOA, and highlights the crucial role of meteorological conditions. Furthermore, our findings shed light on the chemical and optical aging processes of biomass burning BrC in ambient air, offering insights into its environmental behavior and effects.
Collapse
Affiliation(s)
- Jing Duan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunshui Lin
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jincan Shen
- Key Laboratory of Detection Technology R&D on Food Safety, Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Lu Yang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yi Liu
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
2
|
You B, Zhang Z, Du A, Li Y, Sun J, Li Z, Chen C, Zhou W, Xu W, Lei L, Fu P, Hou S, Li P, Sun Y. Seasonal characterization of chemical and optical properties of water-soluble organic aerosol in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172508. [PMID: 38642752 DOI: 10.1016/j.scitotenv.2024.172508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
Water-soluble organic aerosol (WSOA) plays a crucial role in altering radiative forcing and impacting human health. However, our understanding of the seasonal variations of WSOA in Chinese megacities after the three-year clean air action plan is limited. In this study, we analyzed PM2.5 filter samples collected over one year (2020-2021) in Beijing to characterize the seasonal changes in the chemical and optical properties of WSOA using an offline aerosol mass spectrometer along with spectroscopy techniques. The mean mass concentration of WSOA during the observation period was 8.84 ± 7.12 μg m-3, constituting approximately 64-67 % of OA. Our results indicate the contribution of secondary OA (SOA) increased by 13-28 % due to a substantial reduction in primary emissions after the clean air action plan. The composition of WSOA exhibited pronounced seasonal variations, with a predominant contribution from less oxidized SOA in summer (61 %) and primary OA originating from coal combustion and biomass burning during the heating season (34 %). The mass absorption efficiency of WSOA at 365 nm in winter was nearly twice that in summer, suggesting that WSOA from primary emissions possesses a stronger light-absorbing capability than SOA. On average, water-soluble brown carbon accounted for 33-48 % of total brown carbon absorption. Fluorescence analysis revealed humic-like substances as the most significant fluorescence component of WSOA, constituting 82 %. Furthermore, both absorption and fluorescence chromophores were associated with nitrogen-containing compounds, highlighting the role of nitrogen-containing species in influencing the optical properties of WSOA. The results are important for chemical transport models to accurately simulate the WSOA and its climate effects.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lu Lei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shengjie Hou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Calderon-Arrieta D, Morales AC, Hettiyadura APS, Estock TM, Li C, Rudich Y, Laskin A. Enhanced Light Absorption and Elevated Viscosity of Atmospheric Brown Carbon through Evaporation of Volatile Components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7493-7504. [PMID: 38637508 DOI: 10.1021/acs.est.3c10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 μg/m3 to 2.3 μg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.
Collapse
Affiliation(s)
- Diego Calderon-Arrieta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Taylor M Estock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Paraskevopoulou D, Bikkina S, Grivas G, Kaskaoutis D, Tsagkaraki M, Tavernaraki K, Mihalopoulos N. A direct method to quantify methanol-soluble organic carbon for brown carbon absorption studies. MethodsX 2023; 11:102313. [PMID: 37663004 PMCID: PMC10470224 DOI: 10.1016/j.mex.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023] Open
Abstract
The current research provides a newly developed method to quantify methanol-soluble organic carbon (MeS_OC) in aerosol samples. This analytical procedure allows an accurate separation of MeS-OC component, which is critical for the calculation of mass absorption efficiency (MAE) of ambient Brown Carbon (BrC) and consequently its climate relevant potential. The method includes extraction, filtering and condensation stages, leading to the preparation of a highly concentrated product in which MeS-OC can be precisely quantified by a Sunset Carbon Analyzer in a single analysis step. This method can be applied on aerosol collected using either high or low volume samplers, since a relatively small filter area is required for the determination. Furthermore, it eliminates any misestimation of the MeS-OC mass that may appear in other reported techniques that don't seem to include the precise separation of methanol-soluble fraction in their quantification process.•The mass quantification of methanol-soluble organic carbon is essential, contributing up to 50% to the absorptivity of organic aerosol (BrC) at shorter wavelengths.•The method provides a direct measurement of methanol-soluble aerosol components, resolving any potential uncertainties of previously applied methods.•The adoption of this direct quantification approach leads to a rationalization of past MAE estimates for BrC with implications for radiative transfer models.
Collapse
Affiliation(s)
- D. Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens, 15236, Greece
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete
| | - S. Bikkina
- Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow - 226007, Uttar Pradesh, India
| | - G. Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens, 15236, Greece
| | - D.G. Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens, 15236, Greece
- Department of Chemical Engineering, University of Western Macedonia, Kozani 50150, Greece
| | - M. Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete
| | - K. Tavernaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete
| | - N. Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens, 15236, Greece
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete
| |
Collapse
|
5
|
Gregson FKA, Gerrebos NGA, Schervish M, Nikkho S, Schnitzler EG, Schwartz C, Carlsten C, Abbatt JPD, Kamal S, Shiraiwa M, Bertram AK. Phase Behavior and Viscosity in Biomass Burning Organic Aerosol and Climatic Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14548-14557. [PMID: 37729583 DOI: 10.1021/acs.est.3c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.
Collapse
Affiliation(s)
- Florence K A Gregson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nealan G A Gerrebos
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sepehr Nikkho
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Lei Y, Zhang K, Lu Y, Qin Y, Li L, Li J, Liu X, Wu C, Zhang S, Chen Y, Zhang J, Zhang F, Wang G. Characterization of water-soluble brown carbon in atmospheric fine particles over Xi'an, China: Implication of aqueous brown carbon formation from biomass burning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163442. [PMID: 37059143 DOI: 10.1016/j.scitotenv.2023.163442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Brown carbon (BrC) aerosols can affect not only the climate but also human health, however, the light absorption, chemical compositions, and formation mechanisms of BrC are still uncertain, which leads to uncertainties in the accurate estimation of its climate and health impacts. In this study, highly time - resolved brown carbon (BrC) in fine particles was investigated in Xi'an using offline aerosol mass spectrometer analysis. The light absorption coefficient (babs365) and mass absorption efficiency (MAE365) at 365 nm of water-soluble organic aerosol (WSOA) generally increased with oxygen-to-carbon (O/C) ratios, indicating that oxidized OA could have more impacts on BrC light absorption. Meanwhile, the light absorption appeared to increase generally with the increases of nitrogen-to-carbon (N/C) ratios and water-soluble organic nitrogen; strong correlations (R of 0.76 for CxHyNp+ and R of 0.78 for CxHyOzNp+) between babs365 and the N - containing organic ion families were observed, suggesting that the N - containing compounds are the effective BrC chromophores. babs365 correlated relatively well with BBOA (r of 0.74) and OOA (R of 0.57), but weakly correlated with CCOA (R of 0.33), indicating that BrC in Xi'an was likely to be associated with biomass burning and secondary sources. A multiple linear regression model was applied to apportion babs365 to contributions of different factors resolved from positive matrix factorization on water-soluble organic aerosols (OA) and obtained MAE365 values of different OA factors. We found that biomass-burning organic aerosol (BBOA) dominated the babs365 (48.3 %), followed by oxidized organic aerosol (OOA, 33.6 %) and coal combustion organic aerosol (CCOA, 18.1 %). We further observed that nitrogen-containing organic matter (i.e., CxHyNp+ and CxHyOzNp+) increased with the increase of OOA/WSOA and the decrease of BBOA/WSOA, especially under high ALWC conditions. Our work offered proper observation evidence that BBOA is oxidized through the aqueous formation to produce BrC in Xi'an, China.
Collapse
Affiliation(s)
- Yali Lei
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ke Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yeyu Lu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yiming Qin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Lijuan Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiaodi Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yubao Chen
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Fan Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai 202162, China.
| |
Collapse
|
7
|
Paraskevopoulou D, Kaskaoutis DG, Grivas G, Bikkina S, Tsagkaraki M, Vrettou IM, Tavernaraki K, Papoutsidaki K, Stavroulas I, Liakakou E, Bougiatioti A, Oikonomou K, Gerasopoulos E, Mihalopoulos N. Brown carbon absorption and radiative effects under intense residential wood burning conditions in Southeastern Europe: New insights into the abundance and absorptivity of methanol-soluble organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160434. [PMID: 36427708 DOI: 10.1016/j.scitotenv.2022.160434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Biomass burning is a major source of Brown Carbon (BrC), strongly contributing to radiative forcing. In urban areas of the climate-sensitive Southeastern European region, where strong emissions from residential wood burning (RWB) are reported, radiative impacts of carbonaceous aerosols remain largely unknown. This study examines the absorption properties of water- and methanol-soluble organic carbon (WSOC, MeS_OC) in a city (Ioannina, Greece) heavily impacted by RWB. Measurements were performed during winter (December 2019 - February 2020) and summer (July - August 2019) periods, characterized by RWB and photochemical processing of organic aerosol (OA), respectively. PM2.5 filter extracts were analyzed spectrophotometrically for water- and methanol-soluble BrC (WS_BrC, MeS_BrC) absorption. WSOC concentrations were quantified using TOC analysis, while those of MeS_OC were determined using a newly developed direct quantification protocol, applied for the first time to an extended series of ambient samples. The direct method led to a mean MeS_OC/OC of 0.68 and a more accurate subsequent estimation of absorption efficiencies. The mean winter WS_BrC and MeS_BrC absorptions at 365 nm were 13.9 Mm-1 and 21.9 Mm-1, respectively, suggesting an important fraction of water-insoluble OA. Mean winter WS_BrC and MeS_BrC absorptions were over 10 times those observed in summer. MeS_OC was more absorptive than WSOC in winter (mean mass absorption efficiencies - MAE365: 1.81 vs 1.15 m2 gC-1) and especially in summer (MAE: 1.12 vs 0.27 m2 gC-1) due to photo-dissociation and volatilization of BrC chromophores. The winter radiative forcing (RF) of WS_BrC and MeS_BrC relative to elemental carbon (EC) was estimated at 8.7 % and 16.7 %, respectively, in the 300-2500 nm band. However, those values increased to 48.5 % and 60.2 % at 300-400 nm, indicating that, under intense RWB, BrC forcing becomes comparable to that of soot. The results highlight the consideration of urban BrC emissions in radiative transfer models, as a considerable climate forcing factor.
Collapse
Affiliation(s)
- D Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece.
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - S Bikkina
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - M Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - I M Vrettou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - K Tavernaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - K Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - I Stavroulas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece; Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - A Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - K Oikonomou
- Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, P. Penteli, Athens 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| |
Collapse
|