1
|
Gaucher Y, Tanaka K, Johansson DJA, Goll DS, Ciais P. Leveraging ecosystems responses to enhanced rock weathering in mitigation scenarios. Nat Commun 2025; 16:3021. [PMID: 40148333 PMCID: PMC11950449 DOI: 10.1038/s41467-025-58284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Carbon dioxide removal (CDR) is deemed necessary to attain the Paris Agreement's climate objectives. While bioenergy with carbon capture and storage (BECCS) has generated substantial attention, sustainability concerns have led to increased examination of alternative strategies, including enhanced rock weathering (EW). We analyse the role of EW under cost-effective mitigation pathways, by including the CDR potential of basalt applications from silicate weathering (geochemical CDR) and enhanced ecosystem growth and carbon storage in response to phosphorus released by basalt (biotic CDR). Using an integrated carbon cycle, climate and energy system model, we show that the application of basalt to forests could triple the level of carbon sequestration induced by EW compared to an application restricted to croplands. EW also reduces the costs of achieving the Paris Agreement targets as well as the reliance on BECCS. Further understanding requires improved knowledge of weathering rates and basalt side-effects through field testing.
Collapse
Affiliation(s)
- Yann Gaucher
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
- CIRED, Ecole des Ponts, Nogent-sur-Marne, France.
| | - Katsumasa Tanaka
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- Earth System Division, National Institute for Environmental Studies (NIES), Tsukuba, Japan
| | - Daniel J A Johansson
- Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA/CNRS/UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Holden FJ, Davies K, Bird MI, Hume R, Green H, Beerling DJ, Nelson PN. In-field carbon dioxide removal via weathering of crushed basalt applied to acidic tropical agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176568. [PMID: 39389132 DOI: 10.1016/j.scitotenv.2024.176568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Enhanced weathering (EW) of silicate rocks such as basalt provides a potential carbon dioxide removal (CDR) technology for combatting climate change. Modelling and mesocosm studies suggest significant CDR via EW but there are few field studies. This study aimed to directly measure in-field CDR via EW of basalt applied to sugarcane on acidic (pH 5.8, 0-0.25 m) Ultisol in tropical northeastern Australia, where weathering potential is high. Coarsely crushed basalt produced as a byproduct of gravel manufacture (<5 mm) was applied annually from 2018 to 2022 at 0 or 50 t ha-1 a-1, incorporated into the soil in 2018 but not in subsequent years. Measurements in 2022 show increased soil pH and extractable Mg and Si at 0-0.25 m depth, indicating significant weathering of the basalt, but showed no increase in crop yield. Soil inorganic carbon content and bicarbonate (HCO3-) flux to deep drainage (1.25 m depth) were measured to quantify CDR in the 2022-2023 wet season (i.e. one year). Soil inorganic carbon was below detection limits. Mean HCO3- flux was 3.15 kmol ha-1 a-1 (±0.40) in the basalt-treated plots and 2.56 kmol ha-1 a-1 (±0.18) in the untreated plots but the difference (0.59 kmol ha-1 a-1 or 0.026 t CO2 ha-1 a-1) was not significant (p = 0.082). Most weathering of the basalt was attributed to acids stronger than carbonic acid. These were, in decreasing order of contribution, surface-bound protons (inherent soil acidity), nitric acid (from nitrification), organic acids, and acids associated with cation uptake by plants. These results indicate in-field CDR via EW of basalt is low where soil and regolith pH is well below the pKa1 of 6.4 for H2CO3. However, increased soil pH, and the consumption of strong acids by weathering will eventually lead to reduced CO2 emission from soil or evasion from rivers, with continued basalt addition.
Collapse
Affiliation(s)
- Fredrick J Holden
- College of Science and Engineering, James Cook University, Cairns, Australia; Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom.
| | - Kalu Davies
- College of Science and Engineering, James Cook University, Cairns, Australia; Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom
| | - Michael I Bird
- College of Science and Engineering, James Cook University, Cairns, Australia; Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom
| | - Ruby Hume
- Department for Environment and Water, Adelaide, Australia
| | - Hannah Green
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - David J Beerling
- Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom
| | - Paul N Nelson
- College of Science and Engineering, James Cook University, Cairns, Australia; Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Zhang D, Zeng Q, Chen H, Guo D, Li G, Dong H. Enhanced Rock Weathering as a Source of Metals to Promote Methanogenesis and Counteract CO 2 Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19679-19689. [PMID: 39432802 DOI: 10.1021/acs.est.4c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Enhanced weathering of (ultra)mafic rocks has been proposed as a promising approach to sequester atmospheric CO2 and mitigate climate change. However, these silicate rocks contain varying amounts of trace metals, which are essential cofactors of metallaenzymes in methanogens. We found that weathering of crushed peridotite and basalt significantly promoted the growth and methanogenesis of a model methanogen─Methanosarcina acetivorans C2A under the condition of excess substrate. The released trace metals from peridotite and basalt, especially Fe, Ni, and Co, accounted for the promotion effect. Observation at different spatial scales showed a close association between the rocks and cells. Proteomic analysis revealed that rock amendment significantly enhanced the expression of core metalloenzymes in the methylotrophic methanogenesis pathway. Our study uncovers a previously unrecognized but important negative effect of enhanced rock weathering on methane production, which may counteract the carbon sequestration effort.
Collapse
Affiliation(s)
- Donglei Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Abdilla B, Lee SS, Fenter P, Sturchio NC. Dynamic Surface Incorporation of Pb 2+ Ions at the Actively Dissolving Calcite (104) Surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16525-16534. [PMID: 39235261 DOI: 10.1021/acs.est.4c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The reaction of dissolved Pb2+ with calcite surfaces at near-equilibrium conditions involves adsorption of Pb2+ and precipitation of secondary heteroepitaxial Pb-carbonate minerals. A more complex behavior is observed under far-from-equilibrium conditions, including strong inhibition of calcite dissolution, development of microtopography, and near-surface incorporation of multiple monolayers (ML) of Pb2+ without precipitation of secondary phases [where 1 ML ≡ 1 Ca/20.2 Å2, the crystallographic site density of the calcite (104) lattice plane]. However, the mechanistic controls governing far-from-equilibrium reactivity are not well understood. Here, we observe the interfacial incorporation of dissolved Pb2+ during the dissolution of calcite (104) surfaces at pH ∼ 3.7 in a flow-through reaction cell, revealing the formation of a ∼1 nm thick Pb-rich calcite layer with a total Pb coverage of ∼1.4 ML. These observations of the sorbed Pb distribution used resonant anomalous X-ray reflectivity, X-ray fluorescence, and nanoinfrared atomic force microscopy. We propose that this altered surface layer represents a novel sorption mode that is stabilized by conditions of sustained disequilibrium. This behavior may significantly impact the transport of dissolved metals during disequilibrium processes occurring in acid mine drainage and subsurface CO2 injection and, if appropriately accounted for, could improve the predictive capability of geochemical reactive-transport models.
Collapse
Affiliation(s)
- Bektur Abdilla
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Sang Soo Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Paul Fenter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Neil C Sturchio
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Beaury EM, Smith J, Levine JM. Global suitability and spatial overlap of land-based climate mitigation strategies. GLOBAL CHANGE BIOLOGY 2024; 30:e17515. [PMID: 39319461 DOI: 10.1111/gcb.17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Land-based mitigation strategies (LBMS) are critical to reducing climate change and will require large areas for their implementation. Yet few studies have considered how and where LBMS either compete for land or could be deployed jointly across the Earth's surface. To assess the opportunity costs of scaling up LBMS, we derived high-resolution estimates of the land suitable for 19 different LBMS, including ecosystem maintenance, ecosystem restoration, carbon-smart agricultural and forestry management, and converting land to novel states. Each 1 km resolution map was derived using the Earth's current geographic and biophysical features without socioeconomic constraints. By overlaying these maps, we estimated 8.56 billion hectares theoretically suitable for LBMS across the Earth. This includes 5.20 Bha where only one of the studied strategies is suitable, typically the strategy that involves maintaining the current ecosystem and the carbon it stores. The other 3.36 Bha is suitable for more than one LBMS, framing the choices society has among which LBMS to implement. The majority of these regions of overlapping LBMS include strategies that conflict with one another, such as the conflict between better management of existing land cover types and restoration-based strategies such as reforestation. At the same time, we identified several agricultural management LBMS that were geographically compatible over large areas, including for example, enhanced chemical weathering and improved plantation rotations. Our analysis presents local stakeholders, communities, and governments with the range of LBMS options, and the opportunity costs associated with scaling up any given LBMS to reduce global climate change.
Collapse
Affiliation(s)
- Evelyn M Beaury
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Jeffrey Smith
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
6
|
Abdalqadir M, Hughes D, Rezaei Gomari S, Rafiq U. A state of the art of review on factors affecting the enhanced weathering in agricultural soil: strategies for carbon sequestration and climate mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19047-19070. [PMID: 38372917 DOI: 10.1007/s11356-024-32498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
As the urgency to address climate change intensifies, the exploration of sustainable negative emission technologies becomes imperative. Enhanced weathering (EW) represents an approach by leveraging the natural process of rock weathering to sequester atmospheric carbon dioxide (CO2) in agricultural lands. This review synthesizes current research on EW, focusing on its mechanisms, influencing factors, and pathways for successful integration into agricultural practices. It evaluates key factors such as material suitability, particle size, application rates, soil properties, and climate, which are crucial for optimizing EW's efficacy. The study highlights the multifaceted benefits of EW, including soil fertility improvement, pH regulation, and enhanced water retention, which collectively contribute to increased agricultural productivity and climate change mitigation. Furthermore, the review introduces Monitoring, Reporting, and Verification (MRV) and Carbon Dioxide Removal (CDR) verification frameworks as essential components for assessing and enhancing EW's effectiveness and credibility. By examining the current state of research and proposing avenues for future investigation, this review aims to deepen the understanding of EW's role in sustainable agriculture and climate change mitigation strategies.
Collapse
Affiliation(s)
- Mardin Abdalqadir
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK.
| | - David Hughes
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| | - Sina Rezaei Gomari
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| | - Ubaid Rafiq
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
7
|
Reershemius T, Kelland ME, Jordan JS, Davis IR, D'Ascanio R, Kalderon-Asael B, Asael D, Suhrhoff TJ, Epihov DZ, Beerling DJ, Reinhard CT, Planavsky NJ. Initial Validation of a Soil-Based Mass-Balance Approach for Empirical Monitoring of Enhanced Rock Weathering Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19497-19507. [PMID: 37961896 DOI: 10.1021/acs.est.3c03609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Enhanced rock weathering (ERW) is a promising scalable and cost-effective carbon dioxide removal (CDR) strategy with significant environmental and agronomic co-benefits. A major barrier to large-scale implementation of ERW is a robust monitoring, reporting, and verification (MRV) framework. To successfully quantify the amount of carbon dioxide removed by ERW, MRV must be accurate, precise, and cost-effective. Here, we outline a mass-balance-based method in which analysis of the chemical composition of soil samples is used to track in situ silicate rock weathering. We show that signal-to-noise issues of in situ soil analysis can be mitigated by using isotope-dilution mass spectrometry to reduce analytical error. We implement a proof-of-concept experiment demonstrating the method in controlled mesocosms. In our experiment, a basalt rock feedstock is added to soil columns containing the cereal crop Sorghum bicolor at a rate equivalent to 50 t ha-1. Using our approach, we calculate rock weathering corresponding to an average initial CDR value of 1.44 ± 0.27 tCO2eq ha-1 from our experiments after 235 days, within error of an independent estimate calculated using conventional elemental budgeting of reaction products. Our method provides a robust time-integrated estimate of initial CDR, to feed into models that track and validate large-scale carbon removal through ERW.
Collapse
Affiliation(s)
- Tom Reershemius
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Mike E Kelland
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Jacob S Jordan
- Porecast Research, Lawrence, Kansas 66049, United States
| | - Isabelle R Davis
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, Southampton SO14 3ZH, U.K
| | - Rocco D'Ascanio
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Boriana Kalderon-Asael
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - Dan Asael
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
| | - T Jesper Suhrhoff
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
- Yale Center for Natural Carbon Capture, Yale University, New Haven, Connecticut 06511, United States
| | - Dimitar Z Epihov
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J Beerling
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, United States
- Yale Center for Natural Carbon Capture, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
8
|
Haque F, Khalidy R, Chiang YW, Santos RM. Constraining the Capacity of Global Croplands to CO 2 Drawdown via Mineral Weathering. ACS EARTH & SPACE CHEMISTRY 2023; 7:1294-1305. [PMID: 37492628 PMCID: PMC10364810 DOI: 10.1021/acsearthspacechem.2c00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/27/2023]
Abstract
Terrestrial enhanced weathering of alkaline silicate minerals is a promising climate change mitigation strategy with the potential to limit the global temperature rise. The formation and accumulation of pedogenic carbonate and bicarbonate in soils/subsoils and groundwater offers a large sink for C storage; the amount of soil inorganic carbon (SIC) presently held within soils has been estimated to be 720-950 Gt of C. These values can be augmented by the addition of a variety of calcium and magnesium silicates via enhanced weathering. While the concept of the application of finely milled silicate rocks for faster weathering rates is well established, there has been limited discussion on the role of local climate, natural SIC content (i.e., the SIC innately present in the soil), and soil pH (among other important agronomic factors) on silicate weathering when applied to croplands, especially in view that the aim is to establish terrestrial enhanced weathering as a carbon dioxide removal (CDR) strategy on a global scale. In this work, we emphasized the importance of soil pH and soil temperature on silicate weathering and looked to estimate an upper limit of (i.e., constrain) the global capacity until the year 2100 for enhanced rock weathering (ERW) to draw down CO2 in the form of accumulated pedogenic carbonate or soluble bicarbonate. We assessed the global spatial distribution of cropland soil pH, which serves as a proxy for local innate SIC; annual rate of pluvial (rainfall) precipitation; and soil temperature, and found that the potential CO2 drawdown difference between faster and slower weathering silicates is narrower in Asia, Africa, and South America, while the gap is larger for Europe, North America, and Oceania.
Collapse
Affiliation(s)
- Fatima Haque
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Reza Khalidy
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yi Wai Chiang
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rafael M. Santos
- School
of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
9
|
Deng H, Sonnenthal E, Arora B, Breunig H, Brodie E, Kleber M, Spycher N, Nico P. The environmental controls on efficiency of enhanced rock weathering in soils. Sci Rep 2023; 13:9765. [PMID: 37328610 PMCID: PMC10275906 DOI: 10.1038/s41598-023-36113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Enhanced rock weathering (ERW) in soils is a promising carbon removal technology, but the realistically achievable efficiency, controlled primarily by in situ weathering rates of the applied rocks, is highly uncertain. Here we explored the impacts of coupled biogeochemical and transport processes and a set of primary environmental and operational controls, using forsterite as a proxy mineral in soils and a multiphase multi-component reactive transport model considering microbe-mediated reactions. For a onetime forsterite application of ~ 16 kg/m2, complete weathering within five years can be achieved, giving an equivalent carbon removal rate of ~ 2.3 kgCO2/m2/yr. However, the rate is highly variable based on site-specific conditions. We showed that the in situ weathering rate can be enhanced by conditions and operations that maintain high CO2 availability via effective transport of atmospheric CO2 (e.g. in well-drained soils) and/or sufficient biogenic CO2 supply (e.g. stimulated plant-microbe processes). Our results further highlight that the effect of increasing surface area on weathering rate can be significant-so that the energy penalty of reducing the grain size may be justified-only when CO2 supply is nonlimiting. Therefore, for ERW practices to be effective, siting and engineering design (e.g. optimal grain size) need to be co-optimized.
Collapse
Affiliation(s)
- Hang Deng
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | - Eric Sonnenthal
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bhavna Arora
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Energy Technology Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eoin Brodie
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Markus Kleber
- Department of Crop and Soil Science, College of Agricultural Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Nicolas Spycher
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter Nico
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Kanzaki Y, Planavsky NJ, Reinhard CT. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering. PNAS NEXUS 2023; 2:pgad059. [PMID: 37096198 PMCID: PMC10122414 DOI: 10.1093/pnasnexus/pgad059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 04/26/2023]
Abstract
Avoiding many of the most severe consequences of anthropogenic climate change in the coming century will very likely require the development of "negative emissions technologies"-practices that lead to net carbon dioxide removal (CDR) from Earth's atmosphere. However, feedbacks within the carbon cycle place intrinsic limits on the long-term impact of CDR on atmospheric CO2 that are likely to vary across CDR technologies in ways that are poorly constrained. Here, we use an ensemble of Earth system models to provide new insights into the efficiency of CDR through enhanced rock weathering (ERW) by explicitly quantifying long-term storage of carbon in the ocean during ERW relative to an equivalent modulated emissions scenario. We find that although the backflux of CO2 to the atmosphere in the face of CDR is in all cases significant and time-varying, even for direct removal and underground storage, the leakage of initially captured carbon associated with ERW is well below that currently assumed. In addition, net alkalinity addition to the surface ocean from ERW leads to significant increases in seawater carbonate mineral saturation state relative to an equivalent emissions trajectory, a co-benefit for calcifying marine organisms. These results suggest that potential carbon leakage from the oceans during ERW is a small component of the overall ERW life cycle and that it can be rigorously quantified and incorporated into technoeconomic assessments of ERW at scale.
Collapse
Affiliation(s)
- Yoshiki Kanzaki
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|