1
|
Zhou N, Sui S, Liu H, Yang X, Hong H, Patterson TA. Determining high priority disinfection byproducts based on experimental aquatic toxicity data and predictive models: Virtual screening and in vivo study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175489. [PMID: 39142401 DOI: 10.1016/j.scitotenv.2024.175489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Only about 100 disinfection byproducts (DBPs) have been tested for their potential aquatic toxicity. It is not known which specific DBPs, DBP main groups, and DBP subgroups are more toxic due to the lack of experimental toxicity data. Herein, high priority specific DBPs, DBP main groups, DBP subgroups, most sensitive model aquatic species, potential PBT and PMT (persistent, bioaccumulative/mobile, and toxic) DBPs were virtually screened for 1187 updated DBPs inventory. Priority setting based on experimental and predicted acute and chronic aquatic toxicity data found that the aromatic and alicyclic DBPs in four DBPs main groups showed high priority because larger proportions of aromatic and alicyclic DBPs are in high hazard categories (i.e. Acute and/or Chronic Toxic-1 or Toxic-2) according to the criteria in GHS system compared to the aliphatic and heterocyclic DBPs. The halophenols, estrogen-DBPs, nonhalogenated esters, and nonhalogenated aldehydes were recognized as high priority DBPs subgroups. For specific DBPs, 19 and 31 DBPs should be highly concerned in the future study because both acute and chronic toxicity of those DBPs to all of the three aquatic life (algae, Daphnia magna, fish) were classified as Toxic-1 and Toxic-2, respectively. The Daphnia magna and algae were sensitive to the acute toxicity of DBPs, while the fish and Daphnia magna were sensitive to the chronic toxicity of DBPs. One potential PBT (Tetrachlorobisphenol A) and four potential PMT DBPs were identified. For verification, the acute toxicity of four DBPs on three aquatic organism were performed, and their tested acute toxicity data to three aquatic organisms were consistent with the predictions. Our results could be beneficial to government regulators to adopt effective measures to limit the discharge of high priority DBPs and help the scientific community to develop or improve disinfection processes to reduce the production of high priority DBPs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuxin Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
2
|
Wang K, Ma HN, Song JX, Yuan X. Color and fluorescence orthogonal dual-functional visual turn-on sensing for acidic and alkaline glyphosate and additive. Food Chem 2024; 464:141816. [PMID: 39488051 DOI: 10.1016/j.foodchem.2024.141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
In this work, benefitting from the sensitive pH-responsiveness of both meso-tetra-(4-sulfonatophenyl) porphyrin (TPPS4) and calixpyridinium, and their controllable strong noncovalent interactions, the first orthogonal dual-functional visual sensor for simultaneously and separately detecting acidic and alkaline substances without interference by using UV-Vis absorption and fluorescence emission spectra with both "turn on" signal changes was constructed by the supramolecular assembly of calixpyridinium with TPPS4. Color and fluorescence orthogonal dual-functional visual "turn-on" sensing for acidic and alkaline glyphosate and additive by calixpyridinium-TPPS4 sensor was further practically applied. The preparation of this sensor is quite simple in an environmentally friendly water medium. Only 2 μM calixpyridinium and 3 μM TPPS4 are needed to construct this assembly sensor. This sensor has a good biocompatibility, a high selectivity and sensitivity. Moreover, calixpyridinium-TPPS4 sensor can also be applied as a thermal switch and a light controlled anti-counterfeit material.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Hui-Na Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Jia-Xuan Song
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Xing Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| |
Collapse
|
3
|
Sui S, Zhou N, Liu H, Watson P, Yang X. Recognizing high-priority disinfection byproducts based on experimental and predicted endocrine disrupting data: Virtual screening and in vitro study. CHEMOSPHERE 2024; 358:142239. [PMID: 38705414 DOI: 10.1016/j.chemosphere.2024.142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.
Collapse
Affiliation(s)
- Shuxin Sui
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nan Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Peter Watson
- Los Alamos National Laboratory, Los Alamos, 87545, New Mexico, United States
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
4
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
5
|
Zhao T, Wawryk NJP, Xing S, Low B, Li G, Yu H, Wang Y, Shen Q, Li XF, Huan T. ChloroDBPFinder: Machine Learning-Guided Recognition of Chlorinated Disinfection Byproducts from Nontargeted LC-HRMS Analysis. Anal Chem 2024. [PMID: 38294426 DOI: 10.1021/acs.analchem.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
High-resolution mass spectrometry (HRMS) is a prominent analytical tool that characterizes chlorinated disinfection byproducts (Cl-DBPs) in an unbiased manner. Due to the diversity of chemicals, complex background signals, and the inherent analytical fluctuations of HRMS, conventional isotopic pattern (37Cl/35Cl), mass defect, and direct molecular formula (MF) prediction are insufficient for accurate recognition of the diverse Cl-DBPs in real environmental samples. This work proposes a novel strategy to recognize Cl-containing chemicals based on machine learning. Our hierarchical machine learning framework has two random forest-based models: the first layer is a binary classifier to recognize Cl-containing chemicals, and the second layer is a multiclass classifier to annotate the number of Cl present. This model was trained using ∼1.4 million distinctive MFs from PubChem. Evaluated on over 14,000 unique MFs from NIST20, this machine learning model achieved 93.3% accuracy in recognizing Cl-containing MFs (Cl-MFs) and 92.9% accuracy in annotating the number of Cl for Cl-MFs. Furthermore, the trained model was integrated into ChloroDBPFinder, a standalone R package for the streamlined processing of LC-HRMS data and annotating both known and unknown Cl-containing compounds. Tested on existing Cl-DBP data sets related to aspartame chlorination in tap water, our ChloroDBPFinder efficiently extracted 159 Cl-containing DBP features and tentatively annotated the structures of 10 Cl-DBPs via molecular networking. In another application of a chlorinated humic substance, ChloroDBPFinder extracted 79 high-quality Cl-DBPs and tentatively annotated six compounds. In summary, our proposed machine learning strategy and the developed ChloroDBPFinder provide an advanced solution to identifying Cl-containing compounds in nontargeted analysis of water samples. It is freely available on GitHub (https://github.com/HuanLab/ChloroDBPFinder).
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Shipei Xing
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian Low
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gigi Li
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yukai Wang
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qiming Shen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Lei X, Xie Z, Sun Y, Qiu J, Yang X. Recent progress in identification of water disinfection byproducts and opportunities for future research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122601. [PMID: 37742858 DOI: 10.1016/j.envpol.2023.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Numerous disinfection by-products (DBPs) are formed from reactions between disinfectants and organic/inorganic matter during water disinfection. More than seven hundred DBPs that have been identified in disinfected water, only a fraction of which are regulated by drinking water guidelines, including trihalomethanes, haloacetic acids, bromate, and chlorite. Toxicity assessments have demonstrated that the identified DBPs cannot fully explain the overall toxicity of disinfected water; therefore, the identification of unknown DBPs is an important prerequisite to obtain insights for understanding the adverse effects of drinking water disinfection. Herein, we review the progress in identification of unknown DBPs in the recent five years with classifications of halogenated or nonhalogenated, aliphatic or aromatic, followed by specific halogen groups. The concentration and toxicity data of newly identified DBPs are also included. According to the current advances and existing shortcomings, we envisioned future perspectives in this field.
Collapse
Affiliation(s)
- Xiaoxiao Lei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyan Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijia Sun
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Junlang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Concha F, Sambra V, Cáceres P, López-Arana S, Carvajal B, Gotteland M. Maternal consumption and perinatal exposure to non-nutritive sweeteners: should we be concerned? Front Pediatr 2023; 11:1200990. [PMID: 37377756 PMCID: PMC10291189 DOI: 10.3389/fped.2023.1200990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The context for this review is the rapid increase in the use of non-nutritive sweeteners (NNSs) instead of sugar in foods and beverages, a situation so prevalent in some countries that consumers are finding it increasingly challenging to access foods without NNSs. The benefits of consuming NNSs on obesity and diabetes are now being questioned, and studies have shown that they may exert physiological activities, sometimes independently of sweet taste receptor stimulation. Few studies, limited mainly to North American and European countries, have described the consumption of NNSs by pregnant or lactating women and infants. Most focus on beverages rather than foods, but all agree that consumption levels have increased dramatically. Although some studies report a negative impact of NNSs on the risk of preterm birth, increased birth weight and decreased gestational age, the level of evidence is low. Several studies have also reported increased weight gain in infancy, associated with maternal NNS intake. Interestingly, several NNSs have been detected in amniotic fluid and breast milk, usually (but not always) at concentrations below their established detection limit in humans. Unfortunately, the impact of chronic exposure of the fetus/infant to low levels of multiple NNSs is unknown. In conclusion, there is a stark contrast between the galloping increase in the consumption of NNSs and the small number of studies evaluating their impact in at-risk groups such as pregnant and lactating women and infants. Clearly, more studies are needed, especially in Latin America and Asia, to fill these gaps and update recommendations.
Collapse
Affiliation(s)
- Francisca Concha
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Cáceres
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Bielka Carvajal
- Department of Women and Newborn’s Health Promotion, University of Chile, Santiago, Chile
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|