1
|
Gong H, Hu J, Rui X, Wang Y, Zhu N. Drivers of change behind the spatial distribution and fate of typical trace organic pollutants in fresh waste leachate across China. WATER RESEARCH 2024; 263:122170. [PMID: 39096808 DOI: 10.1016/j.watres.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
There have been growing concerns regarding the health and environmental impacts of trace organic pollutants (TOPs). However, fresh leachate from municipal solid waste (MSW) has been overlooked as a potential reservoir of TOPs. Therefore, we investigated 90 legacy and emerging TOPs in fresh leachate from 14 provinces and municipalities in China. Additionally, the fate and final discharge impacts of TOPs in 14 leachate treatment systems were analyzed. The results revealed that the detection rate of 90 TOPs was over 50 % in all samples. Notably, polychlorinated biphenyls, banned for 40 years, were frequently detected in fresh leachate. The concentration of pseudo-persistent TOPs (105-107 ng/L) is significantly higher than that of persistent TOPs (102-104 ng/L). Spatial distribution patterns of TOPs in fresh leachate suggest that economy, population, climate, and policies impact TOPs discharge from MSW. For example, economically developed and densely populated areas displayed higher TOPs concentrations, whereas warmer climates facilitate TOPs leaching from MSW. We confirmed that waste classification policies were a key driver of the decline in multiple TOPs in leachate. Mass balance analysis shows that the final effluent and sludge from current dominant leachate treatment systems contain refractory TOPs, especially perfluoroalkyl acids, which must be prioritized for control. This paper was the first comprehensive investigation of multiple TOPs in fresh leachate at a large geographic scale. The factors affecting the occurrence, spatial distribution, and fate of TOPs in fresh leachate were revealed. It provides a valuable reference for the establishment of policies for the management of TOPs in MSW and the associated leachate.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Li J, Duan W, An Z, Jiang Z, Li L, Guo M, Tan Z, Zeng X, Liu X, Liu Y, Li A, Guo H. Legacy and alternative per- and polyfluoroalkyl substances spatiotemporal distribution in China: Human exposure, environmental media, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135795. [PMID: 39278030 DOI: 10.1016/j.jhazmat.2024.135795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
In recent decades, China's rapid development has led to significant environmental pollution from the widespread use of chemical products. Per- and polyfluoroalkyl substances (PFAS) are among the most concerning pollutants due to their persistence and bioaccumulation. This article assesses PFAS exposure levels, distribution, and health risks in Chinese blood, environment, and food. Out of 4037 papers retrieved from November 2022 to December 31, 2023, 351 articles met the criteria. Findings show perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) as the main PFAS in both Chinese populations and the environment. The highest PFOA levels in Chinese populations were in Shandong (53.868 ng/mL), while Hubei had the highest PFOS levels (43.874 ng/mL). Similarly, water samples from Sichuan (2115.204 ng/L) and Jiangsu (368.134 ng/L) had the highest PFOA and PFOS levels, respectively. Although localized areas showed high PFAS concentrations. Additionally, developed areas had higher PFAS contamination. The researches conducted in areas such as Qinghai and Hainan remain limited, underscoring the imperative for further investigation. Temporal analysis indicates declining levels of some PFAS, but emerging alternatives require more research. Limited studies on PFAS concentrations in soil, atmosphere, and food emphasize the need for comprehensive research to mitigate human exposure.
Collapse
Affiliation(s)
- Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
3
|
Shen L, Zhou J, Ma Y, Su Q, Mao H, Su E, Tang KHD, Wang T, Zhu L. Characterization of the Bioavailability of Per- and Polyfluoroalkyl Substances in Farmland Soils and the Factors Impacting Their Translocation to Edible Plant Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15790-15798. [PMID: 39172077 DOI: 10.1021/acs.est.4c04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, various crops and farmland soils were collected from the Fen-Wei Plain, China, to investigate the bioavailability of perfluoroalkyl substances (PFAS), their accumulation in edible plant tissues, and the factors impacting their accumulation. PFAS were frequently detected in all of the crops, with total concentrations ranging from 0.61 to 35.8 ng/g. The results of sequential extractions with water, basic methanol, and acidic methanol indicate that water extraction enables to characterize the bioavailability of PFAS in soil to edible plant tissues more accurately, especially for the shorter-chain homologues. The bioavailability of PFAS was remarkably enhanced in the rhizosphere (RS) soil, with the strongest effect observed for leafy vegetables. The water-extracted Σ16PFAS in RS soil was strongly correlated with the content of dissolved organic carbon in the soil. Tannins and lignin, identified as the main components of plant root exudates by Fourier transform-ion cyclotron resonance mass spectrometry, were found to enhance the bioavailability of PFAS significantly. Redundancy analysis provided strong evidence that the lipid and protein contents in edible plant tissues play important roles in the accumulation of short- and long-chain PFAS, respectively. Additionally, the high water demand of these tissues during the growth stage greatly facilitated the translocation of PFAS, particularly for the short-chain homologues and perfluorooctanoic acid.
Collapse
Affiliation(s)
- Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Yujing Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qian Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Heshun Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Eryuan Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
4
|
Nie C, Shui J, Huang L, Wang J, Shen Y, Wu Y. Programming of a Portable Digital Monitoring System-Integrated DNA Aptamer Reversely Regulated Oxidase-Like Nanozyme for Real-Time Dynamic Analysis of Atmospheric Perfluorooctanoic Acid. Anal Chem 2024; 96:13512-13521. [PMID: 39110961 DOI: 10.1021/acs.analchem.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Timely and efficient analysis of the fluorinated per- and polyfluoroalkyl substances (PFAS) in an atmospheric environment is critical to environmental pollution traceability, early warnings, and governance. Here, a portable, reliable, and intelligent digital monitoring device for onsite real-time dynamic analysis of atmospheric perfluorooctanoic acid (PFOA) is proposed. The sensing mechanism is attributed to the oxidase-like activity of PtCoNPs@g-C3N4 that is reversely regulated by the surface modification of a PFOA-recognizable DNA aptamer, engineering a PFOA-activated oxidase-like activity of nanozyme (Apt-PtCoNPs@g-C3N4) to combine the nonfluorescence o-phenylenediamine (OPD) as the dual-modality response system. The present PFOA interacts with its DNA aptamer and dissociates from the surface of Apt-PtCoNPs@g-C3N4, restoring the oxidase-like activity of PtCoNPs@g-C3N4 to oxidize OPD into yellow fluorescence 2,3-diphenylaniline (DAP), thereby observing a PFOA-triggered colorimetric as well as fluorescence dual-modality change. Then, a hydrogel kit-programmed Apt-PtCoNPs@g-C3N4 + OPD system is used as the sensitive element to incorporate into this homemade portable device, automatically gathering and processing the PFOA-triggered hydrogel colorimetric and fluorescence image gray values by our self-weaving software, ultimately realizing the onsite real-time dynamic analysis of atmospheric PFOA surrounding a fluorochemical production plant. This work provides a direction and theoretical foundation for designing portable onsite screening devices that cater to other atmospheric contaminants detection requirements.
Collapse
Affiliation(s)
- Chao Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiaxu Shui
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
5
|
Zhang Q, Liu Y, Li S, Li H, Gao M, Yao Y, Wang L, Wang Y. Traditional and Novel Organophosphate Esters in Plastic Greenhouse: Occurrence, Multimedia Migration, and Exposure Risk via Vegetable Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13929-13939. [PMID: 38978502 DOI: 10.1021/acs.est.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The migration and risk of organophosphate esters (OPEs) in agricultural air-soil-plant multimedia systems due to plastic film application remain unclear. This study investigates the multimedia distribution of traditional OPEs (TOPEs), novel OPEs (NOPEs), and their transformation products (POPEs) in plastic and solar greenhouses. The total concentration of OPE-associated contaminants in air and airborne particles ranged from 594 to 1560 pg/m3 and 443 to 15600 ng/g, respectively. Significant correlations between air OPE concentrations and those in polyolefin film (P < 0.01) indicate plastic film as the primary source. Contaminants were also found in soils (96.8-9630 ng/g) and vegetables (197-7540 ng/g). The primary migration pathway for NOPEs was particle dry deposition onto the soil and leaf, followed by plant accumulation. Leaf absorption was the main uptake pathway for TOPEs and POPEs, influenced by vegetable specific leaf surface area. Moreover, total exposure to OPE-associated contaminants via vegetable intake was assessed at 2250 ng/kg bw/day for adults and 2900 ng/kg bw/day for children, with an acceptable hazard index. However, a high ecological risk was identified for NOPE compounds (median risk quotient, 975). This study provides the first evidence of the multimedia distribution and potential threat posed by OPE-associated contaminants in agricultural greenhouses.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yarui Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Wang L, Chen L, Wang J, Hou J, Han B, Liu W. Spatial distribution, compositional characteristics, and source apportionment of legacy and novel per- and polyfluoroalkyl substances in farmland soil: A nationwide study in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134238. [PMID: 38608586 DOI: 10.1016/j.jhazmat.2024.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
China, as one of the largest global producers and consumers of per- and poly-fluoroalkyl substances (PFASs), faces concerning levels of PFAS pollution in soil. However, knowledge of their occurrence in agricultural soils of China on the national scale remains unknown. Herein, the first nationwide survey was done by collecting 352 soil samples from 31 provinces in mainland China. The results indicated that the Σ24PFASs concentrations were 74.3 - 24880.0 pg/g, with mean concentrations of PFASs in decreasing order of legacy PFASs > emerging PFASs > PFAS precursors (640.2 pg/g, 340.7 pg/g, and 154.9 pg/g, respectively). The concentrations in coastal eastern China were distinctly higher than those in inland regions. Tianjin was the most severely PFASs-contaminated province because of rapid urban industrialization. This study further compared the PFAS content in monoculture and multiple cropping farmland soils, finding the concentrations of PFASs were high in soils planted with vegetable and fruit monocultures. Moreover, a positive matrix factorization (PMF) model was employed to identify different sources of PFASs. Fluoropolymer industries and aqueous film-forming foams were the primary contributors. The contributions from different emission sources varied across the seven geographical regions. This study provides new baseline data for prevention and control policies for reducing pollution.
Collapse
Affiliation(s)
- Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Li Y, Zhi Y, Weed R, Broome SW, Knappe DRU, Duckworth OW. Commercial compost amendments inhibit the bioavailability and plant uptake of per- and polyfluoroalkyl substances in soil-porewater-lettuce systems. ENVIRONMENT INTERNATIONAL 2024; 186:108615. [PMID: 38582061 DOI: 10.1016/j.envint.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Compost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils. After 50 days of greenhouse experiment, PFAS uptake by lettuce decreased (by up to 90.5 %) with the increasing compost amendment ratios (0-20 %, w/w), consistent with their decreased porewater concentrations (by 30.7-86.3 %) in compost-amended soils. Decreased bioavailability of PFAS was evidenced by the increased in-situ soil-porewater distribution coefficients (Kd) (by factors of 1.5-7.0) with increasing compost additions. Significant negative (or positive) correlations (R2 ≥ 0.55) were observed between plant bioaccumulation (or Kd) and soil organic carbon content, suggesting that compost amendment inhibited plant uptake of PFAS mainly by increasing soil organic carbon and enhancing PFAS sorption. However, short-chain PFAS alternatives (e.g., perfluoro-2-methoxyacetic acid (PFMOAA)) were effectively translocated to shoots with translocation factors > 2.9, increasing their risks of contamination in leafy vegetables. Our findings underscore the necessity for comprehensive risk assessment of compost-borne PFAS when using commercial compost products in agricultural lands.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States.
| | - Yue Zhi
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Rebecca Weed
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States
| | - Stephen W Broome
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
8
|
Baqar M, Saleem R, Zhao M, Zhao L, Cheng Z, Chen H, Yao Y, Sun H. Combustion of high-calorific industrial waste in conventional brick kilns: An emerging source of PFAS emissions to agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167612. [PMID: 37804982 DOI: 10.1016/j.scitotenv.2023.167612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The brick kilns in the South Asian region are widely documented to partially combust high-calorific waste components of synthetic-industrial origin, which contain hazardous constituents, including per- and polyfluoroalkyl substances (PFAS). Correspondingly, these establishments are necessarily built on agricultural land to easily acquire clay by excavating soil horizons, thus making cultivation soils vulnerable to PFAS contaminations. In this pioneering study, the occurrence, distribution profile, traceability and human health risk exposure to forty-four legacy and novel PFAS homologues, including two ultrashort-chain (C2-C3) PFAS, were investigated in agricultural soils around thirty-two conventional brick kilns across three districts of Pakistan. ⅀44PFAS concentrations ranged from 14.3 to 465 ng/g (median: 28.2 ng/g), which were 2 to 70 folds higher than those in background soils, and slightly higher than those reported in agricultural soils in the global literature. The highest occurrence was observed for PFAS alternatives, i.e., 6:2 fluorotelomer sulfonate (6:2 FTSA) (40 %) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (4.5 %). A significant positive correlation (p < 0.01) was observed among the concentrations of short-chain perfluoroalkyl acids (C4-C7) and novel PFOS substitutes, implying their origin from common sources. Furthermore, ultrashort-chain and short-chain perfluorocarboxylic acids (PFCA) (89 %) and perfluorosulfonic acids (PFSA) (63 %) dominated over long-chain's PFCA (11 %) and PFSA (37 %), respectively. The estimated daily intake to children exposed in surrounding inhabited communities, at 95th percentile concentrations was found to be approaching the European tolerable daily intake limit of 0.63 ng/kg bw/day. Therefore, the brick manufacturing industry is identified as a novel source of PFAS in the adjacent environment and for residents. This suggests the need for further investigations to elucidate the origin of emerging contaminants in the waste streams of the region to safeguard ecological integrity.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Rimsha Saleem
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Xing Y, Zhou Y, Zhang X, Lin X, Li J, Liu P, Lee HK, Huang Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167313. [PMID: 37742961 DOI: 10.1016/j.scitotenv.2023.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted increasing attention due to their environmental persistence and potential toxicity. Diet is one of the main routes of human exposure to PFAS, particularly through the consumption of animal-derived foods (e.g., aquatic products, livestock and poultry, and products derived from them). This review summarizes the source, bioaccumulation, and distribution of PFAS in animal-derived foods and key influential factors. In most environmental media, perfluorooctanoic acid and perfluorooctane sulfonate are the dominant PFAS, with the levels of short-chain PFAS such as perfluorobutyric acid and perfluorohexane sulfonate surpassing them in some watersheds and coastal areas. The presence of PFAS in environmental media is mainly influenced by suspended particulate matter, microbial communities as well as temporal and spatial factors, such as season and location. Linear PFAS with long carbon chains (C ≥ 7) and sulfonic groups tend to accumulate in organisms and contribute significantly to the contamination of animal-derived foods. Furthermore, PFAS, due to their protein affinity, are prone to accumulate in the blood and protein-rich tissues such as the liver and kidney. Species differences in PFAS bioaccumulation are determined by diet, variances in protein content in the blood and tissues and species-specific activity of transport proteins. Carnivorous fish usually show higher PFAS accumulation than omnivorous fish. Poultry typically metabolize PFAS more rapidly than mammals. PFAS exposures in the processing of animal-derived foods are also attributable to the migration of PFAS from food contact materials, especially those in higher-fat content foods. The human health risk assessment of PFAS exposure from animal-derived foods suggests that frequent consumption of aquatic products potentially engender greater risks to women and minors than to adult males. The information and perspectives from this review would help to further identify the toxicity and migration mechanism of PFAS in animal-derived foods and provide information for food safety management.
Collapse
Affiliation(s)
- Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
10
|
Renyer A, Ravindra K, Wetmore BA, Ford JL, DeVito M, Hughes MF, Wehmas LC, MacMillan DK. Dose Response, Dosimetric, and Metabolic Evaluations of Replacement PFAS Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) Acid (HFPO-TeA). TOXICS 2023; 11:951. [PMID: 38133352 PMCID: PMC10747602 DOI: 10.3390/toxics11120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Few studies are available on the environmental and toxicological effects of perfluoroalkyl ether carboxylic acids (PFECAs), such as GenX, which are replacing legacy PFAS in manufacturing processes. To collect initial data on the toxicity and toxicokinetics of a longer-chain PFECA, male and female Sprague Dawley rats were exposed to perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) acid (HFPO-TeA) by oral gavage for five days over multiple dose levels (0.3-335.2 mg/kg/day). Clinically, we observed mortality at doses >17 mg/kg/day and body weight changes at doses ≤17 mg/kg/day. For the 17 mg/kg/day dose level, T3 and T4 thyroid hormone concentrations were significantly decreased (p < 0.05) from controls and HFPO-TeA plasma concentrations were significantly different between sexes. Non-targeted analysis of plasma and in vitro hepatocyte assay extractions revealed the presence of another GenX oligomer, perfluoro-(2,5-dimethyl-3,6-dioxanonanoic) acid (HFPO-TA). In vitro to in vivo extrapolation (IVIVE) parameterized with in vitro toxicokinetic data predicted steady-state blood concentrations that were within seven-fold of those observed in the in vivo study, demonstrating reasonable predictivity. The evidence of thyroid hormone dysregulation, sex-based differences in clinical results and dosimetry, and IVIVE predictions presented here suggest that the replacement PFECA HFPO-TeA induces a complex and toxic exposure response in rodents.
Collapse
Affiliation(s)
- Aero Renyer
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA;
| | - Krishna Ravindra
- Oak Ridge Associated Universities (ORAU), Oak Ridge, TN 37830, USA;
| | - Barbara A. Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Jermaine L. Ford
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Michael DeVito
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Michael F. Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Leah C. Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| | - Denise K. MacMillan
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Durham, NC 27709, USA; (B.A.W.); (J.L.F.); (M.D.); (M.F.H.); (L.C.W.)
| |
Collapse
|
11
|
Gong H, Hu J, Rui X, Luo J, Zhu N. Unveiling the occurrence, distribution, removal, and environmental impacts of 65 emerging contaminants in neglected fresh leachate from municipal solid waste incineration plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132355. [PMID: 37651937 DOI: 10.1016/j.jhazmat.2023.132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Emerging contaminants (ECs) are commonly found in environmental media. Yet leachate from municipal solid waste incineration plants (MSWIPs), which can serve as a reservoir for various contaminants, including ECs, has received little investigation. To address this gap, 65 ECs were analyzed in the fresh leachate and biological effluent from three major MSWIPs in Shanghai. Results indicated that over half (56%) of the 65 ECs were detected in fresh leachate. Different ECs would be removed to varying degrees after biological treatment, including polycyclic aromatic hydrocarbons (PAHs) (65%), polybrominated diphenyl ethers (PBDEs) (51%), phthalate esters (PAEs) (36%), and organophosphorus pesticides (OPPs) (34%). Notably, for tetrabromobisphenol A (TBBPA), a PBDE substitute, only 2% was removed after biological treatment, while polychlorinated biphenyls (PCBs) were effectively removed at 83%. Water solubility and the octanol-water partition coefficient are key factors influencing the distribution and removal of ECs in leachate. the effluent will still contain refractory ECs even after the biological treatment. These residual ECs discharged to sewers can impact wastewater treatment plants or contaminate surface water and groundwater. These findings provide insights into the leachate contamination by ECs, their environmental fate, factors affecting their behavior, and potential environmental impacts.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Davis MJB, Evich MG, Goodrow SM, Washington JW. Environmental Fate of Cl-PFPECAs: Accumulation of Novel and Legacy Perfluoroalkyl Compounds in Real-World Vegetation and Subsoils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8994-9004. [PMID: 37290100 PMCID: PMC10366621 DOI: 10.1021/acs.est.3c00665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are globally distributed and potentially toxic compounds. We report accumulation of chloroperfluoropolyethercarboxylates (Cl-PFPECAs) and perfluorocarboxylates (PFCAs) in vegetation and subsoils in New Jersey. Lower molecular weight Cl-PFPECAs, containing 7-10 fluorinated carbons, and PFCAs containing 3-6 fluorinated carbons were enriched in vegetation relative to surface soils. Subsoils were dominated by lower molecular weight Cl-PFPECAs, a divergence from surface soils. Contrastingly, PFCA homologue profiles in subsoils were similar to surface soils, likely reflecting temporal-use patterns. Accumulation factors (AFs) for vegetation and subsoils decreased with increasing CF2, 6-13 for vegetation and 8-13 in subsoils. In vegetation, for PFCAs having CF2 = 3-6, AFs diminished with increasing CF2 as a more sensitive function than for longer chains. Considering that PFAS manufacturing has transitioned from long-chain chemistry to short-chain, this elevated vegetative accumulation of short-chain PFAS suggests the potential for unanticipated PFAS exposure levels globally in human and/or wildlife populations. This inverse relationship between AFs and CF2-count in terrestrial vegetation is opposite the positive relationship reported in aquatic vegetation suggesting aquatic food webs may be preferentially enriched in long-chain PFAS. AFs normalized to soil-water concentrations increased with chain length for CF2 = 6-13 in vegetation but remained inversely related to chain length for CF2 = 3-6, reflecting a fundamental change in vegetation affinity for short chains compared to long.
Collapse
Affiliation(s)
- Mary J B Davis
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Office of Research and Development, Athens, Georgia 30605, United States
| | - Marina G Evich
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Office of Research and Development, Athens, Georgia 30605, United States
| | - Sandra M Goodrow
- Division of Science & Research, New Jersey Department of Environmental Protection, Trenton, New Jersey 08625, United States
| | - John W Washington
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Office of Research and Development, Athens, Georgia 30605, United States
| |
Collapse
|