1
|
Wang H, Zhu Y, Lu Y, Bu X, Zhu Q, Yuan S. Reduction capacity in the transmissive zones fueled by the embedded low-permeability lenses: Implications for contaminant transformation in heterogeneous aquifers. WATER RESEARCH 2024; 260:121955. [PMID: 38909424 DOI: 10.1016/j.watres.2024.121955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Redox conditions play a decisive role in regulating contaminant and nutrient transformation in groundwater. Here we quantitatively described and interpreted the temporal and spatial variations of aquifer reduction capacity formation in lens-embedded heterogeneous aquifers in 1-D columns. Experimental results indicated that the aquifer reduction capacity exported from the low-permeability lens permeated into the downstream sandy zones, where it subsequently accumulated and extended. Reactive transport modeling suggested that reduction capacity within the lens preferentially diffused to the transmissive zones around the lens-sand interface, and was then transported via convection to downstream transmissive zones. A low-permeability lens of the same volume, but more elongated in the flow direction, led to less concentrated reduction capacity but extended further downgradient from the lens. The increased flow velocity attenuated the maintenance of aquifer reduction capacity by enhancing mixing and diluting processes in the transmissive zones. The reduction zones formed downstream from the low-permeability lens were hotpots for resisting the oxidative perturbation by O2. This study highlights the important role of low-permeability lenses as large and long-term electron pools for the transmissive zones, and thus providing aquifer reduction capacity for contaminant transformation and remediation in heterogeneous aquifers.
Collapse
Affiliation(s)
- Hong Wang
- School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, PR China
| | - Yonghui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Xiaochuang Bu
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Qi Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, PR China.
| |
Collapse
|
2
|
Lu R, Luo Y, Su L, Ye S, Wang X, Ren W, Zhang J, Zhao F, Zheng C. Field Detection of Uranyl in Coastal Water of China Using a Portable Device via DNA Photocleavage. Anal Chem 2024; 96:11525-11532. [PMID: 38966896 DOI: 10.1021/acs.analchem.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The urgent need for field detection of uranium in seawater is 2-fold: to provide prompt guidance for uranium extraction and to prevent human exposure to nuclear radiation. However, current methods for this purpose are largely hindered by bulky instrumentation, high costs of developed materials, and severe matrix interferences, which limit their further application in the field. Herein, we demonstrated a portable and label-free strategy for the field detection of uranyl in seawater based on the efficient photocleavage of DNA. Further experiments confirmed the generation of ultraviolet (UV) light-induced reactive oxygen species (ROS), such as O2•- and •OH, which fragmented oligomeric DNA in the presence of uranyl and UV light. Detailed studies showed that DNA significantly enhances uranyl absorption in the UV-visible region, leading to the generation of more ROS. A fluorescence system for the selective detection of uranyl in seawater was established by immobilizing two complementary oligonucleotides with the fluorescent dye SYBR Green I. The strategy of UV-induced photocleavage offers high selectivity, excellent interference immunity, and high sensitivity for uranyl, with a detection limit of 6.8 nM. Additionally, the fluorescence can be visually detected using a 3D-printed miniaturized device integrated with a smartphone. This method has been successfully applied to the on-site detection of uranyl in seawater in 18 Chinese coastal cities and along the coast of Hainan Island within 3 min for a single sample. The sample testing and field analysis results indicate that this strategy has promising potential for real-time monitoring of trace uranyl in China's coastal waters. It is expected to be utilized for the rapid assessment of nuclear contamination and nuclear engineering construction.
Collapse
Affiliation(s)
- Ruixuan Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yijing Luo
- Nuclear Power Institute of China, Chengdu 610213, China
| | - Lei Su
- Nuclear Power Institute of China, Chengdu 610213, China
| | - Simin Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wei Ren
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Feng Zhao
- Nuclear Power Institute of China, Chengdu 610213, China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Alizadeh M, Noori R, Omidvar B, Nohegar A, Pistre S. Human health risk of nitrate in groundwater of Tehran-Karaj plain, Iran. Sci Rep 2024; 14:7830. [PMID: 38570538 PMCID: PMC10991333 DOI: 10.1038/s41598-024-58290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Groundwater pollution by nitrate has is a major concern in the Tehran-Karaj aquifer, Iran, where the wells provide up to 80% of the water supply for a population of more than 18 million-yet detailed human health risks associated with nitrate are unknown due to the lack of accessible data to adequately cover the aquifer in both place and time. Here, using a rich dataset measured annually in more than 75 wells, we mapped the non-carcinogenic risk of nitrate in the aquifer between 2007 and 2018, a window with the most extensive anthropogenic activities in this region. Nitrate concentration varied from ~ 6 to ~ 150 mg/L, around three times greater than the standard level for drinking use, i.e. 50 mg/L. Samples with a non-carcinogenic risk of nitrate, which mainly located in the eastern parts of the study region, threatened children's health, the most vulnerable age group, in almost all of the years during the study period. Our findings revealed that the number of samples with a positive risk of nitrate for adults decreased in the aquifer from 2007 (17 wells) to 2018 (6 wells). Although we hypothesized that unsustainable agricultural practices, the growing population, and increased industrial activities could have increased the nitrate level in the Tehran-Karaj aquifer, improved sanitation infrastructures helped to prevent the intensification of nitrate pollution in the aquifer during the study period. Our compilation of annually mapped non-carcinogenic risks of nitrate is beneficial for local authorities to understand the high-risk zones in the aquifer and for the formulation of policy actions to protect the human health of people who use groundwater for drinking and other purposes in this densely populated region.
Collapse
Affiliation(s)
- Maedeh Alizadeh
- Graduate Faculty of Environment, University of Tehran, Tehran, 1417853111, Iran
| | - Roohollah Noori
- Graduate Faculty of Environment, University of Tehran, Tehran, 1417853111, Iran.
- Faculty of Governance, University of Tehran, Tehran, 1439814151, Iran.
| | - Babak Omidvar
- Graduate Faculty of Environment, University of Tehran, Tehran, 1417853111, Iran
| | - Ahmad Nohegar
- Graduate Faculty of Environment, University of Tehran, Tehran, 1417853111, Iran
| | - Severin Pistre
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, 34090, Montpellier, France
| |
Collapse
|
4
|
Tesoriero AJ, Wherry SA, Dupuy DI, Johnson TD. Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5079-5092. [PMID: 38451152 PMCID: PMC10956438 DOI: 10.1021/acs.est.3c07576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Redox conditions in groundwater may markedly affect the fate and transport of nutrients, volatile organic compounds, and trace metals, with significant implications for human health. While many local assessments of redox conditions have been made, the spatial variability of redox reaction rates makes the determination of redox conditions at regional or national scales problematic. In this study, redox conditions in groundwater were predicted for the contiguous United States using random forest classification by relating measured water quality data from over 30,000 wells to natural and anthropogenic factors. The model correctly predicted the oxic/suboxic classification for 78 and 79% of the samples in the out-of-bag and hold-out data sets, respectively. Variables describing geology, hydrology, soil properties, and hydrologic position were among the most important factors affecting the likelihood of oxic conditions in groundwater. Important model variables tended to relate to aquifer recharge, groundwater travel time, or prevalence of electron donors, which are key drivers of redox conditions in groundwater. Partial dependence plots suggested that the likelihood of oxic conditions in groundwater decreased sharply as streams were approached and gradually as the depth below the water table increased. The probability of oxic groundwater increased as base flow index values increased, likely due to the prevalence of well-drained soils and geologic materials in high base flow index areas. The likelihood of oxic conditions increased as topographic wetness index (TWI) values decreased. High topographic wetness index values occur in areas with a propensity for standing water and overland flow, conditions that limit the delivery of dissolved oxygen to groundwater by recharge; higher TWI values also tend to occur in discharge areas, which may contain groundwater with long travel times. A second model was developed to predict the probability of elevated manganese (Mn) concentrations in groundwater (i.e., ≥50 μg/L). The Mn model relied on many of the same variables as the oxic/suboxic model and may be used to identify areas where Mn-reducing conditions occur and where there is an increased risk to domestic water supplies due to high Mn concentrations. Model predictions of redox conditions in groundwater produced in this study may help identify regions of the country with elevated groundwater vulnerability and stream vulnerability to groundwater-derived contaminants.
Collapse
Affiliation(s)
- Anthony J. Tesoriero
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Susan A. Wherry
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Danielle I. Dupuy
- U.S.
Geological Survey, 6000
J Street, Placer Hall, Sacramento, California 95819, United States
| | - Tyler D. Johnson
- U.S.
Geological Survey, 4165
Spruance Road, Suite 200, San Diego, California 92101, United States
| |
Collapse
|
5
|
Li R, Zhang L, Chen Y, Xia Q, Liu D, Huang Y, Dong H. Oxidation of Biogenic U(IV) in the Presence of Bioreduced Clay Minerals and Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1541-1550. [PMID: 38199960 DOI: 10.1021/acs.est.3c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Bioreduction of soluble U(VI) to sparingly soluble U(IV) is proposed as an effective approach to remediating uranium contamination. However, the stability of biogenic U(IV) in natural environments remains unclear. We conducted U(IV) reoxidation experiments following U(VI) bioreduction in the presence of ubiquitous clay minerals and organic ligands. Bioreduced Fe-rich nontronite (rNAu-2) and Fe-poor montmorillonite (rSWy-2) enhanced U(IV) oxidation through shuttling electrons between oxygen and U(IV). Ethylenediaminetetraacetic acid (EDTA), citrate, and siderophore desferrioxamine B (DFOB) promoted U(IV) oxidation via complexation with U(IV). In the presence of both rNAu-2 and EDTA, the rate of U(IV) oxidation was between those in the presence of rNAu-2 and EDTA, due to a clay/ligand-induced change of U(IV) speciation. However, the rate of U(IV) oxidation in other combinations of reduced clay and ligands was higher than their individual ones because both promoted U(IV) oxidation. Unexpectedly, the copresence of rNAu-2/rSWy-2 and DFOB inhibited U(IV) oxidation, possibly due to (1) blockage of the electron transport pathway by DFOB, (2) inability of DFOB-complexed Fe(III) to oxidize U(IV), and (3) stability of the U(IV)-DFOB complex in the clay interlayers. These findings provide novel insights into the stability of U(IV) in the environment and have important implications for the remediation of uranium contamination.
Collapse
Affiliation(s)
- Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Quattrone A, Yang Y, Yadav P, Weber KA, Russo SE. Nutrient and Microbiome-Mediated Plant-Soil Feedback in Domesticated and Wild Andropogoneae: Implications for Agroecosystems. Microorganisms 2023; 11:2978. [PMID: 38138123 PMCID: PMC10745641 DOI: 10.3390/microorganisms11122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Plants influence the abiotic and biotic environment of the rhizosphere, affecting plant performance through plant-soil feedback (PSF). We compared the strength of nutrient and microbe-mediated PSF and its implications for plant performance in domesticated and wild grasses with a fully crossed greenhouse PSF experiment using four inbred maize genotypes (Zea mays ssp. mays b58, B73-wt, B73-rth3, and HP301), teosinte (Z. mays ssp. parviglumis), and two wild prairie grasses (Andropogon gerardii and Tripsacum dactyloides) to condition soils for three feedback species (maize B73-wt, teosinte, Andropogon gerardii). We found evidence of negative PSF based on growth, phenotypic traits, and foliar nutrient concentrations for maize B73-wt, which grew slower in maize-conditioned soil than prairie grass-conditioned soil. In contrast, teosinte and A. gerardii showed few consistent feedback responses. Both rhizobiome and nutrient-mediated mechanisms were implicated in PSF. Based on 16S rRNA gene amplicon sequencing, the rhizosphere bacterial community composition differed significantly after conditioning by prairie grass and maize plants, and the final soil nutrients were significantly influenced by conditioning, more so than by the feedback plants. These results suggest PSF-mediated soil domestication in agricultural settings can develop quickly and reduce crop productivity mediated by PSF involving changes to both the soil rhizobiomes and nutrient availability.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. Program, University of Nebraska-Lincoln, Lincoln, NE 68583-0851, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| | - Yuguo Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
| | - Karrie A. Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0340, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, NE 68588-6203, USA
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA; (Y.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583-0705, USA
| |
Collapse
|
7
|
Yadav P, Quattrone A, Yang Y, Owens J, Kiat R, Kuppusamy T, Russo SE, Weber KA. Zea mays genotype influences microbial and viral rhizobiome community structure. ISME COMMUNICATIONS 2023; 3:129. [PMID: 38057501 DOI: 10.1038/s43705-023-00335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Plant genotype is recognized to contribute to variations in microbial community structure in the rhizosphere, soil adherent to roots. However, the extent to which the viral community varies has remained poorly understood and has the potential to contribute to variation in soil microbial communities. Here we cultivated replicates of two Zea mays genotypes, parviglumis and B73, in a greenhouse and harvested the rhizobiome (rhizoplane and rhizosphere) to identify the abundance of cells and viruses as well as rhizobiome microbial and viral community using 16S rRNA gene amplicon sequencing and genome resolved metagenomics. Our results demonstrated that viruses exceeded microbial abundance in the rhizobiome of parviglumis and B73 with a significant variation in both the microbial and viral community between the two genotypes. Of the viral contigs identified only 4.5% (n = 7) of total viral contigs were shared between the two genotypes, demonstrating that plants even at the level of genotype can significantly alter the surrounding soil viral community. An auxiliary metabolic gene associated with glycoside hydrolase (GH5) degradation was identified in one viral metagenome-assembled genome (vOTU) identified in the B73 rhizobiome infecting Propionibacteriaceae (Actinobacteriota) further demonstrating the viral contribution in metabolic potential for carbohydrate degradation and carbon cycling in the rhizosphere. This variation demonstrates the potential of plant genotype to contribute to microbial and viral heterogeneity in soil systems and harbors genes capable of contributing to carbon cycling in the rhizosphere.
Collapse
Affiliation(s)
- Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Quattrone
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, USA
- Texas A&M University, College Station, TX, USA
| | - Yuguo Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob Owens
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- University of Nebraska-Medical Center, Omaha, NE, USA
| | - Rebecca Kiat
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Karrie A Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
8
|
Kozar D, Dong X, Li L. The recovery of river chemistry from acid rain in the Mississippi River basin amid intensifying anthropogenic activities and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165311. [PMID: 37419337 DOI: 10.1016/j.scitotenv.2023.165311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Acid rain has degraded the environmental health of many regions worldwide since the Industrial Revolution. Signatures of river chemistry recovery from acid rain since the Clean Air Act and similar legislation have been reported extensively in small streams but are often subdued or masked in large rivers by complex, co-occurring drivers. Here we assess the recovery of river chemistry from acid rain deposition in the Mississippi River Basin (MRB), the largest river basin in North America. We combine analysis of temporal trends of acid rain indicator solutes with Bayesian statistical models to assess the large-scale recovery from acid rain and characterize effects of anthropogenic activities. We found evidence of river chemistry recovery from acid rain; however, the effects of other anthropogenic activities, including fertilizer application and road salting, and changing climate, are likely intensifying. Trends of pH, alkalinity and SO4 export suggest acid rain recovery at large in the MRB, with stronger evidence of recovery in the historically afflicted eastern region of the basin. The concentrations of acid rain indicators generally correlate positively to NO3 and Cl, indicating that N-fertilizer application may have significantly increased weathering, and possibly acidification, and road salt application likely increased cation loss from catchments and contributed to SO4 export. Temperature correlates positively with solute concentrations, possibly through respiration-driven weathering or evaporation. The concentrations of acid rain indicators correlate negatively and most strongly to discharge, indicating discharge as a predominant driver and that lower discharge during droughts can elevate concentrations of riverine solutes in a changing climate. Using long-term data, this study represents a rare, comprehensive assessment of the recovery from acid rain in a large river basin, taking into consideration the entangled effects of multiple human activities and climate change. Our results highlight the ever-present need for adaptive environmental management in a constantly changing world.
Collapse
Affiliation(s)
- Daniel Kozar
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, United States of America; Department of Environmental Science and Policy, University of California, Davis, CA 95616, United States of America.
| | - Xiaoli Dong
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, United States of America
| | - Li Li
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|