1
|
Wang H, Xie Y, Xue W, Yan G, Lei Y, Wang J. Revealing sources for synergistic control of PM 2.5, O 3, and CO 2 in China: Based on social costs of air pollution and climate impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123964. [PMID: 39793507 DOI: 10.1016/j.jenvman.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
China is concurrently facing the dual challenges of air pollution and climate change. Here, we established a coupled modeling framework that integrated a chemical transport model with a health impact assessment model and the human capital method, to quantify the contributions of 150 emission sources (five sectors in 30 provinces) to the CO2 emissions, and the mortality burdens attributed to O3 and PM2.5. We found that, in 2019, the estimated premature deaths in China attributed to PM2.5 and O3 pollution were 1,499,073 and 143,420, respectively. The social cost of air pollution was approximately 232 billion USD (PM2.5: 212 billion USD, O3: 20 billion USD), comparable to the social cost of CO2 emissions at 246 billion USD. The social costs of air pollution and carbon emissions attributable to the 150 emission sources exhibited significant heterogeneity. We identified the control priorities and primary control targets for each emission source. Consequently, based on the social costs of air pollution and climate impact, we proposed a synergistic emission control policy that accounted for spatial distribution and sectoral categories. This policy aimed to harmonize the control strategies for PM2.5 pollution, O3 pollution, and CO2 emissions, thereby enhancing the comprehensive benefits of mitigation measures. Our study sheds light on optimizing emission control policies, enhancing the realism of relevant policy-making for synergistic control of air pollution and carbon emissions.
Collapse
Affiliation(s)
- Haoyu Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Wenbo Xue
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China.
| | - Gang Yan
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China.
| | - Yu Lei
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Jinnan Wang
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China
| |
Collapse
|
2
|
Liu H, Xu M, Yang Y, Cheng K, Liu Y, Fan Y, Yao D, Tian D, Li L, Zhao X, Zhang R, Xu Y. The oxidative potential of fine ambient particulate matter in Xinxiang, North China: Pollution characteristics, source identification and regional transport. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124615. [PMID: 39059700 DOI: 10.1016/j.envpol.2024.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can trigger the production of cytotoxic reactive oxygen species (ROS), which can trigger or exacerbate oxidative stress and pulmonary inflammation. We collected 111 daily (∼24 h) ambient PM2.5 samples within an urban region of North China during four seasons of 2019-2020. PM2.5 samples were examined for carbonaceous components, water-soluble ions, and elements, together with their oxidative potential (represent ROS-producing ability) by DTT assay. The seasonal peak DTTv was recorded in winter (2.86 ± 1.26 nmol min-1 m-3), whereas the DTTm was the highest in summer (40.6 ± 8.7 pmol min-1 μg-1). WSOC displayed the highest correlation with DTT activity (r = 0.84, p < 0.0001), but the influence of WSOC on the elevation of DTTv was extremely negligible. Combustion source exhibited the most significant and robust correlation with the elevation of DTTv according to the linear mixed-effects model result. Source identification investigation using positive matrix factorization displayed that combustion source (36.2%), traffic source (30.7%), secondary aerosol (15.7%), and dust (14.1%) were driving the DTTv, which were similar to the results from the multiple linear regression (MLR) analysis. Backward trajectory analysis revealed that the major air masses originate from local and regional transportation, but PM2.5 OP was more susceptible to the influence of short-distance transport clusters. Discerning the influence of chemicals on health-pertinent attributes of PM2.5, such as OP, could facilitate a deep understanding of the cause-and-effect relationship between PM2.5 and impacts.
Collapse
Affiliation(s)
- Huanjia Liu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China; School of Ecology & Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mengyuan Xu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ying Yang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ke Cheng
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yongli Liu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yujuan Fan
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Dan Yao
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Di Tian
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Lanqing Li
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Xingzi Zhao
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Ruiqin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadi Xu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Yang X, Ran G. Factors influencing the coupled and coordinated development of cities in the Yangtze River Economic Belt: A focus on carbon reduction, pollution control, greening, and growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122499. [PMID: 39293115 DOI: 10.1016/j.jenvman.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Atmospheric pollutants PM2.5 and CO2 share similar sources and impact mechanisms. Green innovations and urban greening significantly reduce these pollutants while promoting economic growth. However, the synergies and trade-offs between carbon reduction, pollution control, green expansion, and economic growth remain understudied. This paper examines 110 cities in the Yangtze River Economic Belt (YREB), China's premier green development site, as a unified system. Using fractional-order synthesis analysis, this paper constructs an assessment indicator system and measures synergy with a coupled coordination degree model. The driving factors are explored using a system-generalized method of moments estimation. The findings indicate that most cities in the YREB are at an intermediate coordination stage. The coupling of greening with carbon reduction, pollution control, and growth has a low degree, highlighting an urgent need to strengthen greening efforts. Key drivers include the digital economy, advanced industrial structure, innovative talent aggregation, infrastructure construction, financial investment, and marketization. The digital economy significantly influences all regions of the Yangtze River. Notable heterogeneity exists in the impact of other drivers across different regions. These results offer valuable policy insights for managing carbon emissions and pollutants, contributing to sustainable urban development.
Collapse
Affiliation(s)
- Xuan Yang
- School of Management, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Guanggui Ran
- School of Management, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
4
|
Zheng Y, Cao W, Zhao H, Chen C, Lei Y, Feng Y, Qi Z, Wang Y, Wang X, Xue W, Yan G. Identifying Key Sources for Air Pollution and CO 2 Emission Co-control in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15381-15394. [PMID: 39136294 DOI: 10.1021/acs.est.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
China is confronting the dual challenges of air pollution and climate change, mandating the co-control of air pollutants and CO2 emissions from their shared sources. Here we identify key sources for co-control that prioritize the mitigation of PM2.5-related health burdens, given the homogeneous impacts of CO2 emissions from various sources. By applying an integrated analysis framework that consists of a detailed emission inventory, a chemical transport model, a multisource fused dataset, and epidemiological concentration-response functions, we systematically evaluate the contribution of emissions from 390 sources (30 provinces and 13 socioeconomic sectors) to PM2.5-related health impacts and CO2 emissions, as well as the marginal health benefits of CO2 abatement across China. The estimated source-specific contributions exhibit substantial disparities, with the marginal benefits varying by 3 orders of magnitude. The rural residential, transportation, metal, and power and heating sectors emerge as pivotal sources for co-control, with regard to their relatively large marginal benefits or the sectoral total benefits. In addition, populous and heavily industrialized provinces such as Shandong and Henan are identified as the key regions for co-control. Our study highlights the significance of incorporating health benefits into formulating air pollution and carbon co-control strategies for improving the overall social welfare.
Collapse
Affiliation(s)
- Yixuan Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Wenxin Cao
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Hongyan Zhao
- Center for Atmospheric Environmental Studies, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuchu Chen
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yu Lei
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yueyi Feng
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Wang
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Xianen Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenbo Xue
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
- Center of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Gang Yan
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, China
| |
Collapse
|
5
|
Li S, Wang S, Wu Q, Zhao B, Jiang Y, Zheng H, Wen Y, Zhang S, Wu Y, Hao J. Integrated Benefits of Synergistically Reducing Air Pollutants and Carbon Dioxide in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39086301 DOI: 10.1021/acs.est.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
China's advancements in addressing air pollution and reducing CO2 emissions offer valuable lessons for collaborative strategies to achieve diverse environmental objectives. Previous studies have assessed the mutual benefits of climate policies and air pollution control measures on one another, lacking an integrated assessment of the benefits of synergistic control attributed to refined measures. Here, we comprehensively used coupled emission inventory and response models to evaluate the integrated benefits and synergy degrees of various measures in reducing air pollutants and CO2 in China during 2013-2021. Results indicated that the implemented measures yielded integrated benefits value at 6.7 (2.4-12.6) trillion Chinese Yuan. The top five contributors, accounting for 55%, included promoting non-thermal power, implementing end-of-pipe control technologies in power plants and iron and steel industry, replacing residential scattered coal, and saving building energy. Measures demonstrating high synergies and integrated benefits per unit of reduction (e.g., green traffic promotion) yielded low benefits mainly due to their low application, which are expected to gain greater implementation and prioritization in the future. Our findings provide insights into the effectiveness and limitations of strategies aimed at joint control. By ranking these measures based on their benefits and synergy, we offer valuable guidance for policy development in China and other nations with similar needs.
Collapse
Affiliation(s)
- Shengyue Li
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Shuxiao Wang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Qingru Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Bin Zhao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Yueqi Jiang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Haotian Zheng
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Yifan Wen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Shaojun Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Ye Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| | - Jiming Hao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Liu K, Wang K, Jia S, Liu Y, Liu S, Yin Z, Zhang X. Air quality and health benefits for different heating decarbonization pathways in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170976. [PMID: 38360321 DOI: 10.1016/j.scitotenv.2024.170976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The urgent need for decarbonization in China's heating system, comprised of approximately one hundred thousand boilers, is imperative to meet climate and clean air objectives. To formulate national and regional strategies, we developed an integrated model framework that combines a facility-level emission inventory, the Community Multiscale Air Quality (CMAQ) model, and the Global Exposure Mortality Model (GEMM). We then explore the air quality and health benefits of alternative heating decarbonization pathways, including the retirement of coal-fired industrial boilers (CFIBs) for replacement with grid-bound heat supply systems, coal-to-gas conversion, and coal-to-biomass conversion. The gas replacement pathway shows the greatest potential for reducing PM2.5 concentration by 2.8 (2.3-3.4) μg/m3 by 2060, avoiding 23,100 (19,600-26,500) premature deaths. In comparison, the biomass replacement pathway offers slightly lower environmental and health benefits, but is likely to reduce costs by approximately two-thirds. Provincially, optimal pathways vary - Xinjiang, Sichuan, and Chongqing favor coal-to-gas conversion, while Shandong, Henan, Hebei, Inner Mongolia, and Shanxi show promise in CFIBs retirement. Henan leads in environmental and health benefits. Liaoning, Heilongjiang, and Jilin, rich in biomass resources, present opportunities for coal-to-biomass conversion.
Collapse
Affiliation(s)
- Kaiyun Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Kun Wang
- Department of Air Pollution Control, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
| | - Shuting Jia
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanghao Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuhan Liu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhou Yin
- Center for Pollution and Carbon Reduction, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zhang
- Center for Pollution and Carbon Reduction, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Shen Z, Wang P, Hu X, Qu W, Liu X, Zhang D. Ultrahighly Alkali-Tolerant NO x Reduction over Self-Adaptive CePO 4/FePO 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14472-14481. [PMID: 37695840 DOI: 10.1021/acs.est.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Xiao D, Fan J, Wang W, Wang J, Hou L. Innovation city and low-carbon future: a quasinatural experiment from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98004-98019. [PMID: 37603247 DOI: 10.1007/s11356-023-29280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Using the difference-in-difference model and panel data from 283 Chinese cities from 2006 to 2019, this study assesses the effect on CO2 emissions of an innovative city pilot policy and analyzes its mechanism using the mediation effect model. The findings demonstrate that the pilot policy significantly reduces urban carbon emissions overall, and this finding holds even after conducting several stability tests. Innovative pilot cities can cut carbon emissions by 11.5% compared to nonpilot cities and thus significantly impact carbon reduction. Reducing carbon emissions is possible through three mechanisms. These are the enrichment of cultural resources, the development of technological innovation levels, and the optimization of industrial structure. There is a significant lag in how the innovative city pilot policy affects this reduction. The emission reduction effects of innovative pilot policies on different pollution levels, regions, and cities of various sizes are heterogeneous. In the long run, the scope of pilot projects needs enlargement in an orderly manner, and specific policies should be implemented according to local conditions. Meanwhile, advanced technologies are required in cities of different scales to build innovative development mechanisms for carbon peaking and carbon neutrality, and environmental regulations should be strengthened to implement in urban areas the concept of green and sustainable ecological development.
Collapse
Affiliation(s)
- Deheng Xiao
- School of Government, University of International Business and Economics, Beijing, 100029, China
| | - Jingbo Fan
- School of Government, University of International Business and Economics, Beijing, 100029, China
| | - Weilong Wang
- School of Economics, Sichuan University, Chengdu, 610064, China
| | - Jianlong Wang
- School of Economics, Sichuan University, Chengdu, 610064, China.
| | - Lingchun Hou
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|