1
|
Hupatz H, Rahu I, Wang WC, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem 2025; 417:473-493. [PMID: 39138659 DOI: 10.1007/s00216-024-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Non-targeted screening with liquid chromatography coupled to high-resolution mass spectrometry (LC/HRMS) is increasingly leveraging in silico methods, including machine learning, to obtain candidate structures for structural annotation of LC/HRMS features and their further prioritization. Candidate structures are commonly retrieved based on the tandem mass spectral information either from spectral or structural databases; however, the vast majority of the detected LC/HRMS features remain unannotated, constituting what we refer to as a part of the unknown chemical space. Recently, the exploration of this chemical space has become accessible through generative models. Furthermore, the evaluation of the candidate structures benefits from the complementary empirical analytical information such as retention time, collision cross section values, and ionization type. In this critical review, we provide an overview of the current approaches for retrieving and prioritizing candidate structures. These approaches come with their own set of advantages and limitations, as we showcase in the example of structural annotation of ten known and ten unknown LC/HRMS features. We emphasize that these limitations stem from both experimental and computational considerations. Finally, we highlight three key considerations for the future development of in silico methods.
Collapse
Affiliation(s)
- Henrik Hupatz
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
| | - Ida Rahu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
| | - Wei-Chieh Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden
| | - Pilleriin Peets
- Institute of Biodiversity, Faculty of Biological Science, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Emma H Palm
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 114 18, Stockholm, Sweden.
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden.
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 8, 114 18, Stockholm, Sweden.
| |
Collapse
|
2
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Batt AL, Brunelle LD, Quinete NS, Stebel EK, Ng B, Gardinali P, Chao A, Huba AK, Glassmeyer ST, Alvarez DA, Kolpin DW, Furlong ET, Mills MA. Investigating the chemical space coverage of multiple chromatographic and ionization methods using non-targeted analysis on surface and drinking water collected using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176922. [PMID: 39426538 DOI: 10.1016/j.scitotenv.2024.176922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Multiple non-targeted analysis tools were used to look for a broad range of possible chemical contaminants present in surface and drinking water using liquid chromatography separation and high-resolution mass spectrometry detection, including both quadrupole time of flight (Q-ToF) and Orbitrap instruments. Two chromatographic techniques were evaluated on an LC-Q-ToF with electrospray ionization in both positive and negative modes: (1) the traditionally used reverse phase C18 and (2) the hydrophilic interaction liquid chromatography (HILIC) aimed to capture more polar contaminants that may be present in water. Multiple ionization modes were evaluated with an LC-Orbitrap, including electrospray (ESI) and atmospheric pressure chemical ionization (APCI), also in both positive and negative modes. A suspect screening library of over 1300 possible environmental contaminants, including pesticides, pharmaceuticals, personal care products, illicit drugs/drugs of abuse, and various anthropogenic markers was made with experimentally collected data with the LC-Q-ToF with both column types, with 227 chemicals being retained by the HILIC column. The non-targeted methods using multiple chromatographic and ionization modes were applied to environmental water samples collected with polar organic chemical integrative samplers (POCIS), including surface water upstream and downstream from wastewater effluent discharge, and the downstream drinking water intake and treated drinking water for three distinct sampling events. For the LC-Q-ToF, 442 chemical features were detected on the C18 column and 91 with the HILIC column in the POCIS extracts, while 556 features were found on the Orbitrap workflow by ESI and 131 features detected by APCI. Over 100 chemicals were tentatively identified by suspect screening and database searching. The comprehensive and systematic evaluation of these methods serve as a step in characterizing the chemical space covered when utilizing different chromatography and ionization methods, or different instrument workflows on complex environmental mixtures.
Collapse
Affiliation(s)
- Angela L Batt
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States.
| | - Laura D Brunelle
- Oak Ridge Institute for Science and Education (ORISE) Participant at the U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, United States
| | - Natalia S Quinete
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Eva K Stebel
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Brian Ng
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Piero Gardinali
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27709, United States
| | - Anna K Huba
- Florida International University, Institute of Environment, Department of Chemistry & Biochemistry, North Miami, FL 33181, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA 52240, United States
| | - Edward T Furlong
- U.S. Geological Survey, Strategic Laboratory Services Branch, Laboratory Analytical Services Division, Denver, CO 80225, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| |
Collapse
|
4
|
Nino-Suastegui S, Painter E, Sprankle JW, Morrison JJ, Faust JA, Gray R. Non-targeted analysis and suspect screening of organic contaminants in temperate snowfall using liquid chromatography high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2024; 266:120494. [PMID: 39622354 DOI: 10.1016/j.envres.2024.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Contaminants released into the atmosphere that undergo regional and long-range transport can deposit back to Earth through snowfall. When snow melts, these contaminants re-enter the environment, sometimes far from their original emission sources. Here we present the first comprehensive characterization of organic contaminants in snow from North America. Fresh snowfall samples were collected in the central United States over a three-year period and measured by liquid chromatography high-resolution mass spectrometry for suspect screening and non-targeted analysis. The resulting data set was screened against experimental MS/MS libraries and underwent supplemental in silico MS/MS analysis. In total, 91 possible compounds were tentatively identified in snow, and 17 were successfully confirmed and semi-quantified with reference standards. These contaminants were mostly anthropogenic in origin and included six herbicides, three insect repellants, one insecticide metabolite, and one fungicide. The most prominent compounds present in all samples were N-cyclohexylformamide (known contaminant in tire leachate), DEET (insect repellent), and dimethyl phthalate (plasticizer), with median deposition fluxes of 4032, 284, and 262 ng m-2, respectively. Three additional compounds were detected in 100% of samples: coumarin (phytochemical and fragrance additive), 5-methylbenzotriazole (antifreeze component), and quinoline (heterocyclic aromatic). The Peto-Peto test revealed statistically significant differences in deposition fluxes for these six contaminants (p < 0.05), with weak but statistically significant positive associations between coumarin and DEET and between coumarin and quinoline according to a Kendall's tau correlation analysis. These findings demonstrate the utility of in silico analysis to complement MS/MS matching with experimental databases. Even so, thousands of unidentified features remained in the data set, highlighting the limitations of current strategies in non-targeted analysis of environmental samples.
Collapse
Affiliation(s)
| | - Eve Painter
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Jameson W Sprankle
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; The College of Wooster, Department of Earth Sciences, 944 College Mall, Wooster, OH, 44691, USA
| | - Jillian J Morrison
- The Ohio State University, Department of Statistics, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Jennifer A Faust
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Rebekah Gray
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; Goucher College, Department of Chemistry, 1021 Dulaney Valley Rd, Baltimore, MD, 21204, USA.
| |
Collapse
|
5
|
Renai L, Del Bubba M, Gargano AFG, Samanipour S. Consolidating two-dimensional liquid chromatography-high-resolution tandem mass spectrometry (LC×LC-HRMS/MS) technique for the non-targeted analysis of poly- and perfluorinated substances: A trial on aqueous film-forming foams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175908. [PMID: 39218084 DOI: 10.1016/j.scitotenv.2024.175908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
To date, poly- and perfluoroalkyl substances (PFAS) represent a real threat for their environmental persistence, wide physicochemical variability, and their potential toxicity. Thus far a large portion of these chemicals remain structurally unknown. These chemicals, therefore, require the implementation of complex non-targeted analysis workflows using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) for their comprehensive detection and monitoring. This approach, even though comprehensive, does not always provide the much-needed analytical resolution for the analysis of complex PFAS mixtures such as fire-fighting aqueous film-forming foams (AFFFs). This study consolidates the advantages of the LC×LC technique hyphenated with high-resolution tandem mass spectrometry (HRMS/MS) for the identification of PFAS in AFFF mixtures. A total of 57 PFAS homolog series (HS) were identified in 3M and Orchidee AFFF mixtures thanks to the (i) high chromatographic peak capacity (n'2D,c ~ 300) and the (i) increased mass domain resolution provided by the "remainder of Kendrick Mass" (RKM) analysis on the HRMS data. Then, we attempted to annotate the PFAS of each HS by exploiting the available reference standards and the FluoroMatch workflow in combination with the RKM defect by different fluorine repeating units, such as CF2, CF2O, and C2F4O. This approach resulted in 12 identified PFAS HS, including compounds belonging to the HS of perfluoroalkyl carboxylic acids (PFACAs), perfluoroalkyl sulfonic acids (PFASAs), (N-pentafluoro(5)sulfide)-perfluoroalkane sulfonates (SF5-PFASAs), N-sulfopropyldimethylammoniopropyl perfluoroalkane sulfonamides (N-SPAmP-FASA), and N-carboxymethyldimethylammoniopropyl perfluoroalkane sulfonamide (N-CMAmP-FASA). The annotated categories of perfluoroalkyl aldehydes and chlorinated PFASAs represent the first record of PFAS HS in the investigated AFFF samples.
Collapse
Affiliation(s)
- Lapo Renai
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Department of Chemistry, University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Massimo Del Bubba
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea F G Gargano
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Saer Samanipour
- van't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Amsterdam, the Netherlands; UvA Data Science Centre, University of Amsterdam, Amsterdam, the Netherlands; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Australia.
| |
Collapse
|
6
|
Caballero-Casero N, Ballesteros-Gómez AM, Rubio S. Supramolecular solvents: a gateway to all-in-one extractions in chemical exposomics. Anal Bioanal Chem 2024:10.1007/s00216-024-05645-7. [PMID: 39508913 DOI: 10.1007/s00216-024-05645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The characterization of the human chemical exposome through daily estimated intakes or biomonitoring has become paramount to understand the causal pathways leading to common diseases. The paradigm shift that has taken place in looking at health has moved research from the classical biomedical model based on "one exposure, one disease" to a more comprehensive approach based on multiple chemicals and low dose effects. For this purpose, untargeted and/or suspect analysis of chemicals based on liquid chromatography and high-resolution mass spectrometry (LC-HRMS) has been proposed as the most relevant strategy for sequencing the exposome. A key aspect in this respect is the development of unbiased sample preparation methods that efficiently concentrate the wide range of untargeted/suspected chemicals while minimizing interference from sample matrices. Here, we aim to critically discuss the potential of tailored supramolecular solvents (SUPRAS) for achieving all-in-one extractions in chemical exposomics, as an alternative to overcome the limitations of the current sample treatment strategies, on the basis of their intrinsic properties and the applications reported so far.
Collapse
Affiliation(s)
- Noelia Caballero-Casero
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, Córdoba, 14071, Spain.
| | - Ana M Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, Córdoba, 14071, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, Córdoba, 14071, Spain
| |
Collapse
|
7
|
Tarábek P, Leonova N, Konovalova O, Kirchner M. Identification of organic contaminants in water and related matrices using untargeted liquid chromatography high-resolution mass spectrometry screening with MS/MS libraries. CHEMOSPHERE 2024; 366:143489. [PMID: 39374668 DOI: 10.1016/j.chemosphere.2024.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Nontargeted and suspect screening with liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become an indispensable tool for quality assessment in the aquatic environment - complementary to targeted analysis of organic (micro)contaminants. An LC-HRMS method is presented, suitable for the analysis of a wide variety of water related matrices: surface water, groundwater, wastewater, sediment and sludge, including extracts from passive samplers and on-site solid phase enrichment, while focusing on the data processing aspect of the method. A field study is included to demonstrate the practical application and versatility of the whole process. HRMS/MS data were recorded following LC separation in both (ESI) positive and negative ionization modes using data dependent as well as data independent acquisition. Two vendor (Agilent's Personal Compound Database and Library and from National Institute of Standards and Technology) and one open (MassBank/EU) tandem mass spectral libraries were utilized for the identification of compounds via mass spectral match. The development of a novel software tool for parsing, grouping and reduction of MS/MS features in data files converted to mascot generic format (MGF) helped to substantially decrease the amount of time and effort needed for MS library search. While applying the method, in the course of the entire field study, 18771 detections (from 870 individual compounds) in total were recorded in 275 samples, resulting in 68.3 identified compounds per sample, on average. Among the top ten most frequently detected contaminants across all samples and sample types were pharmaceutical compounds carbamazepine, 4-acetamidoantipyrine, 4-formylaminoantipyrine, tramadol, lamotrigine and phenazone and industrial contaminants toluene-2-sulfonamide, tolytriazole, tris(2-butoxyethyl) phosphate and benzotriazole. Exploratory data analysis methods and tools enabled us to discover organic pollutant occurrence patterns within the comprehensive sets of qualitative data collected from various projects between the years 2018-2023. The results may be used as valuable inputs for future water quality monitoring programs.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia.
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Michal Kirchner
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| |
Collapse
|
8
|
van Herwerden D, Nikolopoulos A, Barron LP, O'Brien JW, Pirok BWJ, Thomas KV, Samanipour S. Exploring the chemical subspace of RPLC: A data driven approach. Anal Chim Acta 2024; 1317:342869. [PMID: 39029998 DOI: 10.1016/j.aca.2024.342869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The chemical space is comprised of a vast number of possible structures, of which an unknown portion comprises the human and environmental exposome. Such samples are frequently analyzed using non-targeted analysis via liquid chromatography (LC) coupled to high-resolution mass spectrometry often employing a reversed phase (RP) column. However, prior to analysis, the contents of these samples are unknown and could be comprised of thousands of known and unknown chemical constituents. Moreover, it is unknown which part of the chemical space is sufficiently retained and eluted using RPLC. RESULTS We present a generic framework that uses a data driven approach to predict whether molecules fall 'inside', 'maybe' inside, or 'outside' of the RPLC subspace. Firstly, three retention index random forest (RF) regression models were constructed that showed that molecular fingerprints are able to predict RPLC retention behavior. Secondly, these models were used to set up the dataset for building an RPLC RF classification model. The RPLC classification model was able to correctly predict whether a chemical belonged to the RPLC subspace with an accuracy of 92% for the testing set. Finally, applying this model to the 91 737 small molecules (i.e., ≤1 000 Da) in NORMAN SusDat showed that 19.1% fall 'outside' of the RPLC subspace. SIGNIFICANCE AND NOVELTY The RPLC chemical space model provides a major step towards mapping the chemical space and is able to assess whether chemicals can potentially be measured with an RPLC method (i.e., not every RPLC method) or if a different selectivity should be considered. Moreover, knowing which chemicals are outside of the RPLC subspace can assist in reducing potential candidates for library searching and avoid screening for chemicals that will not be present in RPLC data.
Collapse
Affiliation(s)
- Denice van Herwerden
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands.
| | - Alexandros Nikolopoulos
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Leon P Barron
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, W12 0BZ, United Kingdom
| | - Jake W O'Brien
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Bob W J Pirok
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Saer Samanipour
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, 1098 XH, the Netherlands; UvA Data Science Center, University of Amsterdam, Amsterdam, 1012 WP, the Netherlands.
| |
Collapse
|
9
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
11
|
Samanipour S, Barron LP, van Herwerden D, Praetorius A, Thomas KV, O’Brien JW. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS AU 2024; 4:2412-2425. [PMID: 39055136 PMCID: PMC11267556 DOI: 10.1021/jacsau.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Around two-thirds of chronic human disease can not be explained by genetics alone. The Lancet Commission on Pollution and Health estimates that 16% of global premature deaths are linked to pollution. Additionally, it is now thought that humankind has surpassed the safe planetary operating space for introducing human-made chemicals into the Earth System. Direct and indirect exposure to a myriad of chemicals, known and unknown, poses a significant threat to biodiversity and human health, from vaccine efficacy to the rise of antimicrobial resistance as well as autoimmune diseases and mental health disorders. The exposome chemical space remains largely uncharted due to the sheer number of possible chemical structures, estimated at over 1060 unique forms. Conventional methods have cataloged only a fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the integration of data-driven approaches might be able to bridge the identified gaps.
Collapse
Affiliation(s)
- Saer Samanipour
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- UvA
Data Science Center, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Leon Patrick Barron
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- MRC
Centre for Environment and Health, Environmental Research Group, School
of Public Health, Faculty of Medicine, Imperial
College London, London W12 0BZ, United Kingdom
| | - Denice van Herwerden
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O’Brien
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
12
|
Souihi A, Kruve A. Estimating LoD-s Based on the Ionization Efficiency Values for the Reporting and Harmonization of Amenable Chemical Space in Nontargeted Screening LC/ESI/HRMS. Anal Chem 2024; 96:11263-11272. [PMID: 38959408 PMCID: PMC11256014 DOI: 10.1021/acs.analchem.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Nontargeted LC/ESI/HRMS aims to detect and identify organic compounds present in the environment without prior knowledge; however, in practice no LC/ESI/HRMS method is capable of detecting all chemicals, and the scope depends on the instrumental conditions. Different experimental conditions, instruments, and methods used for sample preparation and nontargeted LC/ESI/HRMS as well as different workflows for data processing may lead to challenges in communicating the results and sharing data between laboratories as well as reduced reproducibility. One of the reasons is that only a fraction of method performance characteristics can be determined for a nontargeted analysis method due to the lack of prior information and analytical standards of the chemicals present in the sample. The limit of detection (LoD) is one of the most important performance characteristics in target analysis and directly describes the detectability of a chemical. Recently, the identification and quantification in nontargeted LC/ESI/HRMS (e.g., via predicting ionization efficiency, risk scores, and retention times) have significantly improved due to employing machine learning. In this work, we hypothesize that the predicted ionization efficiency could be used to estimate LoD and thereby enable evaluating the suitability of the LC/ESI/HRMS nontargeted method for the detection of suspected chemicals even if analytical standards are lacking. For this, 221 representative compounds were selected from the NORMAN SusDat list (S0), and LoD values were determined by using 4 complementary approaches. The LoD values were correlated to ionization efficiency values predicted with previously trained random forest regression. A robust regression was then used to estimate LoD values of unknown features detected in the nontargeted screening of wastewater samples. These estimated LoD values were used for prioritization of the unknown features. Furthermore, we present LoD values for the NORMAN SusDat list with a reversed-phase C18 LC method.
Collapse
Affiliation(s)
- Amina Souihi
- Department
of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
| | - Anneli Kruve
- Department
of Environmental and Materials Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Chen J, Tang T, Li Y, Wang R, Chen X, Song D, Du X, Tao X, Zhou J, Dang Z, Lu G. Non-targeted screening and photolysis transformation of tire-related compounds in roadway runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171622. [PMID: 38467255 DOI: 10.1016/j.scitotenv.2024.171622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Roadway runoff serves as a crucial pathway for transporting contaminants of emerging concern (CECs) from urban environments to receiving water bodies. Tire-related compounds originating from tire wear particles (TWPs) have been frequently detected, posing a potential ecological threat. Yet, the photolysis of tire-related compounds within roadway runoff remains inadequately acknowledged. Addressing this deficit, our study utilized high-resolution mass spectrometry (HRMS) to characterize the chemical profile of roadway runoff across eight strategically selected sites in Guangzhou, China. 219 chemicals were identified or detected within different confidence levels. Among them, 29 tire-related contaminants were validated with reference standards, including hexa(methoxymethyl)melamine (HMMM), 1,3-diphenylguanidine (DPG), dicyclohexylurea (DCU), and N-cyclohexyl-2-benzothiazol-amine (DCMA). HMMM exhibited with the abundance ranging from 2.30 × 104-3.10 × 106, followed by DPG, 1.69 × 104-8.34 × 106. Runoff sample were exposed to irradiation of 500 W mercury lamp for photodegradation experiment. Photolysis results indicated that tire-related compounds with a low photolysis rate, notably DCU, DCMA, and DPG, are more likely to persist within the runoff. The photolytic rates were significantly correlated with the spatial distribution patterns of these contaminants. Our findings underscore TWPs as a significant source of pollution in water bodies, emphasizing the need for enhanced environmental monitoring and assessment strategies.
Collapse
Affiliation(s)
- Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yanxi Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xingcai Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Dehao Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Rahu I, Kull M, Kruve A. Predicting the Activity of Unidentified Chemicals in Complementary Bioassays from the HRMS Data to Pinpoint Potential Endocrine Disruptors. J Chem Inf Model 2024; 64:3093-3104. [PMID: 38523265 PMCID: PMC11040721 DOI: 10.1021/acs.jcim.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The majority of chemicals detected via nontarget liquid chromatography high-resolution mass spectrometry (HRMS) in environmental samples remain unidentified, challenging the capability of existing machine learning models to pinpoint potential endocrine disruptors (EDs). Here, we predict the activity of unidentified chemicals across 12 bioassays related to EDs within the Tox21 10K dataset. Single- and multi-output models, utilizing various machine learning algorithms and molecular fingerprint features as an input, were trained for this purpose. To evaluate the models under near real-world conditions, Monte Carlo sampling was implemented for the first time. This technique enables the use of probabilistic fingerprint features derived from the experimental HRMS data with SIRIUS+CSI:FingerID as an input for models trained on true binary fingerprint features. Depending on the bioassay, the lowest false-positive rate at 90% recall ranged from 0.251 (sr.mmp, mitochondrial membrane potential) to 0.824 (nr.ar, androgen receptor), which is consistent with the trends observed in the models' performances submitted for the Tox21 Data Challenge. These findings underscore the informativeness of fingerprint features that can be compiled from HRMS in predicting the endocrine-disrupting activity. Moreover, an in-depth SHapley Additive exPlanations analysis unveiled the models' ability to pinpoint structural patterns linked to the modes of action of active chemicals. Despite the superior performance of the single-output models compared to that of the multi-output models, the latter's potential cannot be disregarded for similar tasks in the field of in silico toxicology. This study presents a significant advancement in identifying potentially toxic chemicals within complex mixtures without unambiguous identification and effectively reducing the workload for postprocessing by up to 75% in nontarget HRMS.
Collapse
Affiliation(s)
- Ida Rahu
- Institute
of Computer Science, University of Tartu, Narva mnt 18, Tartu 51009, Estonia
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, Stockholm SE-106 91, Sweden
| | - Meelis Kull
- Institute
of Computer Science, University of Tartu, Narva mnt 18, Tartu 51009, Estonia
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, Stockholm SE-106 91, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, Stockholm SE-106 91, Sweden
| |
Collapse
|
17
|
Johnson TA, Abrahamsson DP. Quantification of chemicals in non-targeted analysis without analytical standards - Understanding the mechanism of electrospray ionization and making predictions. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 37:100529. [PMID: 38312491 PMCID: PMC10836048 DOI: 10.1016/j.coesh.2023.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The constant creation and release of new chemicals to the environment is forming an ever-widening gap between available analytical standards and known chemicals. Developing non-targeted analysis (NTA) methods that have the ability to detect a broad spectrum of compounds is critical for research and analysis of emerging contaminants. There is a need to develop methods that make it possible to identify compound structures from their MS and MS/MS information and quantify them without analytical standards. Method refinements that utilize machine learning algorithms and chemical descriptors to estimate the instrument response of particular compounds have made progress in recent years. This narrative review seeks to summarize the current state of the field of non-targeted analysis (NTA) toward quantification of unknowns without the use of analytical standards. Despite the limited accumulation of validation studies on real samples, the ongoing enhancement in data processing and refinement of machine learning tools could lead to more comprehensive chemical coverage of NTA and validated quantitative NTA methods, thus boosting confidence in their usage and enhancing the utility of quantitative NTA.
Collapse
Affiliation(s)
- Trevor A Johnson
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University
| | - Dimitri P Abrahamsson
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University
| |
Collapse
|
18
|
Zweigle J, Bugsel B, Fabregat-Palau J, Zwiener C. PFΔScreen - an open-source tool for automated PFAS feature prioritization in non-target HRMS data. Anal Bioanal Chem 2024; 416:349-362. [PMID: 38030884 PMCID: PMC10761406 DOI: 10.1007/s00216-023-05070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a huge group of anthropogenic chemicals with unique properties that are used in countless products and applications. Due to the high stability of their C-F bonds, PFAS or their transformation products (TPs) are persistent in the environment, leading to ubiquitous detection in various samples worldwide. Since PFAS are industrial chemicals, the availability of authentic PFAS reference standards is limited, making non-target screening (NTS) approaches based on high-resolution mass spectrometry (HRMS) necessary for a more comprehensive characterization. NTS usually is a time-consuming process, since only a small fraction of the detected chemicals can be identified. Therefore, efficient prioritization of relevant HRMS signals is one of the most crucial steps. We developed PFΔScreen, a Python-based open-source tool with a simple graphical user interface (GUI) to perform efficient feature prioritization using several PFAS-specific techniques such as the highly promising MD/C-m/C approach, Kendrick mass defect analysis, diagnostic fragments (MS2), fragment mass differences (MS2), and suspect screening. Feature detection from vendor-independent MS raw data (mzML, data-dependent acquisition) is performed via pyOpenMS (or custom feature lists) with subsequent calculations for prioritization and identification of PFAS in both HPLC- and GC-HRMS data. The PFΔScreen workflow is presented on four PFAS-contaminated agricultural soil samples from south-western Germany. Over 15 classes of PFAS (more than 80 single compounds with several isomers) could be identified, including four novel classes, potentially TPs of the precursors fluorotelomer mercapto alkyl phosphates (FTMAPs). PFΔScreen can be used within the Python environment and is easily automatically installable and executable on Windows. Its source code is freely available on GitHub ( https://github.com/JonZwe/PFAScreen ).
Collapse
Affiliation(s)
- Jonathan Zweigle
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| | - Boris Bugsel
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Joel Fabregat-Palau
- Hydrogeochemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| |
Collapse
|