1
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
2
|
Jamion NA, Lee KE, Mokhtar M, Goh TL. Quantifying carbon pool in ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16291-16308. [PMID: 38315340 DOI: 10.1007/s11356-024-32140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Ex-mining lake-converted constructed wetlands play a significant role in the carbon cycle, offering a great potential to sequester carbon and mitigate climate change and global warming. Investigating the quantity of carbon storage capacity of ex-mining lake-converted constructed wetlands provides information and justification for restoration and conservation efforts. The present study aims to quantify the carbon pool of the ex-mining lake-converted constructed wetlands and characterise the physicochemical properties of the soil and sediment. Pearson's correlation and a one-way ANOVA were performed to compare the different sampling stations at Paya Indah Wetland, Selangor, Malaysia. An analysis of 23 years of ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia, revealed that the estimated total carbon pool in soil and sediment accumulated to 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), which translates to an annual carbon sink capacity of around 67.5 Mg C ha-1 year-1. The characterisation showed that the texture of all soil samples was dominated by silt, whereas sediments exhibited texture heterogeneity. Although the pH of the soil and sediment was both acidic, the bulk density was still optimal for plant growth and did not affect root growth. FT-IR and WDXRF results supported that besides the accumulation and degradation of organic substances, which increase the soil and sediment carbon content, mineral carbonation is a mechanism by which soil and sediment can store carbon. Therefore, this study indicates that the ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia have a significant carbon storage potential.
Collapse
Affiliation(s)
- Nurul' Ain Jamion
- Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Negeri Sembilan, Malaysia
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Khai Ern Lee
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
| | - Mazlin Mokhtar
- Sustainable Development Solutions Network Asia (SDSN Asia), Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Thian Lai Goh
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Huang X, Liu X, Chen L, Wang Y, Chen H. Iron-bound organic carbon dynamics in peatland profiles: The preservation equivalence of deep and surface soil. FUNDAMENTAL RESEARCH 2023; 3:852-860. [PMID: 38932997 PMCID: PMC11197498 DOI: 10.1016/j.fmre.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
More than half of the carbon pools in peatlands are stored in the soil layers below 30 cm, yet little is known about the carbon stabilizing factors at these depths. Although iron oxide minerals are considered to be important for stabilizing organic carbon (OC), their role in the preservation of OC in peatlands, especially in the deep layers, is poorly understood. Here, we collected 1 m soil profiles from six peatlands in Central and West China to quantitatively study the vertical distribution characteristics of iron-bound OC (Fe-bound OC), and the influencing physicochemical properties of the soil. The results showed that the content of reactive iron (FeR) was enriched in the top layer and decreased gradually with depth. While Fe-bound OC was positively correlated with FeR, its concentration did not decrease with depth in the peat profile. There were no obvious trends in the distributions of FeR and Fe-bound OC with water level fluctuations in the peat profile. In addition, the proportion of Fe-bound OC to soil organic carbon in the deep peat (31 to 100 cm) was equivalent to that in the surface peat (0 to 30 cm), indicating that iron oxide mineral provides comparable protection of OC in both layers. According to upper estimates of global peatland carbon storage (612 Pg), it could be predicted that 23.81 ± 11.75 Pg of OC is protected by association with FeR. These results indicated that iron oxide minerals are the effective "rusty sink" of OC sequestration in peatland, and a key factor for its long-term preservation. The results from this study make a valuable contribution to the carbon dynamics knowledgebase for peatlands, and provide a basis for improved predictive simulations.
Collapse
Affiliation(s)
- Xinya Huang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Xinwei Liu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Liangshuai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Chen
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan 624400, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
4
|
Wei J, Zhang F, Ma D, Zhang J, Zheng Y, Dong H, Liang X, Yin G, Han P, Liu M, Hou L. Microbial necromass carbon in estuarine tidal wetlands of China: Influencing factors and environmental implication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162566. [PMID: 36889404 DOI: 10.1016/j.scitotenv.2023.162566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Microbial necromass is an important component of the stable soil organic carbon (SOC) pool. However, little is known about the spatial and seasonal patterns of soil microbial necromass and their influencing environmental factors in estuarine tidal wetlands. In the present study, amino sugars (ASs) as biomarkers of microbial necromass were investigated along the estuarine tidal wetlands of China. Microbial necromass carbon (C) contents were in the range of 1.2-6.7 mg g-1 (3.6 ± 2.2 mg g-1, n = 41) and 0.5-4.4 mg g-1 (2.3 ± 1.5 mg g-1, n = 41), which accounted for 17.3-66.5 % (44.8 % ± 16.8 %) and 8.9-45.0 % (31.0 % ± 13.7 %) of the SOC pool in the dry (March to April) and wet (August to September) seasons, respectively. At all sampling sites, fungal necromass C predominated over bacterial necromass C as a component of microbial necromass C. Compared to bacterial necromass C, fungal necromass C showed a stronger connection with ferrous oxides (Fe2+) and total Fe concentrations. Both fungal and bacterial necromass C contents revealed large spatial heterogeneity and declined in the estuarine tidal wetlands with the increase in latitude. Statistical analyses showed that the increases in salinity and pH in the estuarine tidal wetlands suppressed the accumulation of soil microbial necromass C.
Collapse
Affiliation(s)
- Jine Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Fenfen Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Dongliang Ma
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Li Q, Hu W, Li L, Li Y. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158710. [PMID: 36099954 DOI: 10.1016/j.scitotenv.2022.158710] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides are widely recognized to prevent the degradation of organic matter (OM) in environments, thereby promoting the persistence of organic carbon (OC) in soils. Thus, discerning the association mechanisms of Fe oxides and OC interactions is key to effectively influencing the dynamics and extent of organic C cycling in soils. Previous studies have focused on i) quantifying Fe oxide-bound organic carbon (Fe-OC) in individual environments, ii) investigating the distribution and adsorption capacity of Fe-OC, and iii) assessing the redox cycling and transformation of Fe-OC. Furthermore, the widespread application of high-tech instrumentation and methods has greatly contributed to a better understanding of the mechanism of organic mineral assemblages in the past few decades. However, few literature reviews have comprehensively summarized Fe-OC distributions, associations, and characteristics in soil-plant systems. Here, studies investigating the Fe-OC contents among different environments are reviewed. In addition, the mechanisms and processes related to OM transformation dynamics occurring at mineral-organic interfaces are also described. Recent studies have highlighted that diverse interactions occur between Fe oxides and OC, with organic compounds adhering to Fe oxides due to their huge specific surfaces area and active reaction sites. Moreover, we also review methods for understanding Fe-OC interactions at micro-interfaces. Lastly, developmental prospects for understanding coupled Fe-OC geochemical processes in soil environments at molecular- and nano-scales are outlined. The summary suggests that combined advanced techniques and methods should be used in future research to explore micro-interfaces and in situ descriptions of organic mineral assemblages. This review also suggests that future studies need to consider the functional and spatial complexity that is typical of soil/sediment environments where Fe-OC interactions occur.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China.
| |
Collapse
|
6
|
Wang M, Zhao Z, Li Y, Liang S, Meng Y, Ren T, Zhang X, Zhang Y. Control the greenhouse gas emission via mediating the dissimilatory iron reduction: Fulvic acid inhibit secondary mineralization of ferrihydrite. WATER RESEARCH 2022; 218:118501. [PMID: 35523036 DOI: 10.1016/j.watres.2022.118501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Reducing methane emission is of great importance to control the global greenhouse effect. Dissimilatory iron reduction (DIR) coupling of organic matter decomposition may suppress methane production via reducing primary electron donors available for methanogenesis. However, during DIR, the amorphous iron oxides (e.g., ferrihydrite) are easy to transform into more stable crystalline iron minerals, which slowdowns the rate of DIR. Humic substance (HS) with redox activity has been extensively reported to facilitate DIR via "electron shuttles" mechanism, yet little known about the effect of HS on mediating the mineralization of iron oxides and the subsequent influences on DIR and methanogenesis. To clarify this, ferrihydrite and fulvic acid (FA) (as the model substance of HS) were supplied to anaerobic methanogenesis systems. Results showed that FA could significantly decrease the formation of crystalline iron oxides, enhance DIR rate by 13.72% and suppress methanogenesis by 25.13% compared to ferrihydrite supplemented only. By X-ray absorption spectra analysis, it was found that FA could complex with ferrihydrite via forming a Fe-C/O structure on the second shell of Fe atom. Quantum chemical calculation further confirmed that FA reduced the adsorption energy between Fe(II) and ferrihydrite. Our study suggested that rational use of HS to mediate mineralization pathway of iron oxides could efficiently improve the availability of iron oxides to drive DIR and control the conversion of organics into CH4 in natural or engineered systems.
Collapse
Affiliation(s)
- Mingwei Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Zhao
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Yang Li
- Dalian University of Technology School of Ocean Science and Technology, No.2 Dagong Road, New District of Liaodong Bay. Panjin, Liaoning 124221, China
| | - Song Liang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Yutong Meng
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District. Dalian, Liaoning 116024, China.
| |
Collapse
|
7
|
Xu Z, Yu Y, Xu X, Tsang DCW, Yao C, Fan J, Zhao L, Qiu H, Cao X. Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1724-1735. [PMID: 34978795 DOI: 10.1021/acs.est.1c06642] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron transfer mediated by iron minerals is considered as a critical redox step for the dynamics of pollutants in soil. Herein, we explored the reduction process of Cr(VI) with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon (biochar). Both low- and high-crystallinity ferric oxyhydroxides induced Cr(VI) immobilization mainly via the sorption process, with a limited reduction process. However, the Cr(VI) reduction immobilization was inspired by the copresence of biochar. Low-crystallinity ferric oxyhydroxide had an intense chemical combination with biochar and strong sorption for Cr(VI) via inner-sphere complexation, leading to the indirect electron transfer route for Cr(VI) reduction, that is, the electron first transferred from biochar to iron mineral through C-O-Fe binding and then to Cr(VI) with Fe(III)/Fe(II) transformation on ferric oxyhydroxides. With increasing crystallinity of ferric oxyhydroxides, the direct electron transfer between biochar and Cr(VI) became the main electron transfer avenue for Cr(VI) reduction. The indirect electron transfer was suppressed in the high-crystallinity ferric oxyhydroxides due to less sorption of Cr(VI), limited combination with biochar, and higher iron stability. This study demonstrates that electron transfer mechanisms involving iron minerals change with the mineral crystallization process, which would affect the geochemical process of contaminants with pyrogenic carbon.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong, 999077, China
| | - Yulu Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong, 999077, China
| | - Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| |
Collapse
|
8
|
Bone SE, Cliff J, Weaver K, Takacs CJ, Roycroft S, Fendorf S, Bargar JR. Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1493-1502. [PMID: 31886668 DOI: 10.1021/acs.est.9b04741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.
Collapse
Affiliation(s)
- Sharon E Bone
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - John Cliff
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Karrie Weaver
- Earth System Science Department , Stanford University , Stanford , California 94305 , United States
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Scott Roycroft
- Earth System Science Department , Stanford University , Stanford , California 94305 , United States
| | - Scott Fendorf
- Earth System Science Department , Stanford University , Stanford , California 94305 , United States
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
9
|
Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11212526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The soil minerals determine essential soil properties such as the cation exchange capacity, texture, structure, and their capacity to form bonds with organic matter. Any alteration of these organo-mineral interactions due to the soil moisture variations needs attention. Visible near-infrared imaging spectroscopy is capable of assessing spectral soil constituents that are responsible for the organo-mineral interactions. In this study, we hypothesized that the alterations of the surface soil mineralogy occur due to the moisture variations. For eight weeks, under laboratory conditions, imaging spectroscopy data were collected on a 72 h basis for three Silty Loam soils varying in the organic matter (no, low and high) placed at the drying-field capacity, field capacity and waterlogging-field capacity treatments. Using the Spectral Information Divergence image classifier, the image area occupied by the Mg-clinochlore, goethite, quartz coated 50% by goethite, hematite dimorphous with maghemite was detected and quantified (percentage). Our results showed these minerals behaved differently, depending on the soil type and soil treatment. While for the soils with organic matter, the mineralogical alterations were evident at the field capacity state, for the one with no organic matter, these changes were insignificant. Using imaging spectroscopy data on the Silty Loam soil, we showed that the surface mineralogy changes over time due to the moisture conditions.
Collapse
|
10
|
Chen KY, Tzou YM, Chan YT, Wu JJ, Teah HY, Liu YT. Removal and simultaneous reduction of Cr(VI) by organo-Fe(III) composites produced during coprecipitation and coagulation processes. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:12-20. [PMID: 31100491 DOI: 10.1016/j.jhazmat.2019.04.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Composites formed during the coprecipitation and/or coagulation of ubiquitous dissolved organic matter (DOM) and Fe in natural and waste water systems might be potential scavengers for Cr(VI) in terms of sorption and reduction. Our objective here was to determine sorption and simultaneous reduction of Cr(VI) on organo-Fe(III) composites (OFC) in relation coprecipitated pH and C/(C + Fe) ratios. Results showed the greatest Cr sorption of 51.8 mg g-1 on the OFC sample that was precipitated at pH 3 and contained the C/(C + Fe) molar ratio of 0.71. Wherein the Cr(VI) removal subsequent to the coprecipitation was dominated by the sorption on Fe hydroxides. Although amounts of total sorbed Cr decreased with increasing C/(C + Fe) molar ratio, the reverse trend on Cr(VI) reducibility compensated the Cr(VI) removal capability of OFC samples. With C/(C + Fe) molar ratios ≥ 0.89, the increasing amounts of coprecipitated organic matter that homogeneously distributed with Fe domains on OFC surfaces could trigger a significantly pronounced Cr reduction. Collectively, our results suggested an alternative method for Cr(VI) remediation by manipulating C/Fe ratios in suspensions. After the sorption of most Cr(VI) on Fe hydroxides, increasing C/Fe ratio in systems could further improve the Cr(VI) removal efficiency by the reduction of remaining Cr(VI) to Cr(III).
Collapse
Affiliation(s)
- Kai-Yue Chen
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan
| | - Ya-Ting Chan
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan
| | - Jeng-Jzung Wu
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan
| | - Heng-Yi Teah
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd. Taichung 40227, Taiwan.
| |
Collapse
|
11
|
Wen Y, Liu W, Deng W, He X, Yu G. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:591-600. [PMID: 30245415 DOI: 10.1016/j.scitotenv.2018.09.233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Soil organic carbon (SOC) associated with minerals is considered to be one of the most fundamental long-term SOC storage strategies, but little research has integrated the organo-mineral complexes regulated by long-term fertilization. Here, soil samples under three fertilization treatments (Control, no fertilization; NPK, chemical nitrogen, phosphorus and potassium fertilization; NPKM, NPK plus manure) from four 23-34 years long-term field experiment sites across China were examined. Chemical analyses indicated that vigorous iron (Fe) mobilization could be regulated by long-term fertilization regimes. Meanwhile, Fe K-edge X-ray absorption near-edge fine structure (XANES) demonstrated that compared to NPK treated soils, NPKM treated soils contained significantly higher concentration of poorly crystalline ferrihydrite. Results from both the Fourier transform infrared combined with two-dimensional correlation spectroscopy analyses (FTIR-2DCOS) and C 1 s X-ray photoelectron spectroscopy (XPS) revealed that aliphatic carbohydrate might play an important role in binding exogenous Fe(III) in all tested four soils. In addition, greater amounts of aromatic C (the most resistant soil C fraction) were under long-term treated NPKM than NPK soils. Furthermore, multiple regression analyses showed a significantly positive relationship between poorly crystalline Fe minerals and SOC or aromatic C. Such relationships indicated that aromatic functional groups had been attached to the poorly crystalline Fe minerals, which could also be protected from being transformed to the crystalline counterpart. In conclusion, results from our integrated spectroscopic analyses have evidenced greater improvement of both poorly crystalline Fe minerals and aromatic C in organically fertilized than in chemically fertilized soils.
Collapse
Affiliation(s)
- Yongli Wen
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenbo Deng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China; School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Li B, Zhou S, Wei D, Long J, Peng L, Tie B, Williams PN, Lei M. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO 2: Pot experiment and field application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:546-556. [PMID: 30205344 DOI: 10.1016/j.scitotenv.2018.08.436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Manganese oxides are naturally occurring powerful oxidants and scavengers, which can control the mobility and bioavailability of arsenic (As). However, the effect of synthetic nanostructured manganese oxides on the mobilization and transportation of As at actual paddy soils are poorly understood, especially in soils with low or medium background Mn concentration. In the present study, a novel nano manganese oxide with superior reactivity and surface area has been synthesized. A 90-d soil incubation experiment combined with pot and field rice cultivation trials were designed to evaluate the effectiveness of exogenous α-MnO2 nanorods on the mobilization and transportation of As in soil-rice systems. Our results proved that the addition of α-MnO2 nanorods can effectively control the soil-to-solution partitioning of As under anaerobic conditions. After treatment with different amounts of α-MnO2 nanorods, the content of effective As decreased, offset by an increase in residual As and insoluble binding As (Ca-As and Fe-As). Enhancing the oxidation of As(III) into As(V), the α-MnO2 nanorods increased the adsorption of As onto indigenous iron (hydr)oxides which greatly reduced the soil porewater As content. In addition, pot experiments and field applications revealed that the influx of As into the aerial parts of rice plants (stems, husk and leaves) was strictly prohibited after treatments with different amount of α-MnO2 nanorods; more interestingly, significantly negative correlations have been observed between As and Mn in rice, which indicated that as Mn is increased in soil, As in brown rice decreases. Our results demonstrated that the use of α-MnO2 nanorods in As polluted paddy soil containing low levels of background Mn oxides can be a promising remediation strategy.
Collapse
Affiliation(s)
- Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China
| | - Shuang Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China; Laboratory of Environmental Geology, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo 060-8628, Japan
| | - Dongning Wei
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China
| | - Jiumei Long
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China
| | - Liang Peng
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China
| | - Baiqing Tie
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China
| | - Paul N Williams
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, BT9 5BN, United Kingdom
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, PR China; Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
13
|
Chen KY, Hsu LC, Chan YT, Cho YL, Tsao FY, Tzou YM, Hsieh YC, Liu YT. Phosphate Removal in Relation to Structural Development of Humic Acid-Iron Coprecipitates. Sci Rep 2018; 8:10363. [PMID: 29985471 PMCID: PMC6037709 DOI: 10.1038/s41598-018-28568-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/12/2018] [Indexed: 11/14/2022] Open
Abstract
Precipitation of Fe-hydroxide (FH) critically influences the sequestration of PO4 and organic matter (OM). While coatings of pre-sorbed OM block FH surfaces and decrease the PO4 adsorption capacity, little is known about how OM/Fe coprecipitation influences the PO4 adsorption. We aimed to determine the PO4 adsorption behaviors on humic acid (HA)-Fe coprecipitates in relation to surface and structural characteristics as affected by HA types and C/(C + Fe) ratios using the Fe and P X-ray absorption spectroscopy. With increasing C/(C + Fe) ratios, the indiscernible changes in the proportion of near-surface C for coprecipitates containing HA enriched in polar functional groups implied a relatively homogeneous distribution between C and Fe domains. Wherein PO4 adsorbed on FH dominated the P inventory on coprecipitates, yielding PO4 sorption properties nearly equivalent to that of pure FH. Structural disruptions of FH caused by highly associations with polar functional groups of HA enhanced the C solubilisation. While polar functional groups were limited, coprecipitates consisted of core FH with surface outgrowth of HA. Although surface-attached HA that was vulnerable to solubilisation provided alternatively sites for PO4 via ternary complex formation with Fe bridges, it also blocked FH surfaces, leading to a decrease in PO4 adsorption.
Collapse
Affiliation(s)
- Kai-Yue Chen
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Liang-Ching Hsu
- Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd., Hsinchu, 30043, Taiwan
| | - Ya-Ting Chan
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Yen-Lin Cho
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Fang-Yu Tsao
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX, 77843, USA
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan. .,Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd., Taichung, 40227, Taiwan.
| |
Collapse
|
14
|
Influence of 300 °C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper). J Colloid Interface Sci 2017; 491:111-122. [DOI: 10.1016/j.jcis.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 11/22/2022]
|
15
|
Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J, Gélinas Y. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Sci Rep 2017; 7:366. [PMID: 28336935 PMCID: PMC5428421 DOI: 10.1038/s41598-017-00494-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Interactions between organic matter and mineral matrices are critical to the preservation of soil and sediment organic matter. In addition to clay minerals, Fe(III) oxides particles have recently been shown to be responsible for the protection and burial of a large fraction of sedimentary organic carbon (OC). Through a combination of synchrotron X-ray techniques and high-resolution images of intact sediment particles, we assessed the mechanism of interaction between OC and iron, as well as the composition of organic matter co-localized with ferric iron. We present scanning transmission x-ray microscopy images at the Fe L3 and C K1 edges showing that the organic matter co-localized with Fe(III) consists primarily of C=C, C=O and C-OH functional groups. Coupling the co-localization results to iron K-edge X-ray absorption spectroscopy fitting results allowed to quantify the relative contribution of OC-complexed Fe to the total sediment iron and reactive iron pools, showing that 25–62% of total reactive iron is directly associated to OC through inner-sphere complexation in coastal sediments, as much as four times more than in low OC deep sea sediments. Direct inner-sphere complexation between OC and iron oxides (Fe-O-C) is responsible for transferring a large quantity of reduced OC to the sedimentary sink, which could otherwise be oxidized back to CO2.
Collapse
Affiliation(s)
- Andrew Barber
- GEOTOP and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke West, Montréal, Quebec, H4B 1R6, Canada
| | - Jay Brandes
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA, 31411, USA
| | - Alessandra Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, New York, 10021, USA
| | - Karine Lalonde
- GEOTOP and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke West, Montréal, Quebec, H4B 1R6, Canada
| | - Kathryn Balind
- GEOTOP and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke West, Montréal, Quebec, H4B 1R6, Canada
| | - Sue Wirick
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jian Wang
- Canadian Light Source Inc, Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Yves Gélinas
- GEOTOP and the Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke West, Montréal, Quebec, H4B 1R6, Canada.
| |
Collapse
|