1
|
Zheng X, Zhang Y, Ye Z, Pan Z. Biodegradation mechanisms of p-nitrophenol and microflora dynamics in fluidized bed bioreactors. Front Microbiol 2025; 16:1602768. [PMID: 40438209 PMCID: PMC12116535 DOI: 10.3389/fmicb.2025.1602768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
p-Nitrophenol (PNP), a member of the nitroaromatic family, is widely used in the production of pesticides, dyes, pharmaceuticals, and petroleum products. As a toxic compound, PNP is highly resistance to degradation, posing a significant challenge in agricultural and industrial wastewater treatment. Conventional PNP wastewater treatment methods require complex operational conditions that incur high chemical and equipment costs, and potential secondary pollution. Therefore, this study developed an anoxic fluidized bed bioreactor (AFBBR) and an anaerobic-aerobic fluidized bed bioreactor (AAFBBR) to evaluate the biodegradation performance and underlying mechanisms of PNP over a period of 90 days. The effect of glucose to PNP co-substrate ratios and C/N ratios have been systemically investigated. At an influent PNP concentration of 100 mg/L, a glucose to PNP co-substrate ratio of 6:1, and a C/N ratio of 10:1, the degradation of PNP reached 88.8 ± 1.0% in the AFBBR at an HRT of 8.5 h and 95.3 ± 0.3% in the AAFBBR at an HRT of 12.7 h. Meanwhile, the mechanism of PNP biodegradation and microbial community were also studied. Results of the LC-MS/MS revealed the intermediate products and confirmed that PNP biodegradation in both reactors followed the hydroquinone as well as the hydroxyquinol pathways, with the hydroquinone pathway being dominant. Results of the 16S rRNA high throughput sequencing further revealed a predominant presence of Proteobacteria (34% in the AFBBR, 42 and 65% in the anaerobic as well as aerobic zones of the AAFBBR, respectively), Firmicutes (35, 40, and 4%), Saccharibacteria (14, 9, and 4%) and Bacteroidetes (5, 4, and 19%). In the AFBBR and the AAFBBR, the key bacterial genera responsible for PNP degradation include Lactococcus, Escherichia-Shigella, Saccharibacteria_norank, Acinetobacter, Comamonas, Zoogloea, and Pseudomonas. Notably, the hydroxyquinol pathway was observed only in the AFBBR and the aerobic zone of the AAFBBR, where Pseudomonas were identified as key PNP degrading bacteria. These phenomena can be attributed to the varying dissolved oxygen concentrations across different zones in the two reactors, offering valuable insights into optimizing PNP removal in pilot-scale bioreactors. This study highlights an efficient, sustainable and cost-effective approach for PNP removal from agricultural and industrial wastewater.
Collapse
Affiliation(s)
- Xin Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
- Wenzhou Center for Integrated Material and Ecological Management, Wenzhou, China
| | - Zhiheng Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Ma C, Zhang H, Liu Z, Meng X, Chen S, Zhang J, Li Y, Huang X. Treatment options of nitrogen heterocyclic compounds in industrial wastewater: From fundamental technologies to energy valorization applications and future process design strategies. WATER RESEARCH 2025; 281:123575. [PMID: 40179728 DOI: 10.1016/j.watres.2025.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Nitrogen heterocyclic compounds (NHCs) widely exist in industrial wastewater and presented significant environmental and health risks due to their toxicity and persistence. This review addressed the challenges in treating NHCs in industrial wastewater, focusing on developing sustainable and efficient treatment processes. While various technologies, including adsorption, advanced oxidation/reduction processes (AOPs/ARPs), and microbial treatments, have been studied at the experimental stage of treating synthetic wastewater, scale-up for industrial applications is imperative. After analyzing the characteristics of NHCs and evaluating different treatment methods with the aid of efficiency and cost-benefit analysis, efficient detoxification while maximizing energy recovery constitutes a critical requirement in treating NHC-containing wastewater. Hence, we proposed a comprehensive strategy combining hydrolysis-acidification pretreatment enhanced by electro-assisted micro-aeration with methanogenic anaerobic digestion as core treatment units. The process design for NHC-containing wastewater treatment should consider the dynamic balance between removal efficiency, energy consumption, and ammonia recovery, incorporating environmental and economic impacts through life cycle assessment and technical-economic analysis. The potential of machine learning in optimizing operational parameters, predicting effluent quality, and supporting process design decisions is promising. To develop interpretable and practical solutions, the integration of data-driven approaches with mechanistic understanding and prior knowledge is indispensable. This review provided novel insights into sustainable NHC treatment strategies in the context of energy valorization and artificial intelligence advancement, offering guidance for future research and industrial applications.
Collapse
Affiliation(s)
- Chao Ma
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, PR China
| | - Huiqin Zhang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xinran Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Sijia Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jingsong Zhang
- CITIC Envirotech Pte. (Guangzhou) Ltd., Guangzhou 511455, PR China
| | - Yeqiang Li
- CITIC Envirotech Pte. (Guangzhou) Ltd., Guangzhou 511455, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Dong X, Wang F, Yu S, Lan J, Fan X, Zhou X, Wei W, Li G, Cheng L, Bi X, Hu R, Chen D. Efficient PPCPs removal from wastewaters via a novel A/O-MBBR system: Transition towards circular economy in the water sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122440. [PMID: 39299103 DOI: 10.1016/j.jenvman.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
As industrial and agricultural production depends on water supply, it is crucial for economic development. The available freshwater reserves on Earth are insufficient to meet humanity's growing demands. This study establishes a three-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system. The study evaluated the wastewater purification capacity of the system in summer and winter, examined the system's removal efficiency of 10 pharmaceuticals and personal care products (PPCPs) from the water, and analyzed the composition of microbial communities. Results indicate that the system effectively removes pollutants and PPCPs, with the aerobic tanks in the first two A/O stages playing a significant role in PPCP removal. The system is effective in removing four kinds of pollutants: AMP, IBU, CLR, and CAF, and the removal efficiency of CAF is up to 99.2%. Seasonal variations significantly affect the removal of PPCPs and bacterial growth, leading to changes in bacterial species. At the genus level, 41 bacterial types presented different effects in response to temperature changes, with Trichoderma and c_OM190_unclassified being the most affected. This study provides essential theoretical support for reducing pollutant levels and improving water recycling and economic efficiency.
Collapse
Affiliation(s)
- Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Fangshu Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Shixin Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Jie Lan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xing Fan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Wei Wei
- Wushan County Ecological Environmental Monitoring Station, Chongqing, 404700, China
| | - Guo Li
- Wushan County Ecological Environmental Monitoring Station, Chongqing, 404700, China
| | - Lihua Cheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China
| | - Ruibo Hu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266525, China.
| |
Collapse
|
4
|
An X, Li N, Zhang L, Xu Z, Zhang S, Zhang Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133158. [PMID: 38061124 DOI: 10.1016/j.jhazmat.2023.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
As the primary source of COD in industrial wastewater, quinoline has aroused increasing attention because of its potential teratogenic, carcinogenic, and mutagenic effects in the environment. The activated sludge isolate quinoline-degrading microbial consortium (QDMC) efficiently metabolizes quinoline. However, the molecular underpinnings of the degradation mechanism of quinoline by QDMC have not been elucidated. High-throughput sequencing revealed that the dominant genera included Diaphorobacter, Bacteroidia, Moheibacter and Comamonas. Furthermore, a positive strong correlation was observed between the key bacterial communities (Diaphorobact and Bacteroidia) and quinoline degradation. According to metatranscriptomics, genes associated with quorum sensing, ABC transporters, component systems, carbohydrate, aromatic compound degradation, energy metabolism and amino metabolism showed high expression, thus improving adaptability of microbial community to quinoline stress. In addition, the mechanism of QDMC in adapting and resisting to extreme environmental conditions in line with the corresponding internal functional properties and promoting biogegradation efficiency was illustrated. Based on the identified products, QDMC effectively mineralized quinoline into low-toxicity metabolites through three major metabolic pathways, including hydroxyquinoline, 1,2,3,4-H-quinoline, 5,6,7,8-tetrahydroquinoline and 1-oxoquinoline pathways. Finally, toxicological, genotoxicity and phytotoxicity studies supported the detoxification of quinoline by the QDMC. This study provided a promising approach for the stable, environmental-friendly and efficient bioremediation applications for quinoline-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ningjian Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lizhen Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Tan C, Chen S, Zhang H, Ma Y, Qu Z, Yan N, Zhang Y, Rittmann BE. The roles of Rhodococcus ruber in denitrification with quinoline as the electron donor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166128. [PMID: 37562631 DOI: 10.1016/j.scitotenv.2023.166128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Denitrification is an important step in domestic wastewater treatment, but providing bioavailable electron donors is an expense. However, some industrial wastewaters contain organic compounds that could be a no-cost or low-cost electron donor, because they otherwise must be treated separately. In this work, quinoline was used as an electron donor to drive denitrification through bioaugmentation with Rhodococcus ruber, which is able to biodegrade quinoline. When quinoline-acclimated biomass (QAB) was used for denitrification, addition of R. ruber accelerated biodegradation of quinoline and its first mono-oxygenation intermediate (2-hydroxyquinoline). Although R. ruber was not directly active in denitrification, its biodegradation of quinoline and 2-hydroxyquinoline supplied products that other bacteria used to respire nitrate. In contrast, glucose-acclimated biomass (GAB) could not achieve effective denitrification with quinoline, whether or not R. ruber was added. Analysis by high-throughout sequencing showed that genera Ignavibacterium, Ferruginibacter, Limnobacter, and Denitrosoma were important during quinoline biodegradation with denitrification by QAB. In summary, bioaugmented R. ruber and endogenous bacterial strains had complementary roles when biodegrading quinoline to enhance denitrification. The significance of this study is to enable the use of industrial wastewater to provide electron donor to drive denitrification.
Collapse
Affiliation(s)
- Chong Tan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Yue Ma
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Zhengye Qu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
6
|
Chawley P, Jagadevan S. Biodegradation of quinoline by Nitrosomonas mobilis Ms1 through nitrification: A mechanistic study. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Zhu G, Zhang H, Yuan R, Huang M, Liu F, Li M, Zhang Y, Rittmann BE. How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. WATER RESEARCH 2023; 229:119455. [PMID: 36516493 DOI: 10.1016/j.watres.2022.119455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Because many wastewater-treatment plants receive effluents containing inhibitory compounds from chemical or pharmaceutical facilities, the input of these inhibitors can lead to failure of nitrification and total-N removal. Nitrification de facto is the more important process, as it is the first step of nitrogen removal and involves slow-growing autotrophic bacteria. In this work, quinoline, the target compound severely inhibited nitrification: The biomass-normalized nitrification rate decreased four-fold in the presence of quinoline. The inhibition was relieved by bioaugmenting Comamonas testosteroni or Rhodococcus ruber to the nitrifying biomass. Because the inhibition was derived from a quinoline intermediate, 2‑hydroxyl quinoline (2HQ), not quinoline itself, nitrification was accelerated only after 2HQ disappeared due to the addition of R. ruber or C. testosteroni. R. ruber was superior to C. testosteroni for 2HQ biodegradation and accelerating nitrification. Besides accelerating nitrification, adding C. testosteroni or R. ruber led to the enrichment of Nitrospira, which appeared to be carrying out commamox metabolism, since ammonium-oxidizing bacteria were not enriched.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Ru Yuan
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Meng Huang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Fei Liu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Mo Li
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, United States
| |
Collapse
|
8
|
Microbial degradation of quinoline by immobilized bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Luo J, Ding C, Gan Y, Guo Y, Cui Y, Sun C. A dual-MOFs (Fe and Co)/g-C3N4 heterostructure composite for high-efficiently activating peroxymonosulfate in degradation of sertraline in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122701] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Bhatt P, Bhandari G, Bhatt K, Simsek H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. CHEMOSPHERE 2022; 306:135576. [PMID: 35803375 DOI: 10.1016/j.chemosphere.2022.135576] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The natural and anthropogenic sources of water bodies are contaminated with diverse categories of pollutants such as antibiotics, pharmaceuticals, pesticides, heavy metals, organic compounds, and other industrial chemicals. Depending on the type and the origin of the pollutants, the degree of contamination can be categorized into lower to higher concentrations. Therefore, the removal of hazardous chemicals from the environment is an important aspect. The physical, chemical and biological approaches have been developed and implemented to treat wastewaters. The microbial and algal treatment methods have emerged as a growing field due to their eco-friendly and sustainable approach. Particularly, microalgae emerged as a potential organism for the treatment of contaminated water bodies. The microalgae of the genera Chlorella, Anabaena, Ankistrodesmus, Aphanizomenon, Arthrospira, Botryococcus, Chlamydomonas, Chlorogloeopsis, Dunaliella, Haematococcus, Isochrysis, Nannochloropsis, Porphyridium, Synechococcus, Scenedesmus, and Spirulina reported for the wastewater treatment and biomass production. Microalgae have the potential for adsorption, bioaccumulation, and biodegradation. The microalgal strains can mitigate the hazardous chemicals via their diverse cellular mechanisms. Applications of the microalgae strains were found to be effective for sustainable developments and circular economy due to the production of biomass with the utilization of pollutants.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
11
|
Hao P, Wu S, Zhang X, Gou C, Wang Y, Wang L, Zhu Y, Basang W, Gao Y. Characterization and Degradation Pathways of Microbacterium resistens MZT7, A Novel 17 β-Estradiol-Degrading Bacterium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711097. [PMID: 36078812 PMCID: PMC9518027 DOI: 10.3390/ijerph191711097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 05/12/2023]
Abstract
Due to the ecotoxicity of 17β-estradiol (E2), residual E2 in the environment poses potential risks to human and animal health and ecosystems. Biodegradation is considered one of the most effective strategies to remove E2 from the environment. Here, a novel, efficient E2-degrading bacterial strain Microbacterium resistens MZT7 was isolated from activated sludge and characterized. The genome of strain MZT7 contained 4,011,347 bp nucleotides with 71.26% G + C content and 3785 coding genes. There was 86.7% transformation efficiency of 10 mg/L E2 by strain MZT7 after incubation for 5 d at optimal temperature (30 °C) and pH (7.0). This strain was highly tolerant to ranges in pH (5.0-11.0), temperature (20-40 °C), and salinity (2-8%). Adding sources of carbon (glucose, maltose, sucrose, or lactose) or nitrogen sources (urea, peptone, or beef extract) promoted the degradation of E2 by strain MZT7. However, when yeast extract was added as a nitrogen source, the degradation efficiency of E2 was inhibited. Metabolites were analyzed by LC-MS and three metabolic pathways of E2 degradation were proposed. Further, the intermediates dehydroepiandrosterone and androsta-1,4-diene-3,17-dione were detected, as well as identification of kshB and fadD3 genes by KEGG, confirming one E2 degradation pathway. This study provided some insights into E2 biodegradation.
Collapse
Affiliation(s)
- Peng Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Sicheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: ; Tel.: +86-13159752912
| |
Collapse
|
12
|
Li W, Xiao R, Xu J, Lin H, Yang K, Li W, He K, Tang L, Chen J, Wu Y, Lv S. Interface engineering strategy of a Ti 4O 7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane. WATER RESEARCH 2022; 216:118287. [PMID: 35334338 DOI: 10.1016/j.watres.2022.118287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Although Ti4O7 ceramic membrane has been recognized as one of the most promising anode materials for electrochemical advanced oxidation process (EAOP), it suffers from relatively low hydroxyl radical (•OH) production rate and high charge-transfer resistance that restricted its oxidation performance of organic pollutants. Herein, we reported an effective interface engineering strategy to develop a Ti4O7 reactive electrochemical membrane (REM) doped by graphene oxide nanoparticles (GONs), GONs@Ti4O7 REM, via strong GONs-O-Ti bonds. Results showed that 1% (wt%) GON doping on Ti4O7 REM significantly reduced the charge-transfer resistance from 73.87 to 8.42 Ω compared with the pristine Ti4O7 REM, and yielded •OH at 2.5-2.8 times higher rate. The 1,4-dioxane (1,4-D) oxidation rate in batch experiments by 1%GONs@Ti4O7 REM was 1.49×10-2 min-1, 2 times higher than that of the pristine Ti4O7 REM (7.51×10-3 min-1) and similar to that of BDD (1.79×10-2 min-1). The 1%GONs@Ti4O7 REM exhibited high stability after a polarization test of 90 h at 80 mA/cm2, and within 15 consecutive cycles, its oxidation performance was stable (95.1-99.2%) with about 1% of GONs lost on the REM. In addition, REM process can efficiently degrade refractory organic matters in the groundwater and landfill leachate, the total organic carbon was removed by 54.5% with a single-pass REM. A normalized electric energy consumption per log removal of 1,4-D (EE/O) was observed at only 0.2-0.6 kWh/m3. Our results suggested that chemical-bonded interface engineering strategy using GONs can facilitate the EAOP performance of Ti4O7 ceramic membrane with outstanding reactivity and stability.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Runlin Xiao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kuanchang He
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiping Wu
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
13
|
Jiang Y, Zhang F, Xu S, Yang P, Wang X, Zhang X, Hong Q, Qiu J, Chu C, He J. Biodegradation of Quinoline by a Newly Isolated Salt-Tolerating Bacterium Rhodococcus gordoniae Strain JH145. Microorganisms 2022; 10:797. [PMID: 35456847 PMCID: PMC9029321 DOI: 10.3390/microorganisms10040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Quinoline is a typical nitrogen-heterocyclic compound with high toxicity and carcinogenicity which exists ubiquitously in industrial wastewater. In this study, a new quinoline-degrading bacterial strain Rhodococcus sp. JH145 was isolated from oil-contaminated soil. Strain JH145 could grow with quinoline as the sole carbon source. The optimum growth temperature, pH, and salt concentration were 30 °C, 8.0, and 1%, respectively. 100 mg/L quinoline could be completely removed within 28 h. Particularly, strain JH145 showed excellent quinoline biodegradation ability under a high-salt concentration of 7.5%. Two different quinoline degradation pathways, a typical 8-hydroxycoumarin pathway, and a unique anthranilate pathway were proposed based on the intermediates identified by liquid chromatography-time of flight mass spectrometry. Our present results provided new candidates for industrial application in quinoline-contaminated wastewater treatment even under high-salt conditions.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Fuyin Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Pan Yang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Xiao Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Xuan Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Cuiwei Chu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| |
Collapse
|
14
|
Lu Z, Xu Y, Peng L, Liang C, Liu Y, Ni BJ. A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin. CHEMOSPHERE 2022; 293:133523. [PMID: 34995618 DOI: 10.1016/j.chemosphere.2022.133523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The coupling of photocatalytic and algal processes has been used for the removal of widespread antibiotics. The removal capacities of the individual and the combined system against enrofloxacin were tested and compared in this work. Due to the low tolerance of the algae to enrofloxacin, the target compound was barely degraded during the individual algal treatment. In the individual photocatalytic process, the mineralization efficiency (defined as the ratio between the produced carbon dioxide and the initial) reached ∼57% with the remaining formed as transformation products. In contrast, a two-stage treatment incorporating photocatalytic and algal processes removed enrofloxacin completely and increased the mineralization efficiency to ∼64% or more. The addition of the citric acid as external co-substrate further elevated the mineralization efficiency with a factor of 1.25 compared to that of the individual photocatalysis. Different degradation products in both individual and integrated processes were identified and compared. The degradation pathways were found to involve the attack of the piperazine moiety and quinolone core. The results indicated the potential application of the combined photocatalytic-algal treatment in removal of veterinary antibiotics and improved our understanding of the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Zhikun Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
15
|
Zhang Q, Liu Y, Zhang C, Zhou D. Easily biodegradable substrates are crucial for enhancing antibiotic risk reduction: Low-carbon discharging policies need to be more specified. WATER RESEARCH 2022; 210:117972. [PMID: 34952454 DOI: 10.1016/j.watres.2021.117972] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Governments have formulated stricter wastewater treatment plant (WWTP) discharge standards to address water pollution; however, with the cost of aggravating the refractory of the discharges. These policies are not in line with the classic co-metabolism theory; thus, we evaluated the effects of an easily biodegradable substrate on the removal efficiency of antibiotics and antibiotic resistance genes (ARGs) in the receiving water. In this study, reactor with 8 d of hydraulic retention time (HRT) was constructed to simulate a receiving river, and several antibiotics (0.30 mg/L each) were continuously discharged to the reactor (tetracycline, ciprofloxacin, amoxicillin, chloramphenicol, and sulfamethoxazole). Sodium acetate (NaAc) was used as a representative easily biodegradable substrate, and treatment protocols with and without a co-substrate were compared. The attenuation of the antibiotics in the simulated river and the production and dissemination of ARGs were analyzed. The results showed that 50 mg/L NaAc activated non-specific enzymes (a log2-fold change of 3.1-8.8 compared with 0 mg/L NaAc). The removal rate of the antibiotics was increased by 4-32%, and the toxicity of the downstream water was reduced by 35%. The upregulation of antioxidant enzymes caused the intracellular reactive oxygen species (ROSs) decreased by up to 47%, inhibiting horizontal gene transfer and reducing mobile genetic element-mediated ARGs (mARGs) by 18-56%. Furthermore, NaAc also increased the alpha diversity of the microbial community by 5-15% (Shannon-Wiener Index) and reduced the abundance of human bacterial pathogens by 22-36%. In summary, easily biodegradable substrates in the receiving water are crucial for reducing antibiotic risk.
Collapse
Affiliation(s)
- Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
16
|
Yu Y, Wang S, Teng J, Zupanic A, Guo S, Tang X, Liang H. Photocatalytic Material–Microbe Hybrids: Applications in Environmental Remediations. Front Bioeng Biotechnol 2022; 9:815181. [PMID: 35174148 PMCID: PMC8841475 DOI: 10.3389/fbioe.2021.815181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Environmental pollution has become one of the most urgent global issues that we have to face now. Searching new technologies to solve environmental issues is of great significance. By intimately coupling photocatalytic materials with microbes, the emerging photocatalytic material–microbe hybrid (PMH) system takes advantages of the high-efficiency, broad-spectrum light capture capability of the photocatalytic material and the selectivity of microbial enzymatic catalysis to efficiently convert solar energy into chemical energy. The PMH system is originally applied for the solar-to-chemical production. Interestingly, recent studies demonstrate that this system also has great potential in treating environmental contaminations. The photogenerated electrons produced by the PMH system can reductively decompose organic pollutants with oxidative nature (e.g., refractory azo dyes) under anaerobic circumstances. Moreover, based on the redox reactions occurring on the surface of photocatalysts and the enzymatic reactions in microbes, the PMH system can convert the valences of multiple heavy metal ions into less toxic or even nontoxic status simultaneously. In this review, we introduce the recent advances of using the PMH system in treating environmental pollutions and compare this system with another similar system, the traditional intimately coupled photocatalysis and biodegradation (ICPB) system. Finally, the current challenges and future directions in this field are discussed as well.
Collapse
Affiliation(s)
- Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shanshan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinrui Teng
- 2011 College, Nanjing Tech University, Nanjing, China
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
- *Correspondence: Xiaobin Tang, ; Heng Liang,
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
- *Correspondence: Xiaobin Tang, ; Heng Liang,
| |
Collapse
|
17
|
Zhang C, Zhang Q, Dong S, Zhou D. Could co-substrate sodium acetate simultaneously promote Chlorella to degrade amoxicillin and produce bioresources? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126147. [PMID: 34229410 DOI: 10.1016/j.jhazmat.2021.126147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Integrating microalgae culture and wastewater purification is a promising technology for sustainable bioresource production. However, the challenge is that toxins in wastewater usually limit risk elimination and cause poor bioresource production. Easy-to-biodegrade substrates could alleviate the resistant stress on a bacterial community but we know little about how they function with microalgae. In this study, we tested if Easy-to-biodegrade substrates could simultaneously promote Chlorella to degrade antibiotic amoxicillin (AMO) and produce bioresources. Sodium acetate (NaAC) was used as the representative co-substrate. The results showed NaAC could enhance AMO removal by 76%. The β-lactam structure was destroyed and detoxified to small molecules, due to the up-regulation of hydrolase, oxidoreductase, reductase, and transferase. Chlorella biomass production increased by 36%. The genes encoding the glutathione metabolism and peroxisome pathways were significantly up-regulated to alleviate the antibiotic stress, and the DNA replication pathway was activated. As a result, the production of lipid, carbohydrate, and protein was enhanced by 61%, 122%, and 34%, respectively. This study provides new insights for using microalgae to recover bioresources from toxic wastewater and reveals the critical underlying mechanisms.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
18
|
Huang L, Yu Q, Liu W, Wang J, Guo W, Jia E, Zeng Q, Qin R, Zheng J, Hofmockel KS, Dong H, Jiang H, Zhu Z. Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7123-7134. [PMID: 33901397 DOI: 10.1021/acs.est.0c08407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Turnover of soil organic carbon (SOC) is strongly affected by a balance between mineral protection and microbial degradation. However, the mechanisms controlling the heterogeneous and preferential adsorption of different types of SOC remain elusive. In this work, the heterogeneous adsorption of humic substances (HSs) and microbial carbon (MC) on a clay mineral (nontronite NAu-2) during microbial-mediated Fe redox cycling was determined using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results revealed that HSs pre-adsorbed on NAu-2 would partially inhibit structural modification of NAu-2 by microbial Fe(III) reduction, thus retarding the subsequent adsorption of MC. In contrast, NAu-2 without precoated HSs adsorbed a significant amount of MC from microbial polysaccharides as a result of Fe(III) reduction. This was attributed to the deposition of a thin Al-rich layer on the clay surface, which provided active sites for MC adsorption. This study provides direct and detailed molecular evidence for the first time to explain the preferential adsorption of MC over HSs on the surface of clay minerals in iron redox processes, which could be critical for the preservation of MC in soil. The results also indicate that ToF-SIMS is a unique tool for understanding complex organic-mineral-microbe interactions.
Collapse
Affiliation(s)
- Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qun Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jungang Wang
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wenxiao Guo
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Endong Jia
- Institute of Research, China National Software & Service Co., Ltd., Beijing 102200, China
| | - Qiang Zeng
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ruijun Qin
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331-7306, United States
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, Iowa 50010, United States
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zihua Zhu
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Zhu G, Xing F, Tao J, Chen S, Li K, Cao L, Yan N, Zhang Y, Rittmann BE. Synergy of strains that accelerate biodegradation of pyridine and quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112119. [PMID: 33581454 DOI: 10.1016/j.jenvman.2021.112119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Three bacterial strains were isolated from activated sludge acclimated to biodegrade pyridine and quinoline simultaneously. The strains were identified as Bacillus tropicus, Bacillus aquimaris, and Rhodococcus ruber. When the isolated bacteria were used for pyridine and quinoline biodegradation in separate or combined modes, R. ruber had much faster kinetics, and combining R. ruber with one or both of the Bacillus strains increased further the biodegradation kinetics. For example, the time needed for complete biodegradation of 1 mM quinoline and pyridine decreased to 20 h and 6 h, respectively, with the three strains combined, compared to 26 h and 7 h with R. ruber alone. Whereas quinoline was completely mineralized by all three strains, 10-14% of the pyridine persisted as a dead-end product, 2-hydroxypyridine (2HP). The acclimated sludge from which the three bacterial species were isolated was able to transform 2HP, and adding the bacterial strains (especially R. ruber) to the acclimated sludge accelerated the rate of 2HP removal and mineralization through a form of synergy.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Feifei Xing
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jinzhao Tao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ke Li
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lifeng Cao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; School of Environment, Tsinghua University, 100084, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, USA
| |
Collapse
|
20
|
Zhang L, Cherney EC, Zhu X, Lin TA, Gullo-Brown J, Maley D, Johnston-Allegretto K, Kopcho L, Fereshteh M, Huang C, Li X, Traeger SC, Dhar G, Anandam A, Mahankali S, Padmanabhan S, Rajanna P, Murali V, Mariappan T, Borzilleri R, Vite G, Hunt JT, Balog A. Discovery of Imidazopyridines as Potent Inhibitors of Indoleamine 2,3-Dioxygenase 1 for Cancer Immunotherapy. ACS Med Chem Lett 2021; 12:494-501. [PMID: 33738077 DOI: 10.1021/acsmedchemlett.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.
Collapse
Affiliation(s)
- Liping Zhang
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Emily C. Cherney
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Tai-an Lin
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | | | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Gopal Dhar
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Aravind Anandam
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Sandeep Mahankali
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Shweta Padmanabhan
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Prabhakar Rajanna
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Venkata Murali
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Thanga Mariappan
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
21
|
Zhu G, Zhang Y, Chen S, Wang L, Zhang Z, Rittmann BE. How bioaugmentation with Comamonas testosteroni accelerates pyridine mono-oxygenation and mineralization. ENVIRONMENTAL RESEARCH 2021; 193:110553. [PMID: 33271145 DOI: 10.1016/j.envres.2020.110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Pyridine is a common heterocycle found in industrial wastewaters. Its biodegradation begins with a mono-oxygenation reaction, and bioaugmentation with bacteria able to carry out this mono-oxygenation is one strategy to improve pyridine removal and mineralization. Although bioaugmentation has been used to enhance the biodegradation of recalcitrant organic compounds, the specific role played by the bioaugmented bacteria usually has not been addressed. We acclimated activated-sludge biomass for pyridine biodegradation and then isolated a strain -- Comamonas testosteroni -- based on its ability to biodegrade and grow on pyridine alone. Pyridine was removed faster by C. testosteroni, compared to pyridine-acclimated biomass, but pyridine mineralization was slower. Pyridine biodegradation and mineralization rates were accelerated when C. testosteroni was bioaugmented into the acclimated biomass, which increased the amount of C. testosteroni, but otherwise had minimal effects on the microbial community. The key role of C. testosteroni was to accelerate the first step of pyridine biodegradation, mono-oxygenation to 2-hydroxylpyridine (2HP), and the acclimated biomass was better able to complete downstream reactions leading to mineralization. Thus, bioaugmentation increased the rates of pyridine mono-oxygenation and subsequent mineralization through the synergistic roles of C. testosteroni and the main community in the acclimated biomass.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Zhichun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
22
|
Okhrimenko D, Lakshtanov L, Olsson M, Ceccato M, Dalby K, Rodriguez-Blanco J, Andersson M, Stipp S. Adsorption of nitrogen heterocyclic compounds (NHC) on soil minerals: Quinoline as an example. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Luo Y, Yue X, Wei P, Zhou A, Kong X, Alimzhanova S. A state-of-the-art review of quinoline degradation and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141136. [PMID: 32777494 DOI: 10.1016/j.scitotenv.2020.141136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Quinoline is a critical raw material for the dye, metallurgy, pharmaceutical, rubber, and agrochemical industries, and its use poses a serious threat to human health and the ecological environment. Quinoline has carcinogenic, teratogenic and mutagenic effects on the human body through food accumulation. However, due to the steric hindrance of its bicyclic fused structure and its long photooxidation half-life, quinoline is too difficult to decompose naturally. To date, numerous technologies have been used to degrade quinoline, whereas only a few have been reviewed. Therefore, this paper is focused on offering a comprehensive overview of the state of quinoline degradation in an effort to improve its degradation efficiency and fully utilize the carbon and nitrogen within quinoline without causing any damage to the environment. Accordingly, the strains, research progress and mechanisms of various methods for degrading quinoline are explored and elucidated in detail, especially quinoline biodegradation and the combination of these technologies for efficient removal. The state-of-the-art processes and new findings of our team on the biofortification of quinoline degradation are also presented. Finally, research bottlenecks and gaps for future research were identified along with the prospects and resource utilization of quinoline. These discussions facilitate the realization of the zero discharge of quinoline.
Collapse
Affiliation(s)
- Yanhong Luo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; North University of China, Shouzhou 036024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Peng Wei
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shyryn Alimzhanova
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
24
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
25
|
Yu M, Wang J, Tang L, Feng C, Liu H, Zhang H, Peng B, Chen Z, Xie Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. WATER RESEARCH 2020; 175:115673. [PMID: 32171097 DOI: 10.1016/j.watres.2020.115673] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Due to the increase of emerging contaminants in water, how to use new treatment technology to make up for the defects of traditional wastewater treatment method has become one of the research hotspots at present. Intimate coupling of photocatalysis and biodegradation (ICPB) as a novel wastewater treatment method, which combines the advantages of biological treatment and photocatalytic reactions, has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology. The system mainly consists of photocatalytic materials, porous carriers and biofilm. The key principle of ICPB is to transform bio-recalcitrant pollutants into biodegradable products by photocatalysis on the surface of porous carriers. The biodegradable products were mineralized simultaneously through the biofilm inside the carriers. Because of the protection of the carriers, the microorganism can remain active even under the UV-light, the mechanical force of water flow or the attack of free radicals. ICPB breaks the traditional concept that photocatalytic reaction and biodegradation must be separated in different reactors, improves the purification capacity of sewage and saves the cost. This review summarizes the recent advances of ICPB photocatalysts, carriers and biofilm being applied, and focuses on the mechanisms and reactor configurations which is particularly novel. Furthermore, the possible ongoing researches on ICPB are also put forward. This review will provide a valuable insight into the design and application of ICPB in environment and energy field.
Collapse
Affiliation(s)
- Mingliang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hao Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bo Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhaoming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
26
|
Lu Q, Zhang C, Wang W, Yuan B, Zhang Y, Rittmann BE. Bioavailable electron donors leached from leaves accelerate biodegradation of pyridine and quinoline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:473-479. [PMID: 30447586 DOI: 10.1016/j.scitotenv.2018.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Fallen leaves of Platanus orientalis and Ginkgo biloba linn were separately immersed in water to obtain leachates that were used as exogenous electron donors for accelerating pyridine and quinoline biodegradations. Leachate addition accelerated the pyridine removal rate by up to 4.4% and 3.6% and the quinoline removal rate by 9.5% and 11%. The rates increased further after the leachates were illuminated by UV light: up to 8.5% for pyridine and 12% for quinoline. Succinate and oxalate were separately added into solutions of pyridine and quinoline (respectively) to gauge the acceleration impact of the leaf leachates. Equations describing the relationships between addition of leachate and pyridine or quinoline removal rates were established based on electron-equivalent balances and comparison to the acceleration effects from succinate and oxalate. From 22% to 98% of the COD leached from leaves was available as an electron donor, with the fraction being greater for pyridine and after UV illumination.
Collapse
Affiliation(s)
- Qinyuan Lu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Chenyuan Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Wenyi Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Biyue Yuan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe AZ85287-5701, USA
| |
Collapse
|
27
|
Zhang Y, Wang Y, Lu Q, Zhang C, Yan N, Zhang Y, Rittmann BE. The role of ultrasound-treated sludge for accelerating quinoline mono-oxygenation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:561-566. [PMID: 30597349 DOI: 10.1016/j.jenvman.2018.12.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/16/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Activated sludge treated by ultrasound was tested as a source of exogenous electron donor to accelerate quinoline mono-oxygenation, which requires an intracellular electron donor (2H). The quinoline-removal rate was proportional to the amount of treated or untreated sludge added in flask experiments, but the best biodegradation kinetics was obtained with a mixture of 25% untreated sludge plus 75% treated sludge. The treated sludge primarily provided exogenous electron donor, while the untreated sludge provided active biomass. A biofilm system also showed the same beneficial effect of treated sludge, and the soluble fraction of the treated sludge had the greatest impact. Using treated sludge instead of a purchased electron donor provides an economic advantage for accelerating the biodegradation of contaminants whose biodegradation is initiated by an oxygenation reaction, such as quinoline.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Youke Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Qinyuan Lu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Chenyuan Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
28
|
Xiong H, Dong S, Zhang J, Zhou D, Rittmann BE. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. WATER RESEARCH 2018; 136:75-83. [PMID: 29500974 DOI: 10.1016/j.watres.2018.02.061] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Intimately coupled photocatalysis and biodegradation (ICPB) was realized in a macroporous carrier in which a photocatalyst was present on the outer surface, while a biofilm accumulated inside the carrier. In ICPB, photocatalysis products are rapidly biodegraded by a protected biofilm, leading to mineralization of the refractory organics, such as antibiotics. However, mineralization in ICPB could be compromised if the photocatalysis products remain refractory or are inhibitory. To address this, we attempted to increase metabolic activity by providing a readily biodegradable co-substrate (acetate) that could act as a source of energy and electrons to improve biotransformation and mineralization of the refractory antibiotic tetracycline (TCH). When we added acetate during ICPB of TCH, TCH removal increased by ∼5%, mineralization increased by ∼20%, and almost all photocatalysis products disappeared. Acetate addition also led to an increase in active biomass, an increase in the biomass's respiratory activity, and evolution of the microbial community to having more members able to biodegrade photocatalysis and biotransformation intermediates. Thus, providing an easily biodegradable co-substrate was an effective means for enhancing TCH removal and mineralization with the ICPB technology.
Collapse
Affiliation(s)
- Houfeng Xiong
- School of Environment, Northeast Normal University, Changchun 130117, China; School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005, China
| | - Shuangshi Dong
- Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jun Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Engineering Lab for Water Pollution Control and Resources Recovery, Jilin Province, Northeast Normal University, Changchun 130117, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, AZ 85287-5701, USA
| |
Collapse
|
29
|
Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine. Biodegradation 2018; 29:419-427. [DOI: 10.1007/s10532-018-9834-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|
30
|
Rittmann BE. Biofilms, active substrata, and me. WATER RESEARCH 2018; 132:135-145. [PMID: 29324293 DOI: 10.1016/j.watres.2017.12.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Having worked with biofilms since the 1970s, I know that they are ubiquitous in nature, of great value in water technology, and scientifically fascinating. Biofilms are naturally able to remove BOD, transform N, generate methane, and biodegrade micropollutants. What I also discovered is that biofilms can do a lot more for us in terms of providing environmental services if we give them a bit of help. Here, I explore how we can use active substrata to enable our biofilm partners to provide particularly challenging environmental services. In particular, I delve into three examples in which an active substratum makes it possible for a biofilm to accomplish a task that otherwise seems impossible. The first example is the delivery of hydrogen gas (H2) as an electron donor to drive the reduction and detoxification of the rising number of oxidized contaminant: e.g., perchlorate, selenate, chromate, chlorinated solvents, and more. The active substratum is a gas-transfer membrane that delivers H2 directly to the biofilm in a membrane biofilm reactor (MBfR), which makes it possible to deliver a low-solubility gaseous substrate with 100% efficiency. The second example is the biofilm anode of a microbial electrochemical cell (MxC). Here, the anode is the electron acceptor for anode-respiring bacteria, which "liberate" electrons from organic compounds and send them ultimately to a cathode, where we can harvest valuable products or services. The anode's potential is a sensitive tool for managing the microbial ecology and reaction kinetics of the biofilm anode. The third example is intimately coupled photobiocatalysis (ICPB), in which we use photocatalysis to enable the biodegradation of intrinsically recalcitrant organic pollutants. Photocatalysis transforms the recalcitrant organics just enough so that the products are rapidly biodegradable substrates for bacteria in a nearby biofilm. The macroporous substratum, which houses the photocatalyst on its exterior, actively provides donor substrate and protects the biofilm from UV light and free radicals in its interior. These three well-developed topics illustrate how and why an active substratum expands the scope of what biofilms can do to enhance water sustainability.
Collapse
Affiliation(s)
- Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA.
| |
Collapse
|
31
|
Zhang C, Fu L, Xu Z, Xiong H, Zhou D, Huo M. Contrasting roles of phenol and pyrocatechol on the degradation of 4-chlorophenol in a photocatalytic–biological reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24725-24731. [PMID: 28942472 DOI: 10.1007/s11356-017-0245-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
|
32
|
Xu H, Sun W, Yan N, Li D, Wang X, Yu T, Zhang Y, Rittmann BE. Competition for electrons between pyridine and quinoline during their simultaneous biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25082-25091. [PMID: 28921046 DOI: 10.1007/s11356-017-0082-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Biodegradation of pyridine and quinoline is initiated with mono-oxygenation reactions that require an intracellular electron donor. Simultaneous biodegradation of both substrates should set up competition for the intracellular electron donor that may inhibit one or more of the mono-oxygenation steps. An internal circulation baffled biofilm reactor (ICBBR) was used to evaluate the impacts of competition during pyridine and quinoline biodegradation. Compared with independent biodegradation, pyridine and quinoline removal rates were slowed when biodegraded simultaneously, although the pyridine removal rate decreased more than for quinoline. The first mono-oxygenation of quinoline (to 2-hydroxyquinoline) always was faster than the first mono-oxygenation of pyridine (to 2-hydroxypyridine), and the difference was accentuated with pyridine and quinoline which were biodegraded simultaneously due to the competition for intracellular electron donor. Competition also existed between the second mono-oxygenations, and the removal rate of 2-hydroxypyridine was faster than the rate for 2-hydroxyquinoline, even though the rate was faster for quinoline than pyridine. Adding an exogenous electron donor accelerated all mono-oxygenations in proportion to the amount of donor added, but the increments were greater for quinoline due to its higher affinity for intracellular electron donors than pyridine. When actual coking wastewater was used as the background matrix, removals of pyridine and quinoline exhibited the same competitive trends.
Collapse
Affiliation(s)
- Hua Xu
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Weihua Sun
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Ning Yan
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Danni Li
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xueqi Wang
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Tingting Yu
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yongming Zhang
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
33
|
Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 2017; 36:30-44. [PMID: 28993012 DOI: 10.1016/j.tibtech.2017.09.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
Abstract
The increase in worldwide water contamination with numerous pharmaceutical contaminants (PCs) has become an emerging environmental concern due to their considerable ecotoxicities and associated health issues. Microalgae-mediated bioremediation of PCs has recently gained scientific attention, as microalgal bioremediation is a solar-power driven, ecologically comprehensive, and sustainable reclamation strategy. In this review, we comprehensively describe the current research on the possible roles and applications of microalgae for removing PCs from aqueous media. We summarize several novel approaches including constructing microbial consortia, acclimation, and cometabolism for enhanced removal of PCs by microalgae, which would improve practical feasibility of these technologies. Some novel concepts for degrading PCs using integrated processes and genetic modifications to realize algal-based bioremediation technologies are also recommended.
Collapse
|
34
|
Sun W, Zhang C, Chen J, Zhang B, Zhang H, Zhang Y, Chen L. Accelerating biodegradation of a monoazo dye Acid Orange 7 by using its endogenous electron donors. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:739-743. [PMID: 27887816 DOI: 10.1016/j.jhazmat.2016.11.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Biodegradation of a monoazo dye - Acid Orange 7 (AO7) was investigated by using an internal circulation baffled biofilm reactor. For accelerating AO7 biodegradation, endogenous electron donors produced from AO7 by UV photolysis were added into the reactor. The result shows that AO7 removal rate can be accelerated by using its endogenous electron donors, such as sulfanilic and aniline. When initial AO7 concentration was 13.6mg/L, electron donors generated by 8h UV photolysis were added into the same system. The biodegradation rate 0.4mg0.05h-1 was enhanced 60% than that without adding electron donor. Furthermore, sulfanilic and aniline were found to be the main endogenous electron carriers, which could accelerate the steps of the azo dye biodegradation.
Collapse
Affiliation(s)
- Weihua Sun
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Chengji Zhang
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jun Chen
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Bingbing Zhang
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Hongzhuan Zhang
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Science and Engineering, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
35
|
Oberoi AS, Philip L. Variation in toxicity during the biodegradation of various heterocyclic and homocyclic aromatic hydrocarbons in single and multi-substrate systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:337-346. [PMID: 27770649 DOI: 10.1016/j.ecoenv.2016.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
In the present study, an attempt was made to understand the variation in the toxicity during the biodegradation of aromatic hydrocarbons in single and multi-substrate system. The bacterial bioassay based on the inhibition of dehydrogenase enzyme activity of two different bacterial sp. E.coli and Pseudomonas fluorescens was used for toxicity assessment. Amongst the chosen pollutants, the highest acute toxicity was observed for benzothiophene followed by benzofuran having EC50 value of 16.60mg/L and 19.30mg/L respectively. Maximum residual toxicity of 30.8% was observed at the end during the degradation of benzothiophene. Due to the accumulation of transitory metabolites in both single and multisubstrate systems, reduction in toxicity was not proportional to the decrease in pollutant concentration. In multi-substrate system involving mixture of heterocyclic hydrocarbons, maximum residual toxicity of 39.5% was observed at the end of biodegradation. Enhanced degradation of benzofuran, benzothiophene and their metabolic intermediates were observed in the presence of naphthalene resulting in significant reduction in residual toxicity. 2 (1H) - quinolinone, an intermediate metabolite of quinoline was observed having significant eco-toxicity amongst all other intermediates investigated.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai 600 036, India.
| |
Collapse
|
36
|
Oberoi AS, Philip L. Biological Degradation of Heterocyclic Aromatic Hydrocarbons with Naphthalene-Enriched Consortium: Substrate Interaction Studies and Fate of Metabolites. Appl Biochem Biotechnol 2016; 180:400-425. [DOI: 10.1007/s12010-016-2106-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
37
|
Wu D, Wang F, Tan Y, Li C. Facile synthesis of NiS/CdS nanocomposites for photocatalytic degradation of quinoline under visible-light irradiation. RSC Adv 2016. [DOI: 10.1039/c6ra13439d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NiS/CdS nanocomposites with good visible-light-induced photocatalytic activity were successfully prepared via a facile two-step process.
Collapse
Affiliation(s)
- Deyong Wu
- School of Chemical and Environmental Engineering
- Hubei University for Nationalities
- Enshi
- China
| | - Fei Wang
- School of Basic Science
- China Pharmaceutical University
- Nanjing
- China
| | - Yuanbin Tan
- School of Chemical and Environmental Engineering
- Hubei University for Nationalities
- Enshi
- China
| | - Caolong Li
- School of Basic Science
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|