1
|
Barros S, Coimbra AM, Herath LA, Alves N, Pinheiro M, Ribeiro M, Morais H, Branco R, Martinez O, Santos HG, Montes R, Rodil R, Quintana JB, Santos MM, Neuparth T. Are Environmental Levels of Nonsteroidal Anti-Inflammatory Drugs a Reason for Concern? Chronic Life-Cycle Effects of Naproxen in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19627-19638. [PMID: 39445516 DOI: 10.1021/acs.est.4c05599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The nonsteroidal anti-inflammatory drug naproxen (NPX) is among the most consumed pharmaceuticals worldwide, being detected in surface waters within the ng to μg/L range. Considering the limited chronic ecotoxicity data available for NPX in aquatic ecosystems, the present study aimed at evaluating its impact in the model organism Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (0.1 to 5.0 μg/L). An integration of apical endpoints, i.e., survival, growth, and reproduction, with gonad histopathology and gene transcription (RNA-seq) was performed to provide additional insights into the mode of action (MoA) of NPX. NPX decreased zebrafish growth and reproduction and led to histopathological alterations in gonads at concentrations as low as 0.1 μg/L. At the molecular level, 0.7 μg/L of NPX led to a disruption in gonads transcription of genes involved in several biological processes associated with reproduction, mainly involving steroid hormone biosynthesis and epigenetic/epitranscriptomic machineries. Collectively, these results show that environmentally realistic concentrations of NPX affect zebrafish reproduction and associated signaling pathways, indicating that current hazard and risk assessment data for NPX underestimate the environmental risk of this pharmaceutical.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, Vila Real 5000-801, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Vila Real 5000-801,Portugal
| | - Lihini Athapaththu Herath
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Nélson Alves
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marlene Pinheiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Marta Ribeiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Hugo Morais
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Ricardo Branco
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Olga Martinez
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Hugo G Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Miguel M Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, Porto 4169-007, Portugal
| | - Teresa Neuparth
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, Matosinhos 4450-208, Portugal
| |
Collapse
|
2
|
Alonzo F, Trijau M, Plaire D, Billoir E. A toxicokinetic-toxicodynamic model with a transgenerational damage to explain toxicity changes over generations (in Daphnia magna exposed to depleted uranium). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169845. [PMID: 38190898 DOI: 10.1016/j.scitotenv.2023.169845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Affiliation(s)
- Frédéric Alonzo
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV, SERPEN, LECO, Cadarache, Saint-Paul-lèz-Durance, France.
| | - Marie Trijau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV, SERPEN, LECO, Cadarache, Saint-Paul-lèz-Durance, France; Ibacon GmbH, Roßdorf, Germany
| | - Delphine Plaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV, SERPEN, LECO, Cadarache, Saint-Paul-lèz-Durance, France
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| |
Collapse
|
3
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
5
|
Gilbin R, Arnold T, Beresford NA, Berthomieu C, Brown JE, de With G, Horemans N, Madruga MJ, Masson O, Merroun M, Michalik B, Muikku M, O'Toole S, Mrdakovic Popic J, Nogueira P, Real A, Sachs S, Salbu B, Stark K, Steiner M, Sweeck L, Vandenhove H, Vidal M, Vives I Batlle J. An updated strategic research agenda for the integration of radioecology in the european radiation protection research. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106697. [PMID: 34334231 DOI: 10.1016/j.jenvrad.2021.106697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The ALLIANCE Strategic Research Agenda (SRA) for radioecology is a living document that defines a long-term vision (20 years) of the needs for, and implementation of, research in radioecology in Europe. The initial SRA, published in 2012, included consultation with a wide range of stakeholders (Hinton et al., 2013). This revised version is an update of the research strategy for identified research challenges, and includes a strategy to maintain and develop the associated required capacities for workforce (education and training) and research infrastructures and capabilities. Beyond radioecology, this SRA update constitutes a contribution to the implementation of a Joint Roadmap for radiation protection research in Europe (CONCERT, 2019a). This roadmap, established under the H2020 European Joint Programme CONCERT, provides a common and shared vision for radiation protection research, priority areas and strategic objectives for collaboration within a European radiation protection research programme to 2030 and beyond. Considering the advances made since the first SRA, this updated version presents research challenges and priorities including identified scientific issues that, when successfully resolved, have the potential to impact substantially and strengthen the system and/or practice of the overall radiation protection (game changers) in radioecology with regard to their integration into the global vision of European research in radiation protection. An additional aim of this paper is to encourage contribution from research communities, end users, decision makers and other stakeholders in the evaluation, further advancement and accomplishment of the identified priorities.
Collapse
|
6
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
7
|
Spurgeon DJ. Higher than … or lower than ….? Evidence for the validity of the extrapolation of laboratory toxicity test results to predict the effects of chemicals and ionising radiation in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105757. [PMID: 29970267 DOI: 10.1016/j.jenvrad.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Single species laboratory tests and associated species sensitivity distributions (SSDs) that utilise the resulting data can make a key contribution to efforts to prospective hazard assessments for pesticides, biocides, metals and ionising radiation for research and regulatory risk assessment. An assumption that underlies the single species based toxicity testing approach when combined in SSD models is that the assessments of sensitivities to chemical and ionising radiation measured across a range of species in the laboratory can inform on the likely effects on communities present in the field. Potential issues with the validity of this assumption were already recognised by Van Straalen and Denneman (1989) in their landmark paper on the SSD methodology. In this work, they identified eight major factors that could potentially compromise the extrapolation of laboratory toxicity data to the field. Factors covered a range of issues related to differences in chemistry (e.g. bioavailability, mixtures); environmental conditions (optimal, variable), ecological (compensatory, time-scale) and population genetic structure (adaptation, meta-population dynamics). This paper outlines the evidence pertaining to the influence of these different factors on toxicity in the laboratory as compared to the field focussing especially on terrestrial ecosystems. Through radiological and ecotoxicological research, evidence of the influence of each factor on the translation of observed toxicity from the laboratory to field is available in all cases. The importance of some factors, such as differences in chemical bioavailability between laboratory tests and the field and the ubiquity of exposure to mixtures is clearly established and has some relevance to radiological protection. However, other factors such as the differences in test conditions (optimal vs sub-optimal) and the development of tolerance may be relevant on a case by case basis. When SSDs generated from laboratory tests have been used to predict chemical and ionising radiation effects in the field, results have indicated that they may often seem to under-predict impacts, although this may also be due to other factors such as the effects of other non-chemical stressors also affecting communities at polluted sites. A better understanding of the main factors affecting this extrapolation can help to reduce uncertainty during risk assessment.
Collapse
Affiliation(s)
- David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK.
| |
Collapse
|
8
|
Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:469-483. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/14/2019] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Agoralaan, 3590, Diepenbeek, Belgium.
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul Lez Durance, France
| | - Eline Saenen
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, 1430, Aas, Norway
| | - Ilze Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France
| |
Collapse
|
9
|
Schultz CL, Wamucho A, Tsyusko OV, Unrine JM, Crossley A, Svendsen C, Spurgeon DJ. Multigenerational exposure to silver ions and silver nanoparticles reveals heightened sensitivity and epigenetic memory in Caenorhabditis elegans. Proc Biol Sci 2017; 283:rspb.2015.2911. [PMID: 27306046 DOI: 10.1098/rspb.2015.2911] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022] Open
Abstract
The effects from multigenerational exposures to engineered nanoparticles (ENPs) in their pristine and transformed states are currently unknown despite such exposures being an increasingly common scenario in natural environments. Here, we examine how exposure over 10 generations affects the sensitivity of the nematode Caenorhabditis elegans to pristine and sulfidized Ag ENPs and AgNO3 We also include populations that were initially exposed over six generations but kept unexposed for subsequent four generations to allow recovery from exposure. Toxicity of the different silver forms decreased in the order AgNO3, Ag ENPs and Ag2S ENPs. Continuous exposure to Ag ENPs and AgNO3 caused pronounced sensitization (approx. 10-fold) in the F2 generation, which was sustained until F10. This sensitization was less pronounced for Ag2S ENP exposures, indicating different toxicity mechanisms. Subtle changes in size and lifespan were also measured. In the recovery populations, the sensitivity to Ag ENPs and AgNO3 resulting from the initial multigenerational exposure persisted. Their response sensitivity for all endpoints was most closely related to the last ancestral exposed generation (F5), rather than unexposed controls. The mechanisms of transgenerational transfer of sensitivity are probably organized through the epigenome, and we encourage others to investigate such effects as a priority for mechanistic toxicology.
Collapse
Affiliation(s)
- Carolin L Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK
| | - Anye Wamucho
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA
| | - Alison Crossley
- Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| |
Collapse
|
10
|
Fuller N, Smith JT, Nagorskaya LL, Gudkov DI, Ford AT. Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30years on? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:242-250. [PMID: 27788439 DOI: 10.1016/j.scitotenv.2016.10.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Effects of long-term, environmentally relevant doses of radiation on biota remain unclear due to a lack of studies following chronic exposure in contaminated environments. The 1986 Chernobyl accident dispersed vast amounts of radioactivity into the environment which persists to date. Despite three decades of research, impacts of the incident on non-human organisms continues to be contested within the scientific literature. The present study assessed the impact of chronic radiation exposure from Chernobyl on the developmental stability of the model aquatic isopod, Asellus aquaticus using fluctuating asymmetry (FA) as an indicator. Fluctuating asymmetry, defined as random deviations from the expected perfect bilateral symmetry of an organism, has gained prominence as an indicator of developmental stability in ecotoxicology. Organisms were collected from six lakes along a gradient of radionuclide contamination in Belarus and the Ukraine. Calculated total dose rates ranged from 0.06-27.1μGy/h. Fluctuating asymmetry was assessed in four meristic and one metrical trait. Significant differences in levels of pooled asymmetry were recorded between sample sites independent of sex and specific trait measured. However, there was no correlation of asymmetry with radiation doses, suggesting that differences in asymmetry were not attributed to radionuclide contamination and were driven by elevated asymmetry at a single site. No correlation between FA and measured environmental parameters suggested a biotic factor driving observed FA differences. This study appears to be the first to record no evident increase in developmental stability of biota from the Chernobyl region. These findings will aid in understanding the response of organisms to chronic pollutant exposure and the long term effects of large scale nuclear incidents such as Chernobyl and Fukushima.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Jim T Smith
- School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL, UK
| | - Liubov L Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., 220072 Minsk, Belarus
| | - Dmitri I Gudkov
- Department of Freshwater Radioecology, Institute of Hydrobiology, Geroyev Stalingrada Ave. 12, UA-04210 Kiev, Ukraine
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK.
| |
Collapse
|
11
|
Goussen B, Price OR, Rendal C, Ashauer R. Integrated presentation of ecological risk from multiple stressors. Sci Rep 2016; 6:36004. [PMID: 27782171 PMCID: PMC5080554 DOI: 10.1038/srep36004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/26/2016] [Indexed: 01/24/2023] Open
Abstract
Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.
Collapse
Affiliation(s)
- Benoit Goussen
- Environment Department, University of York, Heslington, York YO10 5DD, UK.,Safety and Environmental Assurance Centre, Colworth Science Park, Unilever, Sharnbrook, Bedfordshire, UK
| | - Oliver R Price
- Safety and Environmental Assurance Centre, Colworth Science Park, Unilever, Sharnbrook, Bedfordshire, UK
| | - Cecilie Rendal
- Safety and Environmental Assurance Centre, Colworth Science Park, Unilever, Sharnbrook, Bedfordshire, UK
| | - Roman Ashauer
- Environment Department, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|