1
|
Lewis-Michl EL, Forand SP, Hsu WH, Savadatti SS, Liu M, Moore J, Wu Q, Mullin EJ, Aldous KM. Perfluorooctanoic acid serum concentrations and half-lives in a community exposed to contaminated drinking water in New York State. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:403-413. [PMID: 40247098 PMCID: PMC12069094 DOI: 10.1038/s41370-025-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Investigations during 2014-2016 in two communities in New York State showed perfluorooctanoic acid (PFOA) in a public system serving 3800 residents (Hoosick Falls) averaging 534 ppt and in a smaller system serving 200 residents (Petersburgh) averaging 92.5 ppt. Bottled water (2015-2016) was provided until filtration brought PFOA levels to non-detectable (2016-2017). OBJECTIVE The New York State Department of Health (NYSDOH) sought to address community questions about exposures and evaluate reductions in serum concentrations. METHODS NYSDOH tested serum PFOA in 2016 just after drinking water exposure mitigation and again in 2018. Descriptive statistics for serum PFOA by sex, age, length of residence, and water consumption were evaluated using multiple regression, and half-lives were estimated. RESULTS Using the serum PFOA GM and median for tests occurring within 3 months of exposure mitigation (N = 1121) (47.5, 54.2) produced serum to water ratios of 89.0 and 101.6. A total of 1573 Hoosick Falls public water consumers (337 IMPACT This biomonitoring project assisted communities with PFOA-contaminated drinking water by providing comparative exposure information and tracking body burden reductions to confirm exposures were minimized. These data are also critical for filling gaps in knowledge about PFOA modes of action and for the conduct of studies that can identify exposure concentrations associated with health risks. The detailed PFOA serum findings described here are being used to construct and validate pharmacokinetic models that will estimate exposures over the lifespan. These findings provide a foundation for PFOA exposure assessment that will benefit the national Multi-Site PFAS Health Study and future studies as well.
Collapse
Affiliation(s)
- Elizabeth L Lewis-Michl
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA.
| | - Steven P Forand
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA
| | - Wan-Hsiang Hsu
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA
| | - Sanghamitra S Savadatti
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA
- University at Albany, Department of Epidemiology & Biostatistics, Rensselaer, NY, USA
| | - Ming Liu
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA
| | - June Moore
- New York State Department of Health, Bureau of Environmental & Occupational Epidemiology, Division of Environmental Health Assessment, Albany, NY, USA
| | - Qian Wu
- New York State Department of Health, Wadsworth Center, Division of Environmental Health Science, Albany, NY, USA
| | - Elizabeth J Mullin
- New York State Department of Health, Wadsworth Center, Division of Environmental Health Science, Albany, NY, USA
| | - Kenneth M Aldous
- New York State Department of Health, Wadsworth Center, Division of Environmental Health Science, Albany, NY, USA
| |
Collapse
|
2
|
Eick SM, Sehgal N, Salamova A, Fiedler N, Hood RB, Yakimavets V, Promkam N, Prapamontol T, Suttiwan P, Sittiwang S, Mangklabruks A, Naksen W, Panuwet P, Barr DB. Per- and polyfluoroalkyl substances in paired serum and breastmilk samples among pregnant farmworkers in Thailand. Int J Hyg Environ Health 2025; 264:114509. [PMID: 39647432 PMCID: PMC11788031 DOI: 10.1016/j.ijheh.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely detected in pregnant persons and can be transferred to the developing fetus in utero. Breastfeeding may represent an important source of PFAS exposure for infants. However, studies quantifying levels of PFAS in breastmilk samples remain scarce, particularly in low- and middle-income countries. We examined breastmilk as a postnatal PFAS exposure source among mother-infant pairs in Thailand. Pregnant farmworkers were enrolled in the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE), a prospective birth cohort in Northern Thailand, between 2017 and 2019. We quantified levels of eight PFAS in maternal serum samples obtained during the second trimester, as well as in breastmilk samples obtained at 9.5 months and 11.5 months in infancy (N = 46 matched pairs). For each PFAS, we calculated lactational (serum to milk) transfer efficiencies and lactational estimated daily intake. PFOA, PFOS PFHxS, PFNA, PFDA, and PFUnDA were detected in >90% of serum samples. PFOS was detected in >60% of breastmilk samples obtained at 9.5 and 11.5 months, while PFNA was detected in >50% of 9.5-month breastmilk samples only. All remaining PFAS were detected in <50% of breastmilk samples. The lactational transfer efficiency for PFOS was 7.03% (SD = 5.78) and 5.83% (SD = 5.21) at 9.5 and 11.5 months, respectively. The lactational estimated daily intake for PFOS was 12.1 ng/kg bodyweight/day (SD = 5.49) and 10 ng/kg bodyweight/day (SD = 6.22) at 9.5 and 11.5 months, respectively. For PFNA, the lactational transfer efficiency and estimated daily intake at 9.5 months was 14.7% (SD = 14.3) and 6.14% (SD = 3.40), respectively. Within one of the first PFAS biomonitoring studies conducted in Thailand, we found that legacy PFAS were widely detected in serum, and some compounds were also detected in breastmilk of farmworkers. This study provides new evidence enhancing our understanding of postnatal exposure to PFAS.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Chulalongkorn University, Faculty of Psychology, Life Di Center, Bangkok, Thailand
| | - Supattra Sittiwang
- Chulalongkorn University, Faculty of Psychology, Life Di Center, Bangkok, Thailand
| | | | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Jung Y, Bartell SM. Assessment of modeled serum per- and polyfluoroalkyl substances concentrations from exposure estimates for pregnant women in the general population in comparison to previously measured serum concentrations. ENVIRONMENTAL RESEARCH 2025; 268:120757. [PMID: 39756782 DOI: 10.1016/j.envres.2025.120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
When drinking water is uncontaminated, exposure to PFAS is thought to occur primarily via ingestion of food and indoor dust. To understand the background exposure during prenatal periods, this study examined whether published estimates of PFAS exposure rates from dietary and dust ingestion provide reasonable predictions of PFAS serum concentrations among pregnant women in the general population. This study estimated serum concentrations of four PFAS during pregnancy based on published PFAS intake rates for food and indoor dust reported in the peer-reviewed literature, a pharmacokinetic model using two different sets of parameters, and Monte Carlo simulation to account for variability/uncertainty. Historical dietary ingestion rate was reconstructed using serum PFAS concentrations of pregnant women from NHANES. The estimated serum concentrations for different exposure scenarios were then compared with measured maternal serum levels reported in published studies of populations without known PFAS water contamination. Mother-child dyad models showed no substantial change in serum PFAS concentrations during pregnancy. Lower published estimates of dietary intake and historical reconstruction, resulted in good prediction of maternal serum concentrations for PFOA, PFOS, and PFHxS. Higher published estimates of dietary intake overestimated maternal serum concentrations, especially for PFNA. Although some discrepancies exist among published estimates of indoor dust intake, half-life, and volume of distribution for PFAS, any combination of selected estimates from literature along with lower published dietary intake estimates are sufficient to provide reasonable prediction of maternal serum concentrations at population-level.
Collapse
Affiliation(s)
- Yerin Jung
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA.
| | - Scott M Bartell
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA; Department of Statistics, University of California, Irvine, CA, USA; Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Wikoff DS, Vincent MJ, Heintz MM, Pastula ST, Reichert H, Klaren WD, Haws LC. Application of a quantitative uncertainty assessment to develop ranges of plausible toxicity values when using observational data in risk assessment: a case study examining associations between PFOA and PFOS exposures and vaccine response. Toxicol Sci 2025; 204:96-115. [PMID: 39792025 DOI: 10.1093/toxsci/kfae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Traditional approaches for quantitatively characterizing uncertainty in risk assessment require adaptation to accommodate increased reliance on observational (vs experimental) studies in developing toxicity values. Herein, a case study with perfluorooctanoic acid (PFOA) and PFOS and vaccine response explores approaches for qualitative and-where possible-quantitative assessments of uncertainty at each step in the toxicity value development process when using observational data, including review and appraisal of individual studies, candidate study selection, dose-response modeling, and application of uncertainty factors. Each of the 15 studies identified had uncertainties due to risk of bias in confounding, outcome, and exposure ascertainment, likely contributing to the observed inconsistencies within and across studies, and resulting in lack of candidacy for dose-response assessment. Nonetheless, 2 representative studies were selected to demonstrate possible methods to quantify uncertainty in the remaining steps. Data simulations indicated lack of a clear dose-response relationship; dose-response models fit to representative simulations indicated high uncertainty in both the magnitude and direction of effect with simulated benchmark dose and its lower limit values varying at least 66- and 86-fold for PFOA and PFOS. Uncertainty factor application added minimal uncertainty. Combined, a high level of uncertainty was observed, precluding the ability to confidently assess causal dose-response relationships with the observational data, alone. This case study highlights the need for quantitative uncertainty analysis when developing toxicity values with observational data and, importantly, emphasizes the need for application of additional techniques to directly assess causality and the specificity of dose-response when relying on studies of association in quantitative risk assessment.
Collapse
|
5
|
Campbell JL, Linakis MW, Porter AK, Rosen EM, Logan PW, Kleinschmidt SE, Andres KL, Chang S, Taiwo OA, Olsen GW, Clewell HJ, Longnecker MP. Evaluation of the validity of a perfluorooctane sulfonic acid exposure reconstruction using a measured serum concentration among workers with a wide range of exposure. Ann Work Expo Health 2025; 69:160-172. [PMID: 39699232 PMCID: PMC11858561 DOI: 10.1093/annweh/wxae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Studies among workers with a wide range of exposure to perfluoroalkyl substances inform risk assessments. Perfluorooctane sulfonate (PFOS), a ubiquitous environmental contaminant, was recently examined in relation to mortality and cancer incidence in an occupationally exposed population by Alexander et al. in 2024. In that study, cumulative occupational exposure (mg/m3 PFOS-equivalents in air) was reconstructed using a job-exposure matrix and individual work history. While the exposure reconstruction had good face validity, an assessment of its performance in relation to serum PFOS levels would allow improved interpretation of the occupational epidemiology findings. OBJECTIVE The objective of this study was to assess the validity of the exposure reconstruction used by Alexander et al. (2024). METHODS A previous study by Olsen et al. (2003) measured serum PFOS levels in 1998 for 260 workers and because these workers were included in the epidemiologic study by Alexander et al. (2024), the study reported herein compared serum PFOS levels to those predicted using a simple compartmental pharmacokinetic model. RESULTS The Pearson correlation coefficient between the observed and pharmacokinetic model-predicted serum PFOS concentration was 0.80 (95% confidence interval, 0.75 to 0.84). The median ratio of predicted to observed serum concentrations was 12 (i.e. actual exposure was significantly less than predicted). The predicted serum PFOS concentrations were not sensitive to the parameters used in the pharmacokinetic model other than exposure concentration or absorption. CONCLUSIONS The model did not predict absolute exposure well, probably because of personal protective equipment use not being accounted for and absorption of PFOS or precursors being lower than modeled. On the other hand, the model did a reasonably good job of ranking the workers' exposure, thus classification of workers according to relative amount of cumulative PFOS-equivalents was reasonably accurate in the study by Alexander et al. (2024) when validated using the measured serum PFOS data.
Collapse
Affiliation(s)
- Jerry L Campbell
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| | - Matthew W Linakis
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| | - Anna K Porter
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| | - Emma M Rosen
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| | | | | | | | | | | | | | - Harvey J Clewell
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| | - Matthew P Longnecker
- Ramboll Americas Engineering Solutions, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, United States
| |
Collapse
|
6
|
Wallis DJ, Miller KE, DeLuca NM, Thomas K, Fuller C, McCord J, Cohen Hubal EA, Minucci JM. Understanding prenatal household exposures to per- and polyfluorylalkyl substances using paired Biological and dust measurements with sociodemographic and housing variables. ENVIRONMENT INTERNATIONAL 2024; 194:109157. [PMID: 39642652 DOI: 10.1016/j.envint.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are chemicals of concern-they are ubiquitous, persistent, with known and suspected health impacts. Well studied, primary sources of exposure to PFAS are drinking water and food. The presence of PFAS in human tissue of general populations suggests other important exposure sources/pathways. House dust measurements suggest widespread presence of PFAS in residences. Limited studies report paired analyses of PFAS occurrence in indoor media and PFAS concentrations in serum. While paired samples of house dust and blood serum are currently rare, the National Children's Study (NCS) contains paired samples, as well as sociodemographic information, from pregnant people that participated in the study. These archived NCS data and specimens for 104 participants collected between 2009 and 2014 were leveraged and analyzed for 16 commonly measured PFAS. We evaluated PFAS levels in the home, and the relationships between PFAS in dust and serum, and sociodemographic or housing variables. In addition, mechanistic exposure models, and then steady-state serum level models with simple parameters were used to estimate dust contributions of PFAS to serum. The geometric means for the most commonly found PFAS (full names in table 1) in serum were: 4.1 ng/mL for PFOS, 1.1 ng/mL for PFOA, 0.87 ng/mL for PFHxS, 0.16 ng/mL for PFDA. The geometric means of PFAS in dust were: 17 µg/kg for PFOS, 16 µg/kg for PFOA, 9.6 µg/kg for PFDS, 4.5 µg/kg for PFHpA, 4.4 µg/kg for PFNA, 3.9 µg/kg for PFHxS, 3.5 µg/kg for PFDA, 2.3 µg/kg for PFDoA, 2.1 µg/kg for PFUdA. PFOA was significantly correlated in serum and dust as was the sum of all PFAS detected in > 50 % of serum and dust. PFAS in serum was significantly associated with: Higher income, recent renovations, years lived in the home, and educational attainment. PFAS in dust was significantly associated with: Higher participant age, type of home, amount of carpet, educational attainment, higher income, recent renovation, and membership in the military. For some PFAS, 25 % of the overall exposure, on average, is from dust, but for others, 3-4 % is attributed to dust. We were able to identify important associations in PFAS exposure in the homes of pregnant people based on paired serum and dust samples. This built a clearer picture of which PFAS and at what quantities they exist in these homes, how they relate to each other, and how they are tied to sociodemographic and housing factors. Our results demonstrate that exposure to PFAS via house dust may contribute up to 25% of total exposure for adults, highlighting the importance of understanding what drives residential exposures.
Collapse
Affiliation(s)
- Dylan James Wallis
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W Alexander Drive Research Triangle Park, NC 27711, USA.
| | - Kelsey E Miller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Nicole M DeLuca
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Kent Thomas
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Chris Fuller
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - James McCord
- U.S Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Elaine A Cohen Hubal
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| | - Jeffrey M Minucci
- U.S Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA
| |
Collapse
|
7
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
8
|
Bartell SM, Purdue MP, Rhee J, Nøst TH, Rusiecki J, Steenland K. How well does a single blood sample represent long-term exposure for epidemiological studies of PFOA among men in the general population? ENVIRONMENT INTERNATIONAL 2024; 192:109056. [PMID: 39388846 DOI: 10.1016/j.envint.2024.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Many epidemiological studies use a single blood sample per participant to assess exposure, but it is unclear how well a single sample represents longer term exposure. We performed a simulation study using summary statistics for repeated serum PFOA measurements from several previous studies in men to generate plausible serum concentrations over time, taking within-subject correlations into account. Simulated serum concentrations for controls were categorized into quintiles at each time point, and used to determine the extent of misclassification at each time point compared to the "true" long-term average exposure. We then generated case counts by quintile needed to produce an odds ratio (OR) of 1.5 for the highest vs. lowest quintile categorized based on long term exposure, and used the same misclassification rates observed in the controls to simulate misclassified exposure quintiles for cases. Comparing long term vs. single baseline exposure measures for repeated serum samples collected within about 5-13 years of each other revealed similar effect estimates, although there was a small bias to the null. Trend tests across quintiles were mostly significant using either baseline or long-term exposure. For the general population sample of men in Norway, with 5 repeated measurements over 28 years, serum PFOA was substantially lower prior to 1987, and using either of the two earliest samples as the exposure metric, compared to the long term average, produced larger bias to the null and non-significant trend tests; however using later time points as the exposure metric resulted in only a small bias. Using data based on studies of men, single baseline serum samples represented rather well the mean of repeated samples collectedup to 13 years apart, but were not always reliable surrogates for average exposure over 3 decades, during which time PFOA exposure levels in the general population have changed substantially.
Collapse
Affiliation(s)
- Scott M Bartell
- Department of Environmental and Occupational Health, Department of Statistics, and Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, CA, USA.
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Therese H Nøst
- Department for Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; HUNT Research Centre, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kyle Steenland
- Dept. of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Li J, Su X, Zhou Y, Ji H, Xie Z, Sun S, Wang Z, Yuan W, Miao M, Liang H. Association between prenatal exposure to per- and polyfluoroalkyl substances and infant anthropometry: A prospective cohort study. Int J Hyg Environ Health 2024; 257:114339. [PMID: 38401404 DOI: 10.1016/j.ijheh.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organic chemicals with potential endocrine-disrupting effects, and have been found to impair the physical growth of offspring in both experimental and epidemiological studies. We aimed to investigate the effects of prenatal PFAS exposure on repeated measurements of multiple anthropometric indicators in infants. METHOD PFAS were measured in serum samples collected from pregnant women at 12-16 gestational weeks. We calculated z-scores for the weight-for-age (WAZ), weight-for-length (WLZ), head circumference-for-age (HCZ), arm circumference-for-age (ACZ), triceps skinfold-for-age (TSZ), and subscapular skinfold-for-age (SSZ) at birth, 6 months, and 12 months of age according to the child growth standards of the World Health Organization (WHO) for anthropometric indicators. A total of 964 mother-infant pairs were included. A multivariate linear regression was performed to examine the associations between prenatal PFAS concentrations and anthropometric indicators at each time point. A generalized estimating equation (GEE) model was used to examine the longitudinal effects of PFAS exposure on repeated measurements of anthropometric indicators. Ultimately, a Bayesian kernel machine regression (BKMR) model was used to assess the joint effects of the PFAS mixture on anthropometric indicators. RESULTS In GEE models, perfluorododecanoic acid (PFDoA) in the high tertile group was associated with increased WAZ/WLZ, with β values (95% confidence intervals (CI)) of 0.12 (0.00, 0.23) and 0.18 (0.03, 0.32), respectively. Perfluorononanoic acid (PFNA) was associated with increased ACZ in the middle and high tertile groups. The BKMR models also presented the associations of the PFAS mixture with increased WAZ/WLZ throughout infancy, with more profound effects in females. Meanwhile, a pattern of inverse associations was observed between the perfluorooctanoic acid (PFOA) concentrations in the high tertile group and decreased WAZ, WLZ, and HCZ in males. In addition, the associations between PFAS and increased TSZ/SSZ at birth were identified by both linear regression and BKMR models. CONCLUSION Prenatal PFAS exposure (PFNA and PFDoA) was associated with increased infant anthropometry, especially in female infants, while prenatal PFOA exposure was associated with decreased weight, and head and arm circumference in male infants. The findings indicate that prenatal PFAS exposure may impair the growth trajectory of offspring.
Collapse
Affiliation(s)
- Jincan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Department of Public Health, Fudan University, Shanghai, 200237, China
| | - Xiujuan Su
- Clinical Research Centre, Shanghai Key Laboratory of Maternal Foetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Zhou
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Department of Public Health, Fudan University, Shanghai, 200237, China
| | - Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Department of Public Health, Fudan University, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
10
|
Ratier A, Casas M, Grazuleviciene R, Slama R, Småstuen Haug L, Thomsen C, Vafeiadi M, Wright J, Zeman FA, Vrijheid M, Brochot C. Estimating the dynamic early life exposure to PFOA and PFOS of the HELIX children: Emerging profiles via prenatal exposure, breastfeeding, and diet. ENVIRONMENT INTERNATIONAL 2024; 186:108621. [PMID: 38593693 DOI: 10.1016/j.envint.2024.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.
Collapse
Affiliation(s)
- Aude Ratier
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France.
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, Oslo, Norway
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Florence A Zeman
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Céline Brochot
- INERIS, Unit of Experimental Toxicology and Modelling, Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| |
Collapse
|
11
|
van Beijsterveldt IALP, van Zelst BD, Dorrepaal DJ, van den Berg SAA, Hokken-Koelega ACS. Early life poly- and perfluoroalkyl substance levels and adiposity in the first 2 years of life. Eur J Endocrinol 2024; 190:338-346. [PMID: 38554392 DOI: 10.1093/ejendo/lvae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
IMPORTANCE Poly- and perfluoroalkyl substances (PFASs) are nondegradable, man-made chemicals. They accumulate in humans with potential harmful effects, especially in susceptible periods of human development, such as the first months of life. We found that, in our cohort, exclusively breastfed (EBF) infants had 3 times higher PFAS plasma levels compared with exclusively formula-fed (EFF) infants at the age of 3 months. Thus, PFASs could potentially reduce the health benefits of breastfeeding. OBJECTIVE We investigated the associations between PFAS levels at the age of 3 months and accelerated gain in fat mass during the first 6 months of life, body composition at 2 years, and whether these associations differ between EBF and EFF infants. SETTING In 372 healthy term-born infants, we longitudinally assessed anthropometrics, body composition (by air-displacement plethysmography and dual-energy X-ray absorptiometry), and visceral and subcutaneous fat (by abdominal ultrasound) until the age of 2 years. MEASURES The plasma levels of 5 individual PFASs were determined by liquid chromatography-electrospray ionization-tandem mass spectrometry at the age of 3 months. MAIN OUTCOMES We studied associations between PFAS levels and outcomes using multiple regression analyses. RESULTS Higher early life plasma perfluorooctanoic acid and total PFAS levels were associated with an accelerated gain in fat mass percentage [FM%; >0.67 SD score (SDS)] during the first 6 months of life. Higher early life PFAS levels were associated with lower fat-free mass (FFM) SDS at the age of 2 years, but not with total FM% SDS at 2 years. Furthermore, we found opposite effects of PFAS levels (negative) and exclusive breastfeeding (positive) at the age of 3 months on FFM SDS at 2 years. CONCLUSION Higher PFAS levels in early life are associated with accelerated gains in FM% during the first 6 months of life and with lower FFM SDS at the age of 2 years, which have been associated with an unfavorable body composition and metabolic profile later in life. Our findings warrant further research with longer follow-up times.
Collapse
Affiliation(s)
- Inge A L P van Beijsterveldt
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Bertrand D van Zelst
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Demi J Dorrepaal
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Zhang X, Zhou X, Chen H, Gao X, Zhou Y, Lee HK, Huang Z. Changes in Concentrations of Polyfluoroalkyl Substances in Human Milk Over Lactation Time and Effects of Maternal Exposure via Analysis of Matched Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4115-4126. [PMID: 38390687 DOI: 10.1021/acs.est.3c09896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially related to many adverse health outcomes and could be transferred from maternal blood to human milk, which is an important exposure source for infants during a long-term period. In this study, the maternal blood of 76 women after delivery and their matched human milk samples obtained at 0.5, 1, and 3 months were analyzed by solid-phase extraction method with metal-organic framework/polymer hybrid nanofibers as the sorbents and ultrahigh-performance liquid chromatography-negative electrospray ionization mass spectrometric for quantitative analysis of 31 PFAS. The perfluorooctanoic acid, perfluorooctane sulfonate, and N-methyl perfluorooctane sulfonamido acetic acid (N-MeFOSAA) contributed to more than approximately 50% of the total PFAS concentrations in blood and human milk, while N-MeFOSAA (median: 0.274 ng/mL) was the highest PFAS in human milk at 3 months. The transfer efficiencies for PFAS from maternal blood to human milk at 0.5 months were generally lower, with medians ranging from 0.20% to 16.9%. The number of PFAS species detected in human milk increased as the lactation time went on from 0.5 to 3 months, and the concentrations of 10 PFAS displayed an increasing trend as the prolongation of lactation time (p < 0.05).
Collapse
Affiliation(s)
- Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xingyan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xinyi Gao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
13
|
Liao Q, Huang H, Tang P, Liang J, Chen J, Mu C, Pan D, Lv F, Zhou L, Long J, Chen Q, Zeng X, Liu S, Huang D, Qiu X. Associations of prenatal exposure to per- and polyfluoroalkyl substances and fetal sex hormones in the Guangxi Zhuang Birth Cohort Study: Greater effect of long-chain PFAS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116054. [PMID: 38310819 DOI: 10.1016/j.ecoenv.2024.116054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Fetal sex hormone homeostasis disruption could lead to reproductive and developmental abnormalities. However, previous studies have reported inconsistent findings regarding the association of maternal per- and polyfluoroalkyl substances (PFAS) exposure with fetal sex hormone levels. A total of 277 mother-infant pairs from the Guangxi Zhuang Birth Cohort Study between 2015 and 2019 were selected. We quantified nine PFAS in maternal serum in early pregnancy, and detected three sex hormones, namely, estradiol (E2), progesterone (P4) and testosterone (TT), in cord blood. The generalized linear model (GLM) and Bayesian kernel machine regression (BKMR) model were used for single- and multiple-exposure analyses, respectively. In the GLM, there was no significant association between an individual PFAS and any hormone level or the E2/TT ratio, but a negative association between perfluorododecanoic acid (PFDoA) exposure and P4 levels in female infants was observed after stratification by sex. In the BKMR, a mixture of nine PFAS was positively associated with E2 levels and the E2/TT ratio, with the same main contributors, i.e., perfluoroundecanoic acid (PFUnA). And PFAS mixtures were not associated with P4 or TT levels. After stratification by infant sex, positive associations of PFAS mixtures with E2 levels and the E2/TT ratio were observed only in male infants, with the same main contributors, i.e., PFUnA. There was a positive association between PFAS mixtures and P4 levels in male infants, in which PFUnA was the main contributor; but a reverse association between PFAS mixtures and P4 levels in female infants, in which PFDoA was the main contributor. This study suggested that prenatal exposure to PFAS mixtures is associated with fetal sex hormones, and long-chain PFAS may play an important role in this association. Furthermore, sex differences in the association of maternal PFAS exposure with E2 and P4 levels need additional attention.
Collapse
Affiliation(s)
- Qian Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peng Tang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Jun Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiehua Chen
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Changhui Mu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fangfang Lv
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lihong Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qian Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongping Huang
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
14
|
B Fortela DL, Mikolajczyk AP, Carnes MR, Sharp W, Revellame E, Hernandez R, Holmes WE, Zappi ME. Predicting molecular docking of per- and polyfluoroalkyl substances to blood protein using generative artificial intelligence algorithm DiffDock. Biotechniques 2024; 76:14-26. [PMID: 37947020 DOI: 10.2144/btn-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
This study computationally evaluates the molecular docking affinity of various perfluoroalkyl and polyfluoroalkyl substances (PFAs) towards blood proteins using a generative machine-learning algorithm, DiffDock, specialized in protein-ligand blind-docking learning and prediction. Concerns about the chemical pathways and accumulation of PFAs in the environment and eventually in the human body has been rising due to empirical findings that levels of PFAs in human blood has been rising. DiffDock may offer a fast approach in determining the fate and potential molecular pathways of PFAs in human body.
Collapse
Affiliation(s)
- Dhan Lord B Fortela
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Ashley P Mikolajczyk
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Miranda R Carnes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
| | - Wayne Sharp
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
- Department of Civil Engineering, University of Louisiana, Lafayette, LA 70504, USA
| | - Emmanuel Revellame
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Rafael Hernandez
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - William E Holmes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| | - Mark E Zappi
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70504, USA
- Energy Institute of Louisiana, University of Louisiana, Lafayette, LA 70504, USA
| |
Collapse
|
15
|
Grandjean P, Shih YH, Jørgensen LH, Nielsen F, Weihe P, Budtz-Jørgensen E. Estimated exposure to perfluoroalkyl substances during infancy and serum-adipokine concentrations in later childhood. Pediatr Res 2023; 94:1832-1837. [PMID: 37316707 PMCID: PMC10624607 DOI: 10.1038/s41390-023-02665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are transferred through human milk and may cause elevated exposure during infancy. Given the lack of early postnatal blood samples, PFAS concentrations can be estimated to serve as predictors of subsequent metabolic toxicity. METHODS A total of 298 children from a prospective birth cohort were followed up through to age 9 years. Serum-PFAS was measured at birth and 18 months of age, while exposures during infancy were estimated by structural equations. Adiponectin, resistin, leptin, and the leptin receptor were measured in serum at age 9. Adjusted regression coefficients for estimated serum-PFAS concentrations were calculated, with additional consideration of the duration of breastfeeding and potential effect modification by sex. RESULTS A doubling in estimated serum-PFAS concentrations, particularly at ages 6 and 12 months, was associated with a loss of about 10-15% in age 9 resistin concentrations, while other associations were much weaker. Sex dependence of the associations was not observed, and neither did the duration of breastfeeding affect outcomes at age 9. CONCLUSION Lowered serum-resistin concentrations at age 9 years were most strongly associated with early postnatal PFAS exposures. These findings suggest that infancy may represent a vulnerable time window for some aspects of metabolic programming that may be affected by PFAS exposure. IMPACT Serum-PFAS concentrations during infancy can be estimated in the absence of blood samples. Adipokine concentrations were measured at age 9 years as metabolic biomarkers. Resistin was significantly lower in children with elevated PFAS exposures in infancy. The findings suggest that early postnatal PFAS exposures may affect subsequent metabolic health. Assessment of infancy vulnerability to PFAS can be explored using estimated serum-PFAS concentrations.
Collapse
Affiliation(s)
- Philippe Grandjean
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Yu-Hsuan Shih
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Louise Helskov Jørgensen
- Department of Clinical Biochemistry, Odense University Hospital and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Torshavn, Faroe Islands
| | - Esben Budtz-Jørgensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Tewfik EL, Noisel N, Verner MA. Biomonitoring equivalents for perfluorooctanoic acid (PFOA) for the interpretation of biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 179:108170. [PMID: 37657409 DOI: 10.1016/j.envint.2023.108170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is detected in the blood of virtually all biomonitoring study participants. Assessing health risks associated with blood PFOA levels is challenging because exposure guidance values (EGVs) are typically expressed in terms of external dose. Biomonitoring equivalents (BEs) consistent with EGVs could facilitate health-based interpretations. OBJECTIVE To i) derive BEs for serum/plasma PFOA corresponding to non-cancer EGVs of the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada, and ii) compare with PFOA concentrations from national biomonitoring surveys. METHODS Starting from EGV points of departure, we employed pharmacokinetic data/models and uncertainty factors. Points of departure in pregnant rodents (U.S. EPA 2016, ATSDR) were converted into fetus and pup serum concentrations using an animal gestation/lactation pharmacokinetic model, and equivalent human fetus and child concentrations were converted into BEs in maternal serum using a human gestation/lactation model. The point of departure in adult rodents (Health Canada) was converted into a BE using experimental data. For epidemiology-based EGVs (U.S. EPA 2023, draft), BEs were directly based on epidemiological data or derived using a human gestation/lactation pharmacokinetic model. BEs were compared with Canadian/U.S. biomonitoring data. RESULTS Non-cancer BEs (ng/mL) were 684 (Health Canada, 2018) or ranged from 15 to 29 (U.S. EPA, 2016), 6-10 (ATSDR, 2021) and 0.2-0.8 (U.S. EPA, 2023, draft). Ninety-fifth percentiles of serum levels from the 2018-2019 Canadian Health Measures Survey (CHMS) and the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were slightly below the BE for ATSDR, and geometric means were above the non-cancer BEs for the U.S. EPA (2023, draft). CONCLUSION Non-cancer BEs spanned three orders of magnitude. The lowest BEs were for EGVs based on developmental endpoints in epidemiological studies. Concentrations in Canadian/U.S. national surveys were higher than or close to BEs for the most recent non-cancer EGVs.
Collapse
Affiliation(s)
- Ernest-Louli Tewfik
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Nolwenn Noisel
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada; Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Canada.
| |
Collapse
|
17
|
Huang Y, Fang F, Chen Y, He X, Chen Q, Wang H, Zhang J. Prenatal exposure to per- and polyfluoroalkyl substances and infant sleep disturbance: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2023; 178:108070. [PMID: 37399769 DOI: 10.1016/j.envint.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may adversely affect fetal brain development, yet no study has investigated the potential association between prenatal PFAS exposure and infant sleep. OBJECTIVES To explore the associations of prenatal PFAS exposure with infant sleep disturbances during the first year of life in a prospective cohort study. METHODS We recruited 4127 pregnant women from the Shanghai Birth Cohort (SBC) and followed their children from birth to 12 months old. A total of 2366 infants were included in the 6-month analyses, and 2466 infants in the 12-month analyses. Ten PFAS were quantified in blood serum collected in the first trimester. Sleep quality was measured using the Brief Infant Sleep Questionnaire. We used multiple linear regression and multinomial logistic regression to estimate the individual effects of PFAS on sleep outcomes. We utilized a quantile-based g-computation model to determine the joint effects of the PFAS mixture on infant sleep outcomes. Additionally, generalized estimating equation (GEE) models were performed to examine the longitudinal effects of PFAS exposure during pregnancy. RESULTS In infants aged 6 months, perfluorooctane sulfonate and perfluoroheptanoic acid were associated with a more than 2-fold risk of parent-reported sleep problems as severe. Perfluorodecanoic acid was associated with an increased risk of often or almost always snoring in one-year-old infants (relative risk ratios, 1.79; 95% CI, 1.12-2.86). PFAS mixtures were positively associated with nighttime awakenings both among infants aged 6 months (β, 0.11; 95% CI, 0.04-0.19) and 12 months (β, 0.11; 95% CI, 0.05-0.18). Prenatal exposure to PFAS were associated with longer sleep latency, increased nighttime awakenings, longer nocturnal wakefulness hours, snoring, and earlier sleep-onset time in infants aged 6-12 months, according to GEE models. CONCLUSIONS Our study suggests that prenatal exposure to PFAS may increase the risk of sleep disturbance in infants.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Fang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Developmental and Behavioral Pediatric Department & Child Primary Care Department, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqing He
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Niu S, Cao Y, Chen R, Bedi M, Sanders AP, Ducatman A, Ng C. A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76002. [PMID: 37418334 PMCID: PMC10328216 DOI: 10.1289/ehp11885] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear. OBJECTIVES This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge. METHODS We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives. RESULTS The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression. DISCUSSION Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuexin Cao
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Ducatman
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Zhuchen HY, Wang JY, Liu XS, Shi YW. Research Progress on Neurodevelopmental Toxicity in Offspring after Indirect Exposure to PFASs in Early Life. TOXICS 2023; 11:571. [PMID: 37505537 PMCID: PMC10386615 DOI: 10.3390/toxics11070571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widespread environmental pollutants. There is increasing evidence that PFASs have various adverse health effects, including renal toxicity, metabolic dysfunction, endocrine disruption, and developmental toxicity. PFASs have been found to accumulate in the placenta, and some PFASs can cross the placental barrier and subsequently accumulate in the fetus via the maternal-fetal circulation. An increasing number of studies have shown that early life exposure to PFASs can affect fetal neurodevelopment. This paper reviews the characteristics of indirect exposure to PFASs in early life, the effects on neurodevelopment in offspring, and the possible mechanisms of toxic effects.
Collapse
Affiliation(s)
- Huai-Yu Zhuchen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Yu Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Shan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Guangzhou 510000, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
20
|
Lynch MT, Lay CR, Sokolinski S, Antezana A, Ghio C, Chiu WA, Rogers R. Community-facing toxicokineticmodels to estimate PFAS serum levels based on life history and drinking water exposures. ENVIRONMENT INTERNATIONAL 2023; 176:107974. [PMID: 37245445 PMCID: PMC11017972 DOI: 10.1016/j.envint.2023.107974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are drinking water contaminants. Tools to assess the potential body burden associated with drinking PFAS-contaminated water may be helpful for public health assessment of exposed communities. METHODS We implemented a suite of one-compartment toxicokinetic models using extensively calibrated toxicokinetic parameters (half-life and volume of distribution). We implemented the models both in the R programming language for research purposes, and as a web estimator for the general public (built in typescript.js). These models simulate exposure to PFAS water concentrations for individuals with varying characteristics such as age, sex, weight, and breastfeeding history. The models account for variability and uncertainty in parameter inputs to produce Monte Carlo-based estimates of serum concentration. For children, the models additionally account for gestational exposure, lactational exposure, and potential exposure through formula feeding. For adults who have borne children, the models account for clearance through birth and breastfeeding. We ran simulations of individuals with known PFAS water and serum concentrations to evaluate the model. We then compared the predicted serum PFAS concentrations to measured data. RESULTS The models accurately estimate individual-level serum levels for each PFAS for most adults within ½ order of magnitude. We found that the models somewhat overestimated serum concentrations for children in the tested locations, and that these overestimates are generally within an order of magnitude. DISCUSSION This paper presents scientifically robust models that allow users to estimate serum PFAS concentrations based on known PFAS water concentrations and physiologic information. However, accuracy in historical water concentration inputs, exposure from non-drinking water sources, and life-history characteristics of individuals present a complex problem for individual estimation. Additional refinements to the model suite to improve the prediction of individual results may consist of including duration of exposure and additional life-history characteristics.
Collapse
Affiliation(s)
- Meghan T Lynch
- Abt Associates, 10 Fawcett Street, Suite 5, Cambridge, MA 02138 USA.
| | - Claire R Lay
- Abt Associates, 10 Fawcett Street, Suite 5, Cambridge, MA 02138 USA
| | - Sara Sokolinski
- Abt Associates, 10 Fawcett Street, Suite 5, Cambridge, MA 02138 USA
| | - Adriana Antezana
- Abt Associates, 10 Fawcett Street, Suite 5, Cambridge, MA 02138 USA
| | - Carleen Ghio
- Abt Associates, 10 Fawcett Street, Suite 5, Cambridge, MA 02138 USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX 77843, USA
| | - Rachel Rogers
- Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (ATSDR), 4770 Buford Highway, NE, Atlanta, GA 30341-3717, USA
| |
Collapse
|
21
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
22
|
Timmermann A, Avenbuan ON, Romano ME, Braun JM, Tolstrup JS, Vandenberg LN, Fenton SE. Per- and Polyfluoroalkyl Substances and Breastfeeding as a Vulnerable Function: A Systematic Review of Epidemiological Studies. TOXICS 2023; 11:325. [PMID: 37112552 PMCID: PMC10145877 DOI: 10.3390/toxics11040325] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/25/2023]
Abstract
Milk formation in the breast during breastfeeding is a complex hormonally regulated process, potentially sensitive to the effects of endocrine-disrupting chemical exposures. The environmental chemicals, per- and polyfluoroalkyl substances (PFAS) are known endocrine disruptors. PFAS exposure have been associated with insufficient mammary gland development in mice and reduced breastfeeding duration in humans. The aim of this review was to gather the epidemiological evidence on the association between PFAS exposure and breastfeeding duration. Using PubMed and Embase, we performed a systematic literature search (on 23 January 2023) to identify epidemiological studies examining the association between maternal PFAS exposure and breastfeeding duration. Animal studies, reviews, and non-English studies were excluded. The risk of bias was assessed using the risk of bias in non-randomized studies of exposures tool. Estimates describing the association between PFAS exposure and the duration of breastfeeding were identified, and the data were synthesized separately for each type of PFAS and for the duration of exclusive and total breastfeeding. Six studies with between 336 and 2374 participants each were identified. PFAS exposure was assessed in serum samples (five studies) or based on residential address (one study). Five out of six studies found shorter total duration of breastfeeding with higher PFAS exposure. The most consistent associations were seen for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). The finding of a potential causal association between PFAS exposure and breastfeeding duration is in agreement with findings from experimental studies.
Collapse
Affiliation(s)
- Amalie Timmermann
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark
| | - Oyemwenosa N. Avenbuan
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC 27 599-7325, USA
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH 03 755, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02 903, USA
| | - Janne S. Tolstrup
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01 003, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC 27 709, USA
| |
Collapse
|
23
|
Johanson G, Gyllenhammar I, Ekstrand C, Pyko A, Xu Y, Li Y, Norström K, Lilja K, Lindh C, Benskin JP, Georgelis A, Forsell K, Jakobsson K, Glynn A, Vogs C. Quantitative relationships of perfluoroalkyl acids in drinking water associated with serum concentrations above background in adults living near contamination hotspots in Sweden. ENVIRONMENTAL RESEARCH 2023; 219:115024. [PMID: 36535390 DOI: 10.1016/j.envres.2022.115024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated drinking water (DW) is a major source of exposure to per- and polyfluoroalkyl substances (PFAS) at locations around PFAS production/use facilities and military airports. This study aimed to investigate quantitative relationships between concentrations in DW and serum of nine perfluoroalkyl acids (PFAAs) in Swedish adult populations living near contamination hotspots. Short-chained (PFPeA, PFHxA, PFHpA, and PFBS) and long-chained PFAAs (PFOA, PFNA, PFDA, PFHxS and PFOS) were measured in DW and serum. We matched DW and serum concentrations for a total of 398 subjects living or working in areas receiving contaminated DW and in one non-contaminated area. Thereafter, linear regression analysis with and without adjustments for co-variates was conducted. This enabled to derive (i) serum concentrations at background exposure (CB) from sources other than local DW exposure (i.e. food, dust and textiles) at 0 ng/L DW concentration, (ii) population-mean PFAA serum:water ratios (SWR) and (iii) PFAA concentrations in DW causing observable elevated serum PFAA concentrations above background variability. Median concentrations of the sum of nine PFAAs ranged between 2.8 and 1790 ng/L in DW and between 7.6 and 96.9 ng/mL in serum. DW concentration was the strongest predictor, resulting in similar unadjusted and adjusted regression coefficients. Mean CB ranged from <0.1 (PFPeA, PFHpA, PFBS) to 5.1 ng/mL (PFOS). Serum concentrations increased significantly with increasing DW concentrations for all PFAAs except for PFPeA with SWRs ranging from <10 (PFHxA, PFHpA and PFBS) to 111 (PFHxS). Observed elevated serum concentrations above background variability were reached at DW concentrations between 24 (PFOA) and 357 ng/L (PFHxA). The unadjusted linear regression predictions agreed well with serum concentrations previously reported in various populations exposed to low and high DW levels of PFOA, PFHxS and PFOS. The quantitative relationships derived herein should be helpful to translate PFAA concentrations in DW to concentrations in serum at the population level.
Collapse
Affiliation(s)
- Gunnar Johanson
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE 171 77, Stockholm, Sweden
| | - Irina Gyllenhammar
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden; Swedish Food Agency, Box 622, 751 26, Uppsala, Sweden
| | - Carl Ekstrand
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden
| | - Andrei Pyko
- Center for Occupational and Environmental Health, Region Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiyi Xu
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden
| | - Karin Norström
- Swedish Environmental Protection Agency, Circular Economy Department, 106 48, Stockholm, Sweden
| | - Karl Lilja
- Swedish Environmental Protection Agency, Circular Economy Department, 106 48, Stockholm, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Antonios Georgelis
- Center for Occupational and Environmental Health, Region Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Forsell
- Occupational and Environmental Medicine, Norrland University Hospital, Umeå, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Box 414, 405 30, Gothenburg, Sweden
| | - Anders Glynn
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden
| | - Carolina Vogs
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
24
|
East A, Dawson DE, Brady S, Vallero DA, Tornero-Velez R. A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models. TOXICS 2023; 11:163. [PMID: 36851038 PMCID: PMC9964825 DOI: 10.3390/toxics11020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across studies depending on the application and the state of the science. This scoping effort seeks to systematically map the current landscape of PFAS TK models by categorizing different trends and similarities across model type, PFAS, and use scenario. A literature review using Web of Science and SWIFT-Review was used to identify TK models used for PFAS. The assessment covered publications from 2005-2020. PFOA, the PFAS for which most models were designed, was included in 69 of the 92 papers, followed by PFOS with 60, PFHxS with 22, and PFNA with 15. Only 4 of the 92 papers did not include analysis of PFOA, PFOS, PFNA, or PFHxS. Within the corpus, 50 papers contained a one-compartment model, 17 two-compartment models were found, and 33 used physiologically based pharmacokinetic (PBTK) models. The scoping assessment suggests that scientific interest has centered around two chemicals-PFOA and PFOS-and most analyses use one-compartment models in human exposure scenarios.
Collapse
Affiliation(s)
- Alexander East
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA
- ToxStrategies LLC, 31B College Place, Asheville, NC 28801, USA
| | - Daniel E. Dawson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sydney Brady
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA
| | - Daniel A. Vallero
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Rogelio Tornero-Velez
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
25
|
Han F, Wang Y, Li J, Lyu B, Liu J, Zhang J, Zhao Y, Wu Y. Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: Results of the third National Human Milk Survey (2017-2020). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130163. [PMID: 36272370 DOI: 10.1016/j.jhazmat.2022.130163] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants widely contaminated and exposed in humans. China is a major manufacturer and consumer of these chemicals. To characterize the occurrences, geographical variations, temporal trends, and exposure risks of legacy and emerging PFAS in perinatal women and their children in China, 30 PFAS were measured in 100 pooled human milk samples consisting of 3531 individual samples collected from 100 sites in 24 provinces during the 2017-2020 National Human Milk Survey. Linear-perfluorooctanoic acid (L-PFOA, 151 pg/mL) and linear-perfluorooctane sulfonate (L-PFOS, 57.0 pg/mL) were the predominant PFAS in human milk, followed by 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA, 25.9 pg/mL). The geographic variation trend of PFOA was different from PFOS and Cl-PFESA, and a special geographic trend of perfluoropentanesulfonate (PFPeS) was observed. Comparison of National Human Milk surveys from different periods showed a sharp decrease of PFAS exposure in old industrial areas including Shanghai and Liaoning, but higher PFAS exposure observed in Shandong and Hubei indicated a possible domestic shift of PFAS manufacture to these areas. Worldwide comparison of PFAS in human milk indicated high PFOA exposure in China. Risk assessments for mothers and breastfeeding infants showed that PFAS exposure is of concern in China.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
26
|
Critical endpoints of PFOA and PFOS exposure for regulatory risk assessment in drinking water: Parameter choices impacting estimates of safe exposure levels. Regul Toxicol Pharmacol 2023; 138:105323. [PMID: 36599390 DOI: 10.1016/j.yrtph.2022.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
USEPA issued drinking water interim health advisories (iHA) for PFOA and PFOS. The Agency's choice for critical effect, toxic point-of-departure (PoD), benchmark dose (BMD), pharmacokinetic (PK) model extrapolation to ingested dose, and use of uncertainty factors, resulted in the iHA for PFOS and PFOA being lowered from 70 ppt to 0.04-0.2 ppt. This review addresses key steps in the iHA derivation that influence changes in iHA values and suggests analysis and modeling changes for higher confidence in the iHA derivation, and re-evaluation of critical endpoint data for immunotoxicity and associated BMD modeling to derive a serum antibody PoD in the clinically adverse range. Movement from empirical PK modeling of ingested human dose to a platform that captures biological realism will more accurately reflect PFAS elimination, which impacts model-optimized ingested dose. The uncertainty factor (UF) for human variability should be reconsidered, as in utero and neonate exposures used to derive the iHA represent the likely susceptible populations. Although not part of the iHA derivation, cancer was considered in the drinking water maximum contaminant level goal (MCLG) technical evaluation. We discuss weaknesses in the cancer epidemiological data that require re-evaluation as the drinking water regulation process proceeds to a national standard.
Collapse
|
27
|
Criswell RL, Wang Y, Christensen B, Botelho JC, Calafat AM, Peterson LA, Huset CA, Karagas MR, Romano ME. Concentrations of Per- and Polyfluoroalkyl Substances in Paired Maternal Plasma and Human Milk in the New Hampshire Birth Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:463-472. [PMID: 36574487 PMCID: PMC9837617 DOI: 10.1021/acs.est.2c05555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent endocrine-disrupting chemicals associated with long-term health outcomes. PFAS are transferred from maternal blood to human milk, an important exposure source for infants, and understanding of this transfer is evolving. We characterized concentrations of 10 PFAS in human milk (n = 426) and compared milk-to-plasma concentrations of 9 PFAS among a subset of women with paired samples (n = 294) from the New Hampshire Birth Cohort Study using liquid chromatography-isotope dilution tandem mass spectrometry. We examined the relationship between perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in plasma versus milk and fit linear regression models to assess relationships between milk PFOA and PFOS and participant characteristics. The median plasma PFOA concentration was 0.94 ng/mL (interquartile range, IQR, 0.59-1.34) and that of PFOS was 2.60 ng/mL (IQR 1.80-3.90); the median milk PFOA concentration was 0.017 ng/mL (IQR 0.012-0.027) and that of PFOS was 0.024 ng/mL (IQR 0.016-0.036). PFOA and PFOS plasma and milk concentrations showed correlations of ρ = 0.83 and 0.77, respectively (p < 0.001). Parity, previous lactation, week of milk collection, and body mass index were inversely associated with milk PFAS. We estimate that even among our general population cohort, some infants (∼6.5%) are exposed to amounts of PFAS via milk that may have long-term health impacts.
Collapse
Affiliation(s)
| | - Yuting Wang
- Department of Epidemiology, The Geisel
School of Medicine at Dartmouth, Lebanon, New Hampshire 03755,
United States
| | - Brock Christensen
- Department of Epidemiology, The Geisel
School of Medicine at Dartmouth, Lebanon, New Hampshire 03755,
United States
| | - Julianne C. Botelho
- Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30333,
United States
| | - Antonia M. Calafat
- Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30333,
United States
| | - Lisa A. Peterson
- Division of Environmental Health Sciences,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
- Masonic Cancer Center, University of
Minnesota, Minneapolis, Minnesota 55455, United
States
| | - Carin A. Huset
- Minnesota Department of Health,
St. Paul, Minnesota 55101, United States
| | - Margaret R. Karagas
- Department of Epidemiology, The Geisel
School of Medicine at Dartmouth, Lebanon, New Hampshire 03755,
United States
| | - Megan E. Romano
- Department of Epidemiology, The Geisel
School of Medicine at Dartmouth, Lebanon, New Hampshire 03755,
United States
| |
Collapse
|
28
|
Ding J, Dai Y, Zhang J, Wang Z, Zhang L, Xu S, Tan R, Guo J, Qi X, Chang X, Wu C, Zhou Z. Associations of perfluoroalkyl substances with adipocytokines in umbilical cord serum: A mixtures approach. ENVIRONMENTAL RESEARCH 2023; 216:114654. [PMID: 36309220 DOI: 10.1016/j.envres.2022.114654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), a kind of emerging environmental endocrine disruptors, may interfere with the secretion of adipokines and affect fetal metabolic function and intrauterine development. However, the epidemiological evidence is limited and inconsistent. We examined the associations of single and multiple PFAS exposures in utero with adipocytokine concentrations in umbilical cord serum. METHODS This study included 1111 mother-infant pairs from Sheyang Mini Birth Cohort Study (SMBCS), and quantified 12 PFAS and two adipokine in umbilical cord serum. Generalized linear models (GLMs) and Bayesian Kernel Machine Regression (BKMR) models were applied to estimate the associations of single- and mixed- PFAS exposure with adipokines, respectively. Furthermore, sex-stratification was done in each model to assess the sexually dimorphic effects of PFAS. RESULTS 10 PFAS were detected with median concentrations (μg/L) ranging from 0.04 to 3.97, (except 2.7% for PFOSA and 1.7% for PFDS, which were excluded). In GLMs, for each doubling increase in PFBS, PFHpA, PFHxS, PFHpS, PFUnDA and PFDoDA, leptin decreased between 14.04% for PFBS and 22.69% for PFHpS (P < 0.05). PFAS, except for PFNA, were positively associated with adiponectin, and for each doubling of PFAS, adiponectin increased between 3.27% for PFBS and 12.28% for PFHxS (P < 0.05). In addition, infant gender modified the associations of PFAS with adipokines, especially the associations of PFBS, PFOA and PFHxS with adiponectin. Similarly, significant associations of PFAS mixtures with leptin and adiponectin were observed in the BKMR models. PFDA, PFOS, PFNA and PFHpS were identified as important contributors. In the sex-stratified analysis of BKMR models, the associations between PFAS mixtures and adipokines were more pronounced in males. CONCLUSIONS PFAS levels were significantly associated with adipokines in cord serum, suggesting that intrauterine mixture of PFAS exposure may be related to decreased fetal leptin level but increased fetal adiponectin level and the associations may be sex-specific.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Ruonan Tan
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Aker A, Ayotte P, Caron-Beaudoin E, De Silva A, Ricard S, Gaudreau É, Lemire M. Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. CHEMOSPHERE 2023; 310:136797. [PMID: 36244416 DOI: 10.1016/j.chemosphere.2022.136797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs), a subset of per- and poly-fluoroalkyl substances (PFAS), are environmentally stable, mobile and bioaccumulative compounds. This leads to high concentrations in wildlife species essential to the cultural identity and subsistence of Arctic populations. Our objective was to characterize the distribution and exposure determinants of PFAAs among Nunavik Inuit adults. The study included up to 1322 Nunavik residents aged 16-80 years who participated in the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017). Plasma concentrations were compared to those the general Canadian population using data from the Canadian Health Measures Survey Cycle 5 (2016-2017). Associations between plasma concentrations of nine PFAAs, determined by liquid chromatography-tandem mass spectrometry, and sociodemographic factors and traditional activity participation were examined using multiple linear regression models. Overall exposure to PFAAs was twice as high compared to the general Canadian population and less regulated perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) concentrations were 7-fold higher, and perfluorodecanoic acid (PFDA) concentrations were 4-fold higher. Males had higher concentrations of perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), whereas females had higher concentrations of PFDA and PFUnDA. PFAAs concentrations increased with age and were highest among those aged 60+ years. PFNA and PFOA concentrations followed a J-shaped pattern: those aged 16-29 years had higher concentrations than those aged 20-29 and 30-39 years. Ungava Bay generally had lower concentrations of all PFAAs congeners compared to Hudson Bay and Hudson Strait, with the exception of PFNA, which tended to have the lowest concentration in Hudson Strait. PFAAs concentrations were highly associated with hunting activity, omega-3 polyunsaturated fatty acids, and drinking water from environmental sources. The results highlight the importance of characterizing PFAAs exposure sources in Arctic communities and provide further evidence for the long-range transport of long-chain PFAAs and their precursors that necessitate international action.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
30
|
Abrahamsson D, Siddharth A, Robinson JF, Soshilov A, Elmore S, Cogliano V, Ng C, Khan E, Ashton R, Chiu WA, Fung J, Zeise L, Woodruff TJ. Modeling the transplacental transfer of small molecules using machine learning: a case study on per- and polyfluorinated substances (PFAS). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:808-819. [PMID: 36207486 PMCID: PMC9742309 DOI: 10.1038/s41370-022-00481-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Despite their large numbers and widespread use, very little is known about the extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the developing fetus. OBJECTIVE The aim of our study is to develop a computational approach that can be used to evaluate the of extend to which small molecules, and in particular PFAS, can cross to cross the placenta and partition to cord blood. METHODS We collected experimental values of the concentration ratio between cord and maternal blood (RCM) for 260 chemical compounds and calculated their physicochemical descriptors using the cheminformatics package Mordred. We used the compiled database to, train and test an artificial neural network (ANN). And then applied the best performing model to predict RCM for a large dataset of PFAS chemicals (n = 7982). We, finally, examined the calculated physicochemical descriptors of the chemicals to identify which properties correlated significantly with RCM. RESULTS We determined that 7855 compounds were within the applicability domain and 127 compounds are outside the applicability domain of our model. Our predictions of RCM for PFAS suggested that 3623 compounds had a log RCM > 0 indicating preferable partitioning to cord blood. Some examples of these compounds were bisphenol AF, 2,2-bis(4-aminophenyl)hexafluoropropane, and nonafluoro-tert-butyl 3-methylbutyrate. SIGNIFICANCE These observations have important public health implications as many PFAS have been shown to interfere with fetal development. In addition, as these compounds are highly persistent and many of them can readily cross the placenta, they are expected to remain in the population for a long time as they are being passed from parent to offspring. IMPACT Understanding the behavior of chemicals in the human body during pregnancy is critical in preventing harmful exposures during critical periods of development. Many chemicals can cross the placenta and expose the fetus, however, the mechanism by which this transport occurs is not well understood. In our study, we developed a machine learning model that describes the transplacental transfer of chemicals as a function of their physicochemical properties. The model was then used to make predictions for a set of 7982 per- and polyfluorinated alkyl substances that are listed on EPA's CompTox Chemicals Dashboard. The model can be applied to make predictions for other chemical categories of interest, such as plasticizers and pesticides. Accurate predictions of RCM can help scientists and regulators to prioritize chemicals that have the potential to cause harm by exposing the fetus.
Collapse
Affiliation(s)
- Dimitri Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA.
| | - Adi Siddharth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA
| | - Anatoly Soshilov
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Sarah Elmore
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Vincent Cogliano
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara St, Pittsburgh, PA, 15261, USA
| | - Elaine Khan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Randolph Ashton
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, 330 N Orchard St, Madison, WI, 53715, USA
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI, 53706, USA
| | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer Fung
- Department of Obstetrics, Gynecology, and Reproductive Science and the Center of Reproductive Science, University of California, San Francisco, San Francisco, CA, 94143-2240, USA
| | - Lauren Zeise
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I St, Sacramento, CA, 95814, USA
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1515 Clay St, Oakland, CA, 94612, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California, San Francisco, 490 Illinois Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
31
|
Lin M, Liao Q, Tang P, Song Y, Liang J, Li J, Mu C, Liu S, Qiu X, Yi R, Pang Q, Pan D, Zeng X, Huang D. Association of maternal perfluoroalkyl substance exposure with postpartum haemorrhage in Guangxi, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114078. [PMID: 36137419 DOI: 10.1016/j.ecoenv.2022.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Postpartum haemorrhage (PPH) is the leading cause of maternal death worldwide, and it may be caused by environmental endocrine disruptors. Prenatal exposure to perfluoroalkyl substances (PFASs) in women has been linked to pregnancy disorders and adverse birth outcomes, but no data are available on the relationship between PFAS exposure during pregnancy and postpartum haemorrhage. This study aimed to explore the associations of maternal PFAS exposure with the postpartum haemorrhage risk and total blood loss. A total of 1496 mother-infant pairs in the Guangxi Zhuang birth cohort were included between June 2015 and May 2018. The concentration of PFASs in serum was detected using ultrahigh liquid chromatography-tandem mass spectrometry. Multiple binomial regression and linear regression models were used to analyse individual PFAS exposures. The mixture of PFASs was analysed using Bayesian Kernel Machine Regression (BKMR). In single substance exposure models, exposure to perfluorohexanesulfonic acid (PFHxS) increased the risk of postpartum haemorrhage (OR: 3.42, 95 % CI: 1.45, 8.07), while exposure to perfluorododecanoic acid (PFDoA) was inversely associated with the risk of postpartum haemorrhage (OR: 0.42, 95 % CI: 0.22, 0.80). The concentrations of perfluoroundecanoic acid (PFUnA) (β: 0.06, 95 % CI: 12.32, 108.82) and perfluorononanoic acid (PFNA) (β: 0.05, 95 % CI: 0.40, 88.95) exposure were positively correlated with the amount of postpartum haemorrhage; this result occurred only in the absence of covariate adjustment. In BKMR models, the risk of postpartum haemorrhage increased with increasing exposure to a PFAS mixture. In conclusion, our study suggested that maternal serum PFAS exposure during pregnancy was associated with the risk of postpartum haemorrhage.
Collapse
Affiliation(s)
- Mengrui Lin
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yanye Song
- Nanning Second People's Hospital, Nanning 530031, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinxiu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Changhui Mu
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rui Yi
- Paediatrics, Tiandong Maternal and Child Health Hospital, Tiandong 531500, Guangxi, China
| | - Qiang Pang
- Department of Cardiology, Debao Maternal and Child Health Hospital, Debao 533700, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Inspection, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
32
|
Wang Z, Shi R, Ding G, Yao Q, Pan C, Gao Y, Tian Y. Association between maternal serum concentration of perfluoroalkyl substances (PFASs) at delivery and acute infectious diseases in infancy. CHEMOSPHERE 2022; 289:133235. [PMID: 34896425 DOI: 10.1016/j.chemosphere.2021.133235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent and bio-accumulative compounds that have been recognized as important immune hazards by animal studies. However, epidemiological studies regarding the impact on infant infections were inconsistent. OBJECTIVES We investigated the associations between prenatal exposure to PFASs and acute infectious diseases including common cold, bronchitis/pneumonia, and diarrhea in early childhood. METHODS Participating 235 mother-infant pairs were recruited from the Laizhou Wan (Bay) birth cohort (LWBC), a prospective study in Shandong, China between September 2010 and 2013. Ten selected PFASs congeners including PFOA, PFOS, PFNA, PFDA, PFUA, PFDoA, PFHxS, PFBS, PFHpA, and PFOSA were measured from maternal serum by HPLC-MS/MS. Detailed information on parent-reported frequency of acute infectious diseases was collected from questionnaires at 1-year follow-up, which was confirmed by the medical records. Logistic and Poisson regression models were used on binary health outcomes (yes/no) and the number of episodes of outcomes, which were reported as odds ratio (OR) and incidence rate-ratio (IRR), respectively. RESULTS The risk of diarrhea increased by 4.99 (95% CI = 1.86, 13.39) per log-unit increase in PFOA. The frequencies of diarrhea increased by 97%-116% for each 10-fold increase in PFOA, PFNA, and PFDA. Moreover, when stratified by exclusively breastfeeding duration (at least 4 months or not), the adverse effects of PFASs exposures on diarrhea were more pronounced among the breastfed infants. There were no associations between prenatal PFASs exposure and common cold or bronchitis/pneumonia. CONCLUSIONS Exposure to PFASs was associated with increased risks of diarrhea during the first year of life, and these effects were stronger among the breastfed infants. Due to the small sample size, our results should be interpreted with caution and additional studies on larger populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, 1400 West Beijing Road, Shanghai, 200040, China
| | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
LaKind JS, Verner MA, Rogers RD, Goeden H, Naiman DQ, Marchitti SA, Lehmann GM, Hines EP, Fenton SE. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don't We Know More? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:25002. [PMID: 35195447 PMCID: PMC8865090 DOI: 10.1289/ehp10359] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Despite 20 y of biomonitoring studies of per- and polyfluoroalkyl substances (PFAS) in both serum and urine, we have an extremely limited understanding of PFAS concentrations in breast milk of women from the United States and Canada. The lack of robust information on PFAS concentrations in breast milk and implications for breastfed infants and their families were brought to the forefront by communities impacted by PFAS contamination. OBJECTIVES The objectives of this work are to: a) document published PFAS breast milk concentrations in the United States and Canada; b) estimate breast milk PFAS levels from maternal serum concentrations in national surveys and communities impacted by PFAS; and c) compare measured/estimated milk PFAS concentrations to screening values. METHODS We used three studies reporting breast milk concentrations in the United States and Canada We also estimated breast milk PFAS concentrations by multiplying publicly available serum concentrations by milk:serum partitioning ratios for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Measured and estimated breast milk concentrations were compared to children's drinking water screening values. DISCUSSION Geometric means of estimated breast milk concentrations ranged over approximately two orders of magnitude for the different surveys/communities. All geometric mean and mean estimated and measured breast milk PFOA and PFOS concentrations exceeded drinking water screening values for children, sometimes by more than two orders of magnitude. For PFHxS and PFNA, all measured breast milk levels were below the drinking water screening values for children; the geometric mean estimated breast milk concentrations were close to-or exceeded-the children's drinking water screening values for certain communities. Exceeding a children's drinking water screening value does not indicate that adverse health effects will occur and should not be interpreted as a reason to not breastfeed; it indicates that the situation should be further evaluated. It is past time to have a better understanding of environmental chemical transfer to-and concentrations in-an exceptional source of infant nutrition. https://doi.org/10.1289/EHP10359.
Collapse
Affiliation(s)
- Judy S. LaKind
- LaKind Associates, LLC, Catonsville, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada
- Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Québec, Canada
| | - Rachel D. Rogers
- Office of the Director, National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA
| | - Helen Goeden
- Environmental Health Division, Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Daniel Q. Naiman
- Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Erin P. Hines
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
34
|
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022; 465:153031. [PMID: 34774661 PMCID: PMC8743032 DOI: 10.1016/j.tox.2021.153031] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widespread environmental contaminants frequently detected in drinking water supplies worldwide that have been linked to a variety of adverse reproductive health outcomes in women. Compared to men, reproductive health effects in women are generally understudied while global trends in female reproduction rates are declining. Many factors may contribute to the observed decline in female reproduction, one of which is environmental contaminant exposure. PFAS have been used in home, food storage, personal care and industrial products for decades. Despite the phase-out of some legacy PFAS due to their environmental persistence and adverse health effects, alternative, short-chain and legacy PFAS mixtures will continue to pollute water and air and adversely influence women's health. Studies have shown that both long- and short-chain PFAS disrupt normal reproductive function in women through altering hormone secretion, menstrual cyclicity, and fertility. Here, we summarize the role of a variety of PFAS and PFAS mixtures in female reproductive tract dysfunction and disease. Since these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption, the role of PFAS in breast, thyroid, and hypothalamic-pituitary-gonadal axis function are also discussed as the interplay between these tissues may be critical in understanding the long-term reproductive health effects of PFAS in women. A major research gap is the need for mechanism of action data - the targets for PFAS in the female reproductive and endocrine systems are not evident, but the effects are many. Given the global decline in female fecundity and the ability of PFAS to negatively impact female reproductive health, further studies are needed to examine effects on endocrine target tissues involved in the onset of reproductive disorders of women.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suzanne E Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Rm E121A, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, Gražulevičienė R, Småstuen Haug L, Heude B, Maitre L, McEachan RRC, Robinson O, Roumeliotaki T, Sabidó E, Borràs E, Urquiza J, Vafeiadi M, Zhao Y, Slama R, Wright J, Conti DV, Vrijheid M, Chatzi L. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. ENVIRONMENT INTERNATIONAL 2021; 157:106853. [PMID: 34500361 PMCID: PMC11847598 DOI: 10.1016/j.envint.2021.106853] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances (PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is associated with poor metabolic health in children. We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic health in children, and the role of inflammatory proteins. In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of PFAS in blood collected in pregnancy and at 8 years (range = 6-12 years). We applied Bayesian Kernel Machine regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role of inflammatory status for the exposure-outcome association by integrating the three panels into a network. Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and these were opposing directions from the overall mixture. Further, the network consisted of five distinct communities connected with positive and negative correlations. The selected inflammatory biomarkers were positively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. Our study supports that prenatal, rather than postnatal, PFAS exposure might contribute to an unfavorable lipidemic profile and adiposity in childhood.
Collapse
Affiliation(s)
| | - Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA; Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, INSERM, Université de Paris, INRAe, Paris, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
36
|
Wu Y, Song Z, Little JC, Zhong M, Li H, Xu Y. An integrated exposure and pharmacokinetic modeling framework for assessing population-scale risks of phthalates and their substitutes. ENVIRONMENT INTERNATIONAL 2021; 156:106748. [PMID: 34256300 DOI: 10.1016/j.envint.2021.106748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
To effectively incorporate in vitro-in silico-based methods into the regulation of consumer product safety, a quantitative connection between product phthalate concentrations and in vitro bioactivity data must be established for the general population. We developed, evaluated, and demonstrated a modeling framework that integrates exposure and pharmacokinetic models to convert product phthalate concentrations into population-scale risks for phthalates and their substitutes. A probabilistic exposure model was developed to generate the distribution of multi-route exposures based on product phthalate concentrations, chemical properties, and human activities. Pharmacokinetic models were developed to simulate population toxicokinetics using Bayesian analysis via the Markov chain Monte Carlo method. Both exposure and pharmacokinetic models demonstrated good predictive capability when compared with worldwide studies. The distributions of exposures and pharmacokinetics were integrated to predict the population distributions of internal dosimetry. The predicted distributions showed reasonable agreement with the U.S. biomonitoring surveys of urinary metabolites. The "source-to-outcome" local sensitivity analysis revealed that food contact materials had the greatest impact on body burden for di(2-ethylhexyl) adipate (DEHA), di-2-ethylhexyl phthalate (DEHP), di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), and di(2-propylheptyl) phthalate (DPHP), whereas the body burden of diethyl phthalate (DEP) was most sensitive to the concentration in personal care products. The upper bounds of predicted plasma concentrations showed no overlap with ToxCast in vitro bioactivity values. Compared with the in vitro-to-in vivo extrapolation (IVIVE) approach, the integrated modeling framework has significant advantages in mapping product phthalate concentrations to multi-route risks, and thus is of great significance for regulatory use with a relatively low input requirement. Further integration with new approach methodologies will facilitate these in vitro-in silico-based risk assessments for a broad range of products containing an equally broad range of chemicals.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zidong Song
- Department of Building Science and Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Min Zhong
- Bureau of Air Quality, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17101, USA
| | - Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX 78712, USA
| | - Ying Xu
- Department of Building Science and Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX 78712, USA.
| |
Collapse
|
37
|
Wei S, Xu T, Jiang T, Yin D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10911-10922. [PMID: 34355568 DOI: 10.1021/acs.est.1c02048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air pollution composed of the complex interactions among particular matter, chemicals, and pathogens is an emerging and global environmental issue that closely correlates with a variety of diseases and adverse health effects, especially increasing incidences of neurodegenerative diseases. However, as one of the prevalent health outcomes of air pollution, chemosensory dysfunction has not attracted enough concern until recently. During the COVID-19 pandemic, multiple scientific studies emphasized the plausibly essential roles of the chemosensory system in the airborne transmission airway of viruses into the human body, which can also be utilized by pollutants. In this Review, in addition to summarizing current progress regarding the contributions of traditional air pollutants to chemosensory dysfunction, we highlight the roles of emerging contaminants. We not only sum up clarified mechanisms, such as inflammation and apoptosis but also discuss some not yet completely identified mechanisms, e.g., disruption of olfactory signal transduction. Although the existing evidence is not overwhelming, the chemosensory system is expected to be a useful indicator in neurotoxicology and neural diseases based on accumulating studies that continually excavate the deep link between chemosensory dysfunction and neurodegenerative diseases. Finally, we argue the importance of studies concerning chemosensory dysfunction in understanding the health effects of air pollution and provide comments for some future directions of relevant research.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Neuro-Ethology Team, 59 Bd Pinel, 69500 Bron, France
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
38
|
Abraham K, Koletzko B, Mildenberger E, Rouw E, von Gartzen A, Ensenauer R. Per- und polyfluorierte Alkylsubstanzen (PFAS) und Stillen: Nutzen-Risiken-Abwägungen. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Zheng G, Schreder E, Dempsey JC, Uding N, Chu V, Andres G, Sathyanarayana S, Salamova A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7510-7520. [PMID: 33982557 DOI: 10.1021/acs.est.0c06978] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This is the first study in the last 15 years to analyze per- and polyfluoroalkyl substances (PFAS) in breast milk collected from mothers (n = 50) in the United States, and our findings indicate that both legacy and current-use PFAS now contaminate breast milk, exposing nursing infants. Breast milk was analyzed for 39 PFAS, including 9 short-chain and 30 long-chain compounds, and 16 of these PFAS were detected in 4-100% of the samples. The ∑PFAS concentration in breast milk ranged from 52.0 to 1850 pg/mL with a median concentration of 121 pg/mL. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were the most abundant PFAS in these samples (medians 30.4 and 13.9 pg/mL, respectively). Two short-chain PFAS, including perfluoro-n-hexanoic acid (PFHxA, C6) and perfluoro-n-heptanoic acid (PFHpA, C7), were detected in most of the samples with median concentrations of 9.69 and 6.10 pg/mL, respectively. Analysis of the available breast milk PFAS data from around the world over the period of 1996-2019 showed that while the levels of the phased-out PFOS and PFOA have been declining with halving times of 8.1 and 17 years, respectively, the detection frequencies of current-use short-chain PFAS have been increasing with a doubling time of 4.1 years.
Collapse
Affiliation(s)
- Guomao Zheng
- Paul H. O'Neill School of Public and Environmental Affairs Indiana University, Bloomington, Indiana 47405, United States
| | - Erika Schreder
- Toxic-Free Future, Seattle, Washington 98103, United States
| | | | - Nancy Uding
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Valerie Chu
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Gabriel Andres
- Toxic-Free Future, Seattle, Washington 98103, United States
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington/Seattle Children's Research Institute, Seattle, Washington 91807, United States
| | - Amina Salamova
- Paul H. O'Neill School of Public and Environmental Affairs Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
40
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
41
|
Liu H, Pan Y, Jin S, Sun X, Jiang Y, Wang Y, Ghassabian A, Li Y, Xia W, Cui Q, Zhang B, Zhou A, Dai J, Xu S. Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124378. [PMID: 33139105 DOI: 10.1016/j.jhazmat.2020.124378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Experimental studies suggested per- and polyfluoroalkyl substances (PFASs) may disrupt estrogens in animals, however, the epidemiological evidence on the associations of PFASs with estrogens is sparse. We investigated the associations of legacy PFASs and their alternatives, including F-53B, the perfluorooctane sulfonate (PFOS) replacement that is specifically and commonly used in China, with estrogen concentrations in newborns. We quantified six PFASs and three estrogens in the cord sera of 942 newborns from a birth cohort in Wuhan, China, between 2013 and 2014. After adjusting for confounders and correcting for multiple comparisons, we observed that both legacy PFASs and their alternatives were associated with higher serum levels of estradiol (E2). Some of the PFASs were associated with increasing levels of estrone (E1) and estriol (E3). Analysis of PFASs in mixture using weighted quantile sum regressions showed that F-53B contributed 20.1% and 48.5% to the associations between PFASs and E1 and E2, respectively. This study provided epidemiological data on the associations between common PFAS exposures and estrogens in newborns. Additional toxicology studies are needed to fully understand the effects of PFASs on estrogens and the mechanisms.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shuna Jin
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York 10016, United States
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States; Department of Population Health, New York University Grossman School of Medicine, New York 10016, United States; Department of Environmental Medicine, New York University Grossman School of Medicine, New York 10016, United States
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China
| | - Qianqian Cui
- Department of Pediatrics, New York University Grossman School of Medicine, New York 10016, United States
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430000, Hubei, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China; State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, PR China.
| |
Collapse
|
42
|
De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:631-657. [PMID: 33201517 PMCID: PMC7906948 DOI: 10.1002/etc.4935] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 05/20/2023]
Abstract
We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carla Ng
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Robuck
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Mei Sun
- University of North Carolina at Charlotte, Charlotte, NC USA
| | | | | |
Collapse
|
43
|
Kung YP, Lin CC, Chen MH, Tsai MS, Hsieh WS, Chen PC. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children's lung function development. ENVIRONMENTAL RESEARCH 2021; 192:110178. [PMID: 32991923 DOI: 10.1016/j.envres.2020.110178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA), are common persistent environmental organic pollutants. Animal studies have indicated that PFAS influence inflammatory responses and lung development. However, whether prenatal or childhood PFAS exposure affects children's lung function remains unclear. This study aimed to investigate both in utero exposure and childhood exposure to PFAS and the relationships between them and lung function development in childhood. METHODS In total, 165 children were recruited from the Taiwan Birth Panel Study (TBPS). Cord blood plasma and children's serum were collected when they were eight years old. PFAS levels were analysed by ultra-high-performance liquid chromatography/tandem mass spectrometry. When these children reached eight years of age, we administered detailed questionnaires and lung function examinations. RESULTS The mean concentrations of PFOA, PFOS, PFNA and PFUA in cord blood among the 165 study children were 2.4, 6.4, 6.0, and 15.4 ng/mL, respectively. The mean concentrations in serum from eight-year-olds were 2.7, 5.9, 0.6, and 0.3 ng/mL, respectively. At eight years of age, the mean FEV1 (forced expiratory volume per sec), FVC (forced vital capacity), PEF (peak expiratory flow) and FEV1/FVC values were 1679 mL, 1835 mL, 3846 mL/s and 92.0%, respectively. PFOA, PFOS, PFNA and PFUA levels in cord blood were inversely associated with FEV1, FVC and PEF values. The PFOS concentration in cord blood was the most consistently correlated with decreasing lung function before and after adjusting for confounding factors. The PFOS concentration was also significantly inversely correlated with lung function in subgroups with lower birth weight and allergic rhinitis. CONCLUSIONS Our cohort study revealed that the concentrations of PFOA, PFOS, PFNA and PFUA were higher in cord blood than in serum from eight-year-olds. Some trends were also noted between intrauterine PFOS exposure and children's decreasing FEV1, FVC and PEF, especially in subgroups with lower birth weight and allergic rhinitis. Therefore, intrauterine PFAS exposure, especially PFOS, may play a vital role in lung development.
Collapse
Affiliation(s)
- Yen-Ping Kung
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Shan Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan.
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
44
|
Timmermann CAG, Jensen KJ, Nielsen F, Budtz-Jørgensen E, van der Klis F, Benn CS, Grandjean P, Fisker AB. Serum Perfluoroalkyl Substances, Vaccine Responses, and Morbidity in a Cohort of Guinea-Bissau Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87002. [PMID: 32772733 PMCID: PMC7416537 DOI: 10.1289/ehp6517] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are a group of widely used persistent chemicals with suspected immunotoxic effects. OBJECTIVES The present study aimed to examine the association between infant PFAS exposure and antibody responses to measles vaccination as well as morbidity in a low-income country. METHODS In a randomized controlled trial, children from Guinea-Bissau, West Africa, were followed from inclusion (4-7 months of age) through 2 years of age. Half the children received two measles vaccinations (at inclusion and at 9 months of age), and the other half received only one (at 9 months of age). In a subset of 237 children, six PFAS were quantified in serum at inclusion, and measles antibody concentrations were assessed at inclusion and at approximately 9 months and 2 years of age. At inclusion and at the 9-month visit, mothers were interviewed about infant morbidity. RESULTS All but one child had detectable serum concentrations of all six PFAS, although levels were lower than seen elsewhere. A doubling in perfluorooctane sulfonic acid (PFOS) and perfluorodecanoic acid (PFDA) were associated with 21% (95% CI: 2, 37%) and 25% (95% CI: 1, 43%), respectively, lower measles antibody concentrations at the 9-month visit among the children who had received a measles vaccine at inclusion. Elevated serum PFAS concentrations were also associated with reduced prevaccination measles antibody concentrations and increased morbidity. DISCUSSION The present study documents that PFAS exposure has reached West Africa and that infants show PFAS-associated increases in morbidity and decreases in measles-specific antibody concentrations before and after vaccination. These findings support the evidence on PFAS immunotoxicity at comparatively low serum concentrations. https://doi.org/10.1289/EHP6517.
Collapse
Affiliation(s)
| | - Kristoffer Jarlov Jensen
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Flemming Nielsen
- Research Unit of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Christine Stabell Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Open Patient data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Philippe Grandjean
- Research Unit of Environmental Medicine, University of Southern Denmark, Odense, Denmark
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ane Bærent Fisker
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Open Patient data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| |
Collapse
|
45
|
Shin HM, Bennett DH, Calafat AM, Tancredi D, Hertz-Picciotto I. Modeled prenatal exposure to per- and polyfluoroalkyl substances in association with child autism spectrum disorder: A case-control study. ENVIRONMENTAL RESEARCH 2020; 186:109514. [PMID: 32353786 PMCID: PMC7363534 DOI: 10.1016/j.envres.2020.109514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND/OBJECTIVE Per- and polyfluoroalkyl substances (PFAS) display neurobehavioral toxicity in laboratory animal studies. We examined associations of modeled prenatal maternal exposure to PFAS with child diagnosis of autism spectrum disorder (ASD). METHODS Participants were 453 mother-child pairs from CHARGE (CHildhood Autism Risk from Genetics and Environment), a population-based case-control study. Children underwent psychometric testing and were clinically confirmed for ASD (n = 239) or typical development (TD, n = 214). At the end of the clinic visit, maternal blood specimens were collected. We quantified nine PFAS in maternal serum samples collected when their child was 2-5 years old. As surrogate in utero exposure, we used a model built from external prospective data in pregnancy and 24 months post-partum and then reconstructed maternal PFAS serum concentrations during pregnancy in this case-control sample. We used logistic regression to evaluate associations of modeled prenatal maternal PFAS concentrations with child ASD. RESULTS Modeled prenatal maternal perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) were borderline associated with increased odds of child diagnosis of ASD (per nanogram per milliliter increase: odds ratio [OR] = 1.46; 95% confidence interval [CI]: 0.98, 2.18 for PFHxS, OR = 1.03; 95% CI: 0.99, 1.08 for PFOS). When compared to the lowest quartile (reference category), the highest quartile of modeled prenatal maternal PFHxS was associated with increased odds of child diagnosis of ASD (OR = 1.95; 95% CI: 1.02, 3.72). CONCLUSIONS In analyses where modeled prenatal maternal PFAS serum concentrations served as in utero exposure, we observed that prenatal PFHxS and PFOS exposure, but not other PFAS, were borderline associated with increased odds of child diagnosis of ASD. Further studies in which PFAS concentrations are prospectively measured in mothers and children at a range of developmental stages are needed to confirm these findings.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Daniel Tancredi
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| |
Collapse
|
46
|
Abraham K, Mielke H, Fromme H, Völkel W, Menzel J, Peiser M, Zepp F, Willich SN, Weikert C. Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: associations between levels of perfluorooctanoic acid (PFOA) and vaccine response. Arch Toxicol 2020; 94:2131-2147. [PMID: 32227269 PMCID: PMC7303054 DOI: 10.1007/s00204-020-02715-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a complex group of man-made chemicals with high stability and mobility leading to ubiquitous environmental contamination and accumulation in the food chain. In human serum/plasma samples, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the lead compounds. They are immunotoxic in experimental animals, and epidemiological studies provided evidence of a diminished production of vaccine antibodies in young children. However, information on children of the first year of age is missing but relevant, as they have a relatively high exposure if breastfed, and may have a higher susceptibility as their immune system is developing. In a cross-sectional study with 101 healthy 1-year-old children, internal levels of persistent organic pollutants and a broad panel of biological parameters were investigated at the end of the 1990s. Additional analysis of PFASs resulted in plasma levels (mean ± SD) of PFOA and PFOS of 3.8 ± 1.1 and 6.8 ± 3.4 µg/L, respectively, in the 21 formula-fed children, and of 16.8 ± 6.6 and 15.2 ± 6.9 µg/L in the 80 children exclusively breastfed for at least 4 months. The study revealed significant associations between levels of PFOA, but not of PFOS, and adjusted levels of vaccine antibodies against Haemophilus influenza type b (Hib, r = 0.32), tetanus (r = 0.25) and diphtheria (r = 0.23), with no observed adverse effect concentrations (NOAECs) determined by fitting a 'knee' function of 12.2, 16.9 and 16.2 µg/L, respectively. The effect size (means for PFOA quintiles Q1 vs. Q5) was quantified to be - 86, - 54 and - 53%, respectively. Furthermore, levels of PFOA were inversely associated with the interferon gamma (IFNɣ) production of ex-vivo lymphocytes after stimulation with tetanus and diphtheria toxoid, with an effect size of - 64 and - 59% (means Q1 vs. Q5), respectively. The study revealed no influence of PFOA and PFOS on infections during the first year of life and on levels of cholesterol. Our results confirmed the negative associations of PFAS levels and parameters of immune response observed in other epidemiological studies, with high consistency as well as comparable NOAECs and effects sizes for the three vaccine antibodies investigated, but for PFOA only. Due to reduction of background levels of PFASs during the last 20 years, children in Germany nowadays breastfed for a long duration are for the most part not expected to reach PFOA levels at the end of the breastfeeding period above the NOAECs determined.
Collapse
Affiliation(s)
- Klaus Abraham
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Hans Mielke
- Department Exposure, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hermann Fromme
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Völkel
- Department of Chemical Safety and Toxicology, Bavarian Health and Food Safety Authority, Munich, Germany
| | - Juliane Menzel
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Matthias Peiser
- Department Pesticide Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Fred Zepp
- Children's Hospital, University Medical Center, Mainz, Germany
| | - Stefan N Willich
- Institute for Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Weikert
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute for Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Forns J, Verner MA, Iszatt N, Nowack N, Bach CC, Vrijheid M, Costa O, Andiarena A, Sovcikova E, Høyer BB, Wittsiepe J, Lopez-Espinosa MJ, Ibarluzea J, Hertz-Picciotto I, Toft G, Stigum H, Guxens M, Liew Z, Eggesbø M. Early Life Exposure to Perfluoroalkyl Substances (PFAS) and ADHD: A Meta-Analysis of Nine European Population-Based Studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:57002. [PMID: 32378965 PMCID: PMC7263458 DOI: 10.1289/ehp5444] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION To date, the evidence for an association between perfluoroalkyl substances (PFAS) exposure and attention deficit and hyperactivity disorder (ADHD) is inconclusive. OBJECTIVE We investigated the association between early life exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), and ADHD in a collaborative study including nine European population-based studies, encompassing 4,826 mother-child pairs. METHODS Concentrations of PFOS and PFOA were measured in maternal serum/plasma during pregnancy, or in breast milk, with different timing of sample collection in each cohort. We used a validated pharmacokinetic model of pregnancy and lactation to estimate concentrations of PFOS and PFOA in children at birth and at 3, 6, 12, and 24 months of age. We classified ADHD using recommended cutoff points for each instrument used to derive symptoms scores. We used multiple imputation for missing covariates, logistic regression to model the association between PFAS exposure and ADHD in each study, and combined all adjusted study-specific effect estimates using random-effects meta-analysis. RESULTS A total of 399 children were classified as having ADHD, with a prevalence ranging from 2.3% to 7.3% in the studies. Early life exposure to PFOS or PFOA was not associated with ADHD during childhood [odds ratios (ORs) ranging from 0.96 (95% CI: 0.87, 1.06) to 1.02 (95% CI: 0.93, 1.11)]. Results from stratified models suggest potential differential effects of PFAS related to child sex and maternal education. CONCLUSION We did not identify an increased prevalence of ADHD in association with early life exposure to PFOS and PFOA. However, stratified analyses suggest that there may be an increased prevalence of ADHD in association with PFAS exposure in girls, in children from nulliparous women, and in children from low-educated mothers, all of which warrant further exploration. https://doi.org/10.1289/EHP5444.
Collapse
Affiliation(s)
- Joan Forns
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Marc-Andre Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada
- Université de Montréal Public Health Research Institute (IRSPUM), Université de Montréal, Montreal, Canada
| | - Nina Iszatt
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Nikola Nowack
- Department of Developmental Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Cathrine Carlsen Bach
- Department of Pediatrics and Adolescent Medicine, Viborg Regional Hospital, Viborg, Denmark
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martine Vrijheid
- Global Health Institute Barcelona (ISGlobal), Institute for Global Health, Barcelona, Spain
- Univeristat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Olga Costa
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Ainara Andiarena
- Health Research Institute BIODONOSTIA, Donostia-San Sebastian, Basque Country, Spain
- Faculty of Psychology, University of the Basque Country (UPV/EHU), San Sebastian, Basque Country, Spain
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Birgit Bjerre Høyer
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Jürgen Wittsiepe
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)-Universitat Jaume I-Universitat de València, Valencia, Spain
- Department of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Health Research Institute BIODONOSTIA, Donostia-San Sebastian, Basque Country, Spain
- Faculty of Psychology, University of the Basque Country (UPV/EHU), San Sebastian, Basque Country, Spain
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis (UC Davis), Davis, California, USA
- UC Davis Medical Investigations of Neurodevelopmental Disorders Institute, UC Davis, Davis, California, USA
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hein Stigum
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Mònica Guxens
- Global Health Institute Barcelona (ISGlobal), Institute for Global Health, Barcelona, Spain
- Univeristat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Merete Eggesbø
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
48
|
Liew Z, Luo J, Nohr EA, Bech BH, Bossi R, Arah OA, Olsen J. Maternal Plasma Perfluoroalkyl Substances and Miscarriage: A Nested Case-Control Study in the Danish National Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47007. [PMID: 32319790 PMCID: PMC7228130 DOI: 10.1289/ehp6202] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants and endocrine disruptors. High doses of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exposure can cause pregnancy loss and infant deaths in animals, but the associations between PFAS exposures and risk of miscarriage in humans are not well studied. METHODS Using a case-control study nested within the Danish National Birth Cohort (DNBC, 1996-2002), we compared 220 pregnancies ending in miscarriage during weeks 12-22 of gestation, with 218 pregnancies resulting in live births. Levels of seven types of PFAS [PFOS, PFOA, perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctanesulfonic acid (PFOSA)] were measured in maternal plasma collected in early gestation (mean gestational week 8). We estimated the odds ratios (ORs) and 95% confidence intervals (CIs) for miscarriage and each PFAS as a continuous variable or in quartiles, controlling for maternal age, parity, socio-occupational status, smoking and alcohol intake, gestational week of blood sampling, and maternal history of miscarriage. Stratification by parity and PFAS mixture analyses using weighted quantile sum (WQS) regression were also conducted. RESULTS We observed a monotonic increase in odds for miscarriage associated with increasing PFOA and PFHpS levels. The ORs comparing the highest PFOA or PFHpS quartile to the lowest were 2.2 (95% CI: 1.2, 3.9) and 1.8 (95% CI: 1.0, 3.2). The ORs were also elevated for the second or third quartile of PFHxS or PFOS, but no consistent exposure-outcome pattern emerged. An interquartile range (IQR) increment in the WQS index of seven PFAS was associated with 64% higher odds for miscarriage (95% CI: 1.15, 2.34). The associations were stronger in parous women, while findings were inconsistent among nulliparous women. CONCLUSION Maternal exposures to higher levels of PFOA, PFHpS, and PFAS mixtures were associated with the risk of miscarriage and particularly among parous women. Larger replication studies among nulliparous women are needed to allay concerns about confounding by reproductive history. https://doi.org/10.1289/EHP6202.
Collapse
Affiliation(s)
- Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ellen A Nohr
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre of Women's Family and Child Health, University of South-Eastern Norway, Kongsberg, Norway
| | - Bodil Hammer Bech
- Department of Public Health, Research Unit for Epidemiology, University of Aarhus, Aarhus, Denmark
| | - Rossana Bossi
- Department of Environmental Science, University of Aarhus, Roskilde, Denmark
| | - Onyebuchi A Arah
- Department of Public Health, Research Unit for Epidemiology, University of Aarhus, Aarhus, Denmark
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
- Department of Statistics, UCLA College of Letters and Science, Los Angeles, California, USA
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
49
|
Balk FGP, Winkens Pütz K, Ribbenstedt A, Gomis MI, Filipovic M, Cousins IT. Children's exposure to perfluoroalkyl acids - a modelling approach. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1875-1886. [PMID: 31549993 DOI: 10.1039/c9em00323a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adults are mainly exposed to per- and polyfluoroalkyl substances (PFASs) via ingestion of food, inhalation of air and ingestion of dust, whereas for children the exposure to PFASs is largely unknown. This study aimed to reconstruct the serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) in children after infancy up to 10.5 years of age and to test if dietary intake is the major exposure pathway for children to PFOA, PFOS and PFHxS after infancy. For this work, a dataset from a Finnish child cohort study was available, which comprised serum concentrations of the studied perfluoroalkyl acids (PFAAs) and PFAS concentration measurements in dust and air samples from the children's bedrooms. The calculated PFAA intakes were used in a pharmacokinetic model to reconstruct the PFAA serum concentrations from 1 to 10.5 years of age. The calculated PFOA and PFOS intakes were close to current regulatory intake thresholds and diet was the major exposure medium for the 10.5 year-olds. The one-compartment PK model reconstructed median PFOA and PFOS serum concentrations well compared to corresponding measured median serum concentrations, while the modelled PFHxS serum concentrations showed a constant underestimation. The results imply that children's exposure to PFOA and PFOS after breastfeeding and with increasing age resembles the exposure of adults. Further, the children in the Finnish cohort experienced a rather constant exposure to PFOA and PFOS between 1 and 10.5 years of age. The PFHxS exposure sources and respective pharmacokinetic parameter estimations need further investigation.
Collapse
Affiliation(s)
- Fabian G P Balk
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden. and Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Kerstin Winkens Pütz
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden. and Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, 10405 Stockholm, Sweden
| | - Anton Ribbenstedt
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden.
| | - Melissa I Gomis
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden. and Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Marko Filipovic
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden. and NIRAS Sweden AB, Fleminggatan 14, Box 70375, 107 24 Stockholm, Sweden
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8c, 10691 Stockholm, Sweden.
| |
Collapse
|
50
|
Gyllenhammar I, Benskin JP, Sandblom O, Berger U, Ahrens L, Lignell S, Wiberg K, Glynn A. Perfluoroalkyl Acids (PFAAs) in Children's Serum and Contribution from PFAA-Contaminated Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11447-11457. [PMID: 31476116 DOI: 10.1021/acs.est.9b01746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated associations between serum perfluoroalkyl acid (PFAA) concentrations in children aged 4, 8, and 12 years (sampled in 2008-2015; n = 57, 55, and 119, respectively) and exposure via placental transfer, breastfeeding, and ingestion of PFAA-contaminated drinking water. Sampling took place in Uppsala County, Sweden, where the drinking water has been historically contaminated with perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA). PFOS showed the highest median concentrations in serum (3.8-5.3 ng g-1 serum), followed by PFHxS (1.6-5.0 ng g-1 serum), PFOA (2.0-2.5 ng g-1 serum), and perfluorononanoate (PFNA) (0.59-0.69 ng g-1 serum) in children. Including all children, serum PFOA, PFHxS, and PFOS concentrations in children increased 10, 10, and 1.3% (adjusted mean), respectively, per unit (ng g-1 serum) of increase in the maternal serum level (at delivery), the associations being strongest for 4 year-old children. PFHxS and PFOS significantly increased 3.9 and 3.8%, respectively, per month of nursing, with the highest increase for 4 year-olds. PFOA, PFBS, PFHxS, and PFOS increased 1.2, 207, 7.4, and 0.93%, respectively, per month of cumulative drinking water exposure. Early life exposure to PFOA, PFHxS, and PFOS is an important determinant of serum concentrations in children, with the strongest influence on younger ages. Drinking water with low to moderate PFBS, PFHxS, PFOS, and PFOA contamination is an important source of exposure for children with background exposure from other sources.
Collapse
Affiliation(s)
- Irina Gyllenhammar
- Department of Risk and Benefit Assessment , National Food Agency , P.O. Box 622, SE-751 26 Uppsala , Sweden
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Oskar Sandblom
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Urs Berger
- Department Analytical Chemistry , Helmholtz Centre for Environmental Research (UFZ) , Permoserstr. 15 , DE-04318 Leipzig , Germany
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment , National Food Agency , P.O. Box 622, SE-751 26 Uppsala , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health , Swedish University of Agricultural Sciences (SLU) , Box 7028, SE-750 07 Uppsala , Sweden
| |
Collapse
|