1
|
Li L, Cao Y, Ippolito JA, Xing W, Qiu K, Li H, Zhao D, Wang Y, Wang Y. Cadmium and lead bioavailability to poultry fed with contaminated soil-spiked feed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163036. [PMID: 36972887 DOI: 10.1016/j.scitotenv.2023.163036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Geophagy is common for free-range chickens, however, the relative bioavailability (RBA) of heavy metals in contaminated soils consumed by chickens has not fully investigated. In this work, chickens were fed diets increasingly spiked with a contaminated soil (Cd = 105, Pb = 4840 mg kg-1; 3, 5, 10, 20 and 30 % of overall feed by weight), or Cd/Pb reagent spikes (from CdCl2 or Pb(Ac)2), for 23 d. After the study period, chicken liver, kidney, femur and gizzard samples were analyzed for Cd and Pb concentrations, and organ/tissue metal concentrations were used to calculate Cd and Pb RBA. Linear dose response curves (DRCs) were established for both Cd/Pb reagents-spiked and soil-spiked treatments. Femur Cd concentrations of soil-spiked treatments were two times of Cd-spiked treatments with similar feed Cd levels, while feed spiked with Cd or Pb also resulted in elevated Pb or Cd concentrations in some organ/tissues. Metal RBA was calculated using three different methods. Most Cd and Pb RBA values were in the range 50-70 %, with the chicken gizzard as a potential endpoint for bioaccessible Cd and Pb. Cadmium and Pb bioavailability values can help with more precise estimation of Cd and Pb accumulation in chicken following heavy metal-contaminated soil ingestion, with overall results helping to protect human health.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongxin Cao
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Kunyan Qiu
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yali Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yale Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Huang X, Chang M, Han L, Li J, Li SW, Li HB. Variation of lead bioaccessibility in soil reference materials: Intra- and inter-laboratory assessments. CHEMOSPHERE 2023; 312:137293. [PMID: 36403811 DOI: 10.1016/j.chemosphere.2022.137293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Standard reference materials (SRMs) have been commonly used to perform quality assurance and quality control (QA/QC) in soil total metal concentration analyses or bioaccessibility assessment. In this study, 10 experimenters from 4 laboratories determined bioaccessibility of lead (Pb) in 4 widely-used SRMs (NIST 2710a, NIST 2587, BGS 102, and GBW 07405). Based on the gastric phase (GP) of the unified BARGE bioaccessibility method (UBM) and the Solubility Bioavailability Research Consortium procedure (SBRC), Pb bioaccessibility in SRMs was compared within and between laboratories to assess their intra-laboratory repeatability and inter-laboratory reproducibility. Lead bioaccessibility was 14.1 ± 2.44%-101 ± 2.48% in the 4 SRMs. The values were in vivo validated based on a mouse model in previous studies (R2 = 0.97-0.98), suggesting the reliability of Pb bioaccessibility data. Strong correlations were observed for Pb bioaccessibility among 7 experimenters (R2 = 0.94-0.99) at the Nanjing University (NJU) laboratory and similar strong correlations were also found between each two of the 4 laboratories (R2 = 0.94-0.98), illustrating consistency in intra- and inter-laboratory performance. The intra-laboratory repeatability and inter-laboratory reproducibility were generally acceptable with relative standard deviations (RSDs) of Pb bioaccessibility being ≤10% within laboratory and ≤20% between laboratories, except in a soil with low bioaccessible Pb (BSG 102). Our study suggested that measurements of Pb bioaccessibility in SRMs based on the two in vivo validated methods were repeatable and reproducible within and between laboratories, further verified their reliability being used as QA/QC samples during Pb bioaccessibility assessment.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Minghui Chang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lei Han
- Jinan Environmental Research Institute (Jinan Yellow River Basin Ecological Protection Promotion Center), Jinan, 250102, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250399, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Lin XY, Xue RY, Zhou L, Zhang YS, Wang HY, Zhang S, Li SW, Juhasz AL, Ma LQ, Zhou DM, Li HB. Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications. ENVIRONMENT INTERNATIONAL 2022; 170:107664. [PMID: 36450209 DOI: 10.1016/j.envint.2022.107664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Reducing lead (Pb) exposure via oral ingestion of contaminated soils is highly relevant for child health. Elevating dietary micronutrient iron (Fe) intake can reduce Pb oral bioavailability while being beneficial for child nutritional health. However, the practical performance of various Fe compounds was not assessed. Here, based on mouse bioassays, ten Fe compounds applied to diets (100-800 mg Fe kg-1) reduced Pb oral relative bioavailability (RBA) in two soils variedly depending on Fe forms. EDTA-FeNa was most efficient, which reduced Pb-RBA in a soil from 79.5 ± 14.7 % to 23.1 ± 2.72 % (71 % lower) at 100 mg Fe kg-1 in diet, more effective than other 9 compounds at equivalent or higher doses (3.6-68 % lower). When EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous bisglycinate were supplemented, Fe-Pb co-precipitation was not observed in the intestinal tract. EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous sulfate suppressed duodenal divalent metal transporter 1 (DMT1)mRNA relative expression similarly (27-68 % lower). In comparison, among ten compounds, EDTA-FeNa elevated Fe concentrations in mouse liver, kidney, and blood (1.50-2.69-fold higher) most efficiently, suggesting the most efficient Fe absorption that competed with Pb. In addition, EDTA was unique from other organic ligands, ingestion of which caused 12.0-fold higher Pb urinary excretion, decreasing Pb concentrations in mouse liver, kidney, and blood by 68-88 %. The two processes (Fe-Pb absorption competition and Pb urinary excretion with EDTA) interacted synergistically, leading to the lowest Pb absorption with EDTA-FeNa. The results provide evidence of a better inhibition of Pb absorption by EDTA-FeNa, highlighting that EDTA-FeNa may be the most appropriate supplement for intervention on human Pb exposure. Future researches are needed to assess the effectiveness of EDTA-FeNa for intervention on human Pb exposure.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Mei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Chu Z, Lin C, Yang K, Cheng H, Gu X, Wang B, Wu L, Ma J. Lability, bioaccessibility, and ecological and health risks of anthropogenic toxic heavy metals in the arid calcareous soil around a nonferrous metal smelting area. CHEMOSPHERE 2022; 307:136200. [PMID: 36030943 DOI: 10.1016/j.chemosphere.2022.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Lability and bioaccessibility of anthropogenic toxic heavy metals in arid calcareous soils are critical to understand their ecological and health risks. This study examined toxic heavy metal speciation in the calcareous soil contaminated by nonferrous metal smelting. Results demonstrated that approximately 70 years' nonferrous metal smelting and mining in Baiyin led to significant contamination of nearby soil down to about 200 cm depth by cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), with more serious contamination in the downwind areas of smelting or mining. More than half of Cd, Cu, Pb, and Zn in the soil was present in the labile fractions while more than 75% of cobalt (Co), chromium (Cr), nickel (Ni), and vanadium (V) was present in the residual fraction. Carbonate minerals in this calcareous soil play an important role in the labile fractions, with approximate 25% of Cd and Pb and 15% of Cu and Zn bound in carbonates. Bioaccessible Cd, Cu, Pb, and Zn in the soil were approximately 49.8%, 29.4%, 12.2%, and 33.8% in gastric phase and 13.5%, 15.9%, 4.3%, and 9.1% in intestinal phase of their total concentrations, respectively. Therefore, Cd and Zn were removed from gastric solution to a greater extent than Cu and Pb by neutral intestine environment. However, bioaccessible Co, Cr, Ni, and V in the soil were less than 3% of their total concentrations. Bioaccessibility of these metals but Cu in this calcareous soil was significantly lower than that for the acidic Ultisols and Alfisols in U.S. The concentrations of Cd, Cu, Pb, Zn, and Ni in each chemical and bioaccessible forms were significantly correlated linearly with their total concentrations in the calcareous soil, while only residual concentration was significantly correlated with the total concentration for Co, Cr, and V. These linear slopes showed that relative lability and bioaccessibility increased for Cd, but decreased for Cu, Pb, and Zn with the increase in their total concentrations in the calcareous soil. Direct oral soil ingestion would not pose a non-carcinogenic health risk to local children. However, very high potential ecological risk would be caused by these metals in the soil. These results provide improved insights into the biogeochemical processes of anthropogenic toxic heavy metals in the arid calcareous soils worldwide.
Collapse
Affiliation(s)
- Zhuling Chu
- Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- Beijing Normal University, Beijing, 100875, China.
| | - Kai Yang
- Beijing Normal University, Beijing, 100875, China
| | | | - Xiang Gu
- Beijing Normal University, Beijing, 100875, China
| | - Beibei Wang
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Linlin Wu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Effect of Polishing on Lead and Cadmium Bioavailability in Rice and Its Health Implications. Foods 2022; 11:foods11172718. [PMID: 36076903 PMCID: PMC9455439 DOI: 10.3390/foods11172718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Rice polishing is an important approach to reducing the concentrations of heavy metals in rice, but knowledge of its effect on the Pb and Cd bioavailability in produced rice and the related health risk remains limited. In this study, the effects of rice polishing on the bioaccessibility (BAC) and bioavailability (RBA) of Pb and Cd in rice are assessed using an in vitro method and an in vivo mouse bioassay. The Pb removal rate in brown rice (40%), lightly processed brown rice (62%), germinated rice (74%), and polished rice (79%) gradually enhanced with an increase in the polishing degree, while Cd was difficult to remove by polishing. The Pb and Cd BAC in germinated rice was the highest, while that in brown rice was the lowest. The polished rice Pb and Cd RBA in the liver and kidneys were significantly higher than those in the brown rice group. The Pb RBA in the livers and kidneys in the polished rice group was 26.6% ± 1.68% and 65.3% ± 0.83%, respectively, which was 1.6- and 2.6-times higher than that in the brown rice group, respectively. The Cd RBA values in both the livers and kidneys of the polished rice group were 1.3-times higher than those in the brown rice group. Although polishing reduced the total Pb in the polished rice, it was not enough to offset the increase in bioavailability, and its consumption risk was not weakened. This study highlighted the value of the oral-bioavailability-corrected health risk assessment for assessing the influence of rice polishing on Pb and Cd exposure via rice consumption.
Collapse
|
6
|
Chen S, Han L, Wang Q, Liu C, Liu Y, Li J. Effect of Nanoscale Zero-Valent Iron on Arsenic Bioaccessibility and Bioavailability in Soil. Front Chem 2022; 10:964893. [PMID: 35936088 PMCID: PMC9353111 DOI: 10.3389/fchem.2022.964893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
Hand-to-mouth activity is considered to be the main way for children to come into contact with contaminated soil, and bioavailability is an important factor affecting their health risk. To reduce soil As risk to humans by oral exposure, nanoscale zero-valent iron (nZVI) has been extensively studied for immobilizing As-contaminated soil, but its efficiency has not been investigated using in vitro assay and its influence on As-RBA. In this study, two contaminated soil samples (A and B) were amended with 1% and 2% (w/w) nZVI for 56 days to study its effect on As fraction by sequence extraction, As bioaccessibility by SBRC assay, and As relative bioavailability (RBA) by the mouse liver and kidney model. Based on the sequence extraction, the As associated with the E1 (exchangeable fraction) and C2 (carbonate fraction) fractions were decreased from 3.00% to 1.68% for soil A and from 21.6% to 7.86% for soil B after being treated with 2% nZVI for 56 days. When assessing As bioaccessibility in all soils treated with nZVI by SBRC assay, it was found that As bioaccessibility was significantly higher in the gastric phase (GP) and lower in the intestinal phase (IP) (p < 0.05), and the bioaccessible Fe concentration decreased significantly from the gastric to intestinal phase at the same time. Based on the mouse liver–kidney model, the As-RBA in soil A increased from 21.6% to 22.3% and 39.9%, but in soil B decreased from 73.0% to 55.3% and 68.9%, respectively. In addition, there was a significant difference between As bioaccessibility based on GP or IP of SBRC assay and As-RBA in two soils after being treated with nZVI for 56 days. To more accurately assess the effects of nZVI human arsenic exposure, As-RBA should be considered in concert with secondary evidence provided through fraction and bioaccessibility assessments. In addition, it is necessary to develop a suitable in vitro assay to predict As-RBA in nZVI-amended soils.
Collapse
Affiliation(s)
- Shuo Chen
- College of Geography and Environment, Shandong Normal University, Jinan, China
| | - Lei Han
- College of Geography and Environment, Shandong Normal University, Jinan, China
- Jinan Environmental Research Institute (Jinan Yellow River Basin Ecological Protection Promotion Center), Jinan, China
| | - Qiu Wang
- Jinan Ecological Environment Bureau Licheng Branch Bureau, Jinan, China
| | - Chenglang Liu
- College of Geography and Environment, Shandong Normal University, Jinan, China
| | - Yuzhen Liu
- College of Geography and Environment, Shandong Normal University, Jinan, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, China
- *Correspondence: Jie Li,
| |
Collapse
|
7
|
Xiao J, Shi Y, Deng Y, Liu Y, Feng W, Liao M, Cao H. Incorporating Tenax into the in vitro method to improve the predictive capability of bioaccessibility of triazole fungicides in grape. Food Chem 2022; 396:133740. [PMID: 35878443 DOI: 10.1016/j.foodchem.2022.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 12/07/2022]
Abstract
In vitro bioaccessibility assays have been developed for high-throughput prediction of relative bioavailability (RBA). However, methods to reliably and efficiently assess pesticide residues remain limited, hindering the precise estimation of pesticide exposure risk. The inclusion of a sorption sink material to simulate intestinal sorption could be a promising approach to optimize in vitro bioaccessibility methods. The current study aimed to explore the feasibility of incorporating Tenax into the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) method for accurate evaluation of the bioaccessibility of triazole fungicides. The use of 1.0 g of Tenax enabled the valid trapping of triazole fungicides released from grape, resulting in a significant increase of 23.59-38.51 % in the value of bioaccessibility. A strong in vivo-in vitro correlation was observed between pesticide RBA and bioaccessibility, suggesting that the Tenax-assisted RIVM method is a suitable replacement for time-consuming and laborious in vivo alternatives. In addition, the exposure assessment indicated that the hazard quotients for triazole fungicides in grape may be overestimated by 5.79-27.34 % without considering bioaccessibility based on the Tenax-assisted RIVM method. These results provide further insights into the assessment of bioaccessibility-based human exposure to pesticides as well as dietary exposure and related risk for human health.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yajing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Wenzhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China.
| |
Collapse
|
8
|
Literature review and meta-analysis of gastric and intestinal bioaccessibility for nine inorganic elements in soils and soil-like media for use in human health risk assessment. Int J Hyg Environ Health 2022; 240:113929. [DOI: 10.1016/j.ijheh.2022.113929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
9
|
Chen H, Wang L, Hu B, Xu J, Liu X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. CHEMOSPHERE 2022; 289:133182. [PMID: 34883131 DOI: 10.1016/j.chemosphere.2021.133182] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The integrated analysis of the distribution characteristics, health risks, and source identification of heavy metals is crucial for formulating prevention and control strategies for soil contamination. In this study, the area around an abandoned electronic waste dismantling center in China was selected as the research area. The probabilistic health risks caused by heavy metals were evaluated by the Monte Carlo simulation. Random forest, partial least squares regression, and generalized linear models were utilized to predict heavy metal distributions and identify the potential driving factors affecting heavy metal accumulation in soil. The relationships of spatial variation between the heavy metal contents and environmental variables were further visualized. The results revealed that cadmium (Cd) and copper (Cu) were the primary soil pollutants in the study area and caused high ecological risks. The probabilistic health risk assessment indicated that the non-carcinogenic and carcinogenic risks for all populations were acceptable. However, children are more susceptible to heavy metal soil contamination than adults. The sensitivity analyses indicated that the total contents of soil heavy metals and soil ingestion rate were the dominant factors affecting human health. The random forest model, with R2 values of 0.41, 0.65, 0.57, 0.71, and 0.58 for Cd, Cu, Ni, Zn, and Pb, respectively, predicted the heavy metal concentrations better than the other two models. The distance to the nearest industrial enterprise, industrial output, and agricultural chemical input were the main factors affecting Cd, Cu, Zn, and Pb accumulations in the soil, and soil pH and soil parent material were the primary factors influencing Ni accumulation in the soil. The visualization results of the geographically weighted regression model showed a significant relationship between soil heavy metal contents and industrial activity level. This study could be utilized as a reference for policymakers to formulate prevention and control strategies for heavy metal pollution in agricultural areas.
Collapse
Affiliation(s)
- Hanrui Chen
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Lu Wang
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Bifeng Hu
- Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Li HB, Ning H, Li SW, Li J, Xue RY, Li MY, Wang MY, Liang JH, Juhasz AL, Ma LQ. An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:593-607. [PMID: 33952142 DOI: 10.1080/15287394.2021.1919947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Animal bioassays have been developed to estimate oral relative bioavailability (RBA) of metals in soil, dust, or food for accurate health risk assessment. However, the comparability in RBA estimates from different labs remains largely unclear. Using 12 soil and soil-like standard reference materials (SRMs), this study investigated variability in lead (Pb) and arsenic (As) RBA estimates employing a mouse bioassay in 3 labs at Nanjing University, University of Jinan, and Shandong Normal University. Two performances of the bioassay at Nanjing University in 2019 and 2020 showed reproducible Pb and As RBA estimates, but increasing the number of mouse replicates in 2020 produced more precise RBA measurements. Although there were inter-lab variations in diet consumption rate and metal accumulation in mouse liver and kidneys following SRM ingestion due to differences in diet composition, bioassays at 3 labs in 2019 yielded overall similar Pb and As RBA estimates for the 12 SRMs with strong linear correlations between each 2 of the 3 labs for Pb (R2 = 0.95-0.98 and slope = 0.85-1.02) and As RBA outcomes (R2 = 0.46-0.86 and slope = 0.56-0.79). The consistency in RBA estimates was attributed to the relative nature of the final bioavailability outcome, which might overcome the inter-lab variation in diet consumption and metal uptake in mice. These results increased the confidence of use of mouse bioassays in bioavailability studies.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, People's Republic of China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Liu X, Zhang H, Tian Y, Fang M, Xu L, Wang Q, Li J, Shen H, Wu Y, Gong Z. Bioavailability Evaluation of Perchlorate in Different Foods In Vivo: Comparison with In Vitro Assays and Implications for Human Health Risk Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5189-5197. [PMID: 33881845 DOI: 10.1021/acs.jafc.1c00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perchlorate in various foods continuously arouses public health concern. Bioavailability is a critical parameter to better estimate perchlorate exposure from diets. In this study, perchlorate bioavailability in five foods was determined in an in vivo mouse model and compared with in vitro bioaccessibility/bioavailability. The estimated in vivo perchlorate bioavailability for different foods ranged from 18.01 ± 4.53% to 45.60 ± 7.11%, with the order lettuce > pork > rice > milk powder > soybean. Moisture, fiber, and fat in foods were identified as critical factors affecting perchlorate bioavailability (correlation r = 0.71, 0.52, and -0.67, respectively). Linear regression analysis revealed that the in vitro perchlorate bioavailability determined using the Caco-2 cell model has the potential to estimate the in vivo perchlorate bioavailability in foods (R2 = 0.67, slope = 1.33, and y intercept = 4.99). These findings provide insights into the effects of the food matrices on perchlorate bioavailability and could contribute to decrease the uncertainty regarding perchlorate dietary exposure risk assessment.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Hu Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang, People's Republic of China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| |
Collapse
|
12
|
Sun L, Ng JC, Tang W, Zhang H, Zhao Y, Shu L. Assessment of human health risk due to lead in urban park soils using in vitro methods. CHEMOSPHERE 2021; 269:128714. [PMID: 33127111 DOI: 10.1016/j.chemosphere.2020.128714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Beijing parks always have a large flow of local residents and tourists, and the soil Pb could threaten human health by incidental ingestion. Soil samples from eleven parks in Beijing were collected to assess the human health risk associated with Pb. Lead bioaccessibility in these parks ranged from 3.2 ± 0.4% to 12.1 ± 0.5% in the physiologically based extraction test (PBET) gastric phase and increased when approaching the city center. The chemical forms and soil properties (Fe, organic matter, and grain size) were important factors affecting the soil Pb bioaccessibility. The geo-accumulation index of Beihai Park (BH, near the city center) reached 1.3 ± 0.1 indicating moderate contamination. Lead health risk to children in BH should be of concern though its hazard quotient was below one. Results obtained from the Diffusive Gradients in Thin-films (DGT)-induced fluxes in the soils (DIFS) model showed that Pb-release in some parks farther from the city center was a "partially sustained case" (Rdiff < R < 0.95) indicating that soil particles could partially replenish effective Pb to the soil solution. A relatively higher desorption rate constant (k1) and shorter characteristic response time (Tc) were also found in these parks, indicating non-negligible release risk. Soil Pb based on the PBET method and DIFS model could provide a reliable reference to park managers for the health risk management of Pb pollution.
Collapse
Affiliation(s)
- Liu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Brisbane, QLD, 4102, Australia
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Shu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Mokhtarzadeh Z, Keshavarzi B, Moore F, Marsan FA, Padoan E. Potentially toxic elements in the Middle East oldest oil refinery zone soils: source apportionment, speciation, bioaccessibility and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40573-40591. [PMID: 32666464 DOI: 10.1007/s11356-020-09895-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/25/2020] [Indexed: 05/19/2023]
Abstract
In this research, fifteen potentially toxic elements (PTEs) (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Sc and Zn) were analysed and quantified in samples collected at 44 sites in an urban area of Iran. Sources were apportioned using enrichment factors (EFs), modified pollution index (MPI), principal component analysis (PCA), multivariate linear regression of absolute principal component scores (MLR-APCS) and speciation, with a focus on anthropogenic PTEs in the urban and industrial soils of the Arvand Free Zone area, an oil-rich zone in the country. Furthermore, the bioaccessibility and the human health risks of PTEs were investigated. The EF revealed a significant enrichment for elements such as Cd, Cu, Hg, Mo, Pb, Sb and Zn. Values of MPI showed that Abadan industrial district and Abadan petrochemical complex are the most polluted sites in the study area.The PCA/MLR analysis revealed four main sources: natural sources, fossil fuel combustion, traffic and oil derivatives and petroleum waste. The relative contribution of each source to PTE concentration varied from 32.3% of the natural sources to 30.6% of traffic and from 20.1% of petroleum waste to 17% of fossil fuel combustion. The source apportionment of metals generated using MLR-APCS receptor modelling revealed that 85.0% of Hg was generated by oil products. Chemical speciation results were compatible with the results obtained from PCA. Bioaccessibility of PTEs decreased from gastric to intestinal phase except Mo and Sb due to their different geochemical characteristics. Hazard index (HI) for non-cancer risk of PTEs for both children and adults based on total element concentrations was estimated to range from 2-fold to more than 10-fold higher than that of bioaccessible phases.
Collapse
Affiliation(s)
- Zeinab Mokhtarzadeh
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, 71454, Iran
| | - Franco Ajmone Marsan
- DISAFA, Chimica Agraria e Pedologia, Università degli Studi di Torino, Via Leonardo da Vinci, 44, Grugliasco, 10095, Turin, Italy
| | - Elio Padoan
- DISAFA, Chimica Agraria e Pedologia, Università degli Studi di Torino, Via Leonardo da Vinci, 44, Grugliasco, 10095, Turin, Italy
| |
Collapse
|
14
|
He A, Li X, Ai Y, Li X, Li X, Zhang Y, Gao Y, Liu B, Zhang X, Zhang M, Peng L, Zhou M, Yu H. Potentially toxic metals and the risk to children's health in a coal mining city: An investigation of soil and dust levels, bioaccessibility and blood lead levels. ENVIRONMENT INTERNATIONAL 2020; 141:105788. [PMID: 32470756 DOI: 10.1016/j.envint.2020.105788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/31/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Coal is a primary energy source in the world. Potentially toxic metals (PTMs) emission from coal mining and combustion are posing a serious public health concern. In order to quantify and evaluate the effect of PTMs on children's health, the concentrations of 12 PTMs (As, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn, Ca, Fe, and Mg) bound in urban soil and street dust are determined and blood lead levels of these PTMs in 229 children (0-6 years old) are collected from the coal mining city of Yulin, China. In vitro pulmonary bioaccessibilities of PTMs are evaluated by artificial lysosomal fluid and Gamble's solution, and gastrointestinal bioaccessibilities by the unified BAGRE method (UBM); correlations between chemical speciation of PTMs and their bioaccessibility are examined, and children's (0-6 years old) health risks are systematically studied. Similar distribution levels of PTMs are found in soils and dusts, with the most polluted metals being Co, Sr, Ca and Pb. All PTMs (except Cr, Fe) are from the considerable artificial lysosomal fluid extraction both in soil and dust, while Ca and Co are favorably extracted in gastro and intestinal phases than others. Significant correlations are observed between the bioaccessibilities (lung and gastrointestinal) and Fe/Mn hydroxide-bound and carbonate-bound phases, which are key factors influencing and determining PTMs' bioaccessibility. Blood lead levels for children (0-6 years old) are 27.47 (21.65, 33.30) for 0-1 year olds, 32.29 (26.39, 38.19) for 1-2 year olds, 36.99 (28.16, 45.81) for 2-3 year olds, 30.79 (22.56, 39.01) for 3-4 year olds, 27.12 (17.31, 36.93) for 4-5 year olds, 34.59 (24.22, 44.97) for 5-6 year olds and 37.83 (24.15, 51.51) μg/L for 6-7 year olds, respectively, with 3.93%, 3.49%, 4.80%, 2.62%, 1.31%, 1.75% and 1.31% exceeding 50 μg/L, respectively. This indicates that the blood lead levels elevate for 1-2 year and 5-6 year old groups, which should be paid more attention. Although the non-carcinogenic and carcinogenic risks of most PTMs are under the acceptable level, the higher carcinogenic risk of Ni and non-carcinogenic risk of Pb should be monitored continuously. We suggest that further actions will be taken to reduce PTMs exposure for children through sustainable clean and ecological energy technology for coal mining, especially for those infants of 1-2 years old.
Collapse
Affiliation(s)
- Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China.
| | - Yuwei Ai
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaolong Li
- Yulin Children's Hospital, Yulin, Shaanxi 719000, PR China
| | - Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yuchao Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yu Gao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Bin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Meng Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Liyuan Peng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Ming Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Hongtao Yu
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
15
|
Wu Y, Lou J, Sun X, Ma LQ, Wang J, Li M, Sun H, Li H, Huang L. Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114093. [PMID: 32062095 DOI: 10.1016/j.envpol.2020.114093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure is known to affect the health of children while soil Pb is an important contributor to human Pb exposure. To analyze the effects of both environmental and other factors, especially total and bioaccessible Pb in neighborhood soil, on school-aged urban children's blood lead level (BLL), 75 children (6-11 years old) were recruited from an industry city in eastern China for BLL measurement and questionnaire survey. Soil samples were collected from their living neighborhoods and measured for total and bioaccessible Pb. The mean BLL was 4.82 μg dL-1, with 42 out of 75 children having BLL exceeding the international guideline of 5 μg dL-1. Low Pb contamination was observed in soil with total Pb ranging from 12.5 to 271 mg kg-1 (mean 34.3 mg kg-1). Based on the in vitro Solubility Bioaccessibility Research Consortium (SBRC) gastric fluid extraction, bioaccessible Pb in soil ranged from 0.40 to 79.1 mg kg-1 (mean 7.58 mg kg-1) with Pb bioaccessibility ranging from 1.74 to 68.1 (mean 19.9%). When BLL was correlated with total Pb in soil, insignificant linear relationship was observed (P > 0.05, correlation coefficient 95%CI = -0.047-0.40, R2 = 0.07). However, when BLL was correlated with soil bioaccessible Pb or Pb bioaccessibility, much stronger linear relationships were observed (P < 0.01, correlation coefficient 95%CI = 0.28-0.64, R2 = 0.16-0.20), suggesting that bioaccessible Pb was a much stronger predictor of BLL. In addition, strong associations were also observed between BLL and social factors such as house decoration, residence time, and personal habits, suggesting that both soil Pb contamination and social factors play important roles in elevating BLL for city children.
Collapse
Affiliation(s)
- Yangyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jianing Lou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xue Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jueyang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Mengya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hong Sun
- Jiangsu Province Center of Disease Control and Prevention, Nanjing 210009, People's Republic of China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
16
|
Zhong L, Liu X, Hu X, Chen Y, Wang H, Lian HZ. In vitro inhalation bioaccessibility procedures for lead in PM 2.5 size fraction of soil assessed and optimized by in vivo-in vitro correlation. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121202. [PMID: 31550658 DOI: 10.1016/j.jhazmat.2019.121202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In order to assess and optimize frequently used in vitro inhalation bioaccessibility procedures for heavy metals in the inhalation risk assessment, in vivo inhalation bioavailability of Pb in simulated atmosphere fine particles (PM2.5) from aging soils spiked with lead compounds and field soils in lead-zinc mining areas was investigated via intranasally instilled experiments with these PM2.5 suspensions to mice and Pb bioaccessibility was extracted by using four frequently used in vitro procedures (Gamble Solution, simulated lung fluid, simulated epithelial lung fluid and artificial lysosomal fluid). Mouse exposure experiments showed that Pb was mainly distributed in the liver, kidneys, blood and spleen. Based on the kidney model, in vitro inhalation bioaccessibility of Pb extracted with optimized Gamble Solution, in which solid to liquid ratio (S/L) was optimized to 1:1000 g ml-1 and DTPA was proved to be the key effective component, showed a strong linear relationship with its in vivo inhalation bioavailability (y = 1.07x - 3.86, R2 = 0.73). Moreover, in vitro bioaccessible and bioavailable fractions of Pb were mainly from acid exchangeable and reducible fractions of Pb in PM2.5. Altogether, optimized Gamble Solution was suggested for the analysis of in vitro bioaccessibility for risk-based assessments.
Collapse
Affiliation(s)
- Laijin Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Xiaolan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China.
| | - Yijun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China
| | - Hongwei Wang
- Centre for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
17
|
Li HB, Chen XQ, Wang JY, Li MY, Zhao D, Luo XS, Juhasz AL, Ma LQ. Antagonistic Interactions between Arsenic, Lead, and Cadmium in the Mouse Gastrointestinal Tract and Their Influences on Metal Relative Bioavailability in Contaminated Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14264-14272. [PMID: 31731833 DOI: 10.1021/acs.est.9b03656] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soils are often co-contaminated with As, Pb, and Cd. To what extent ingested metal(loid)s interact with each other in the gastrointestinal tract and influence their RBA (relative bioavailability) is largely unknown. Three soils predominantly contaminated with As (MS, mining/smelting impacted), Pb (WR, wire rope production impacted), and Cd (EP, enamel pottery production impacted) were administered to mice individually or in binary and tertiary combinations with sodium arsenate, Cd chloride, and/or Pb acetate. In binary combinations, ∼10-fold higher Pb addition decreased As-RBA in MS (26.0 ± 6.28% to 17.1 ± 1.08%), while ∼10-fold higher As addition decreased Pb-RBA in WR (61.3 ± 2.41% to 28.8 ± 5.45%). This was possibly due to the formation of insoluble Pb arsenate in mouse intestinal tract, as indicated by the formation of precipitates when As and Pb co-occurred in water or simulated human gastrointestinal fluids. Due to competition for shared absorption transporters, ∼10- and 100-fold higher Pb addition decreased Cd-RBA in EP (95.8 ± 12.9% to 67.8 ± 12.8% and 62.8 ± 8.24%). Tertiary combinations showed that interactions between two metal(loid)s were affected by the presence of the third metal(loid). Our study suggests that As oxyanion could interact with Pb or Cd ions in the mouse gastrointestinal tract, and the interactions vary depending on concentration and solution characteristics.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xiao-San Luo
- Jiangsu Key Laboratory of Agricultural Meteorology, International Center for Ecology, Meteorology, and Environment , Nanjing University of Information Science & Technology , Nanjing 210044 , People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , People's Republic of China
- Soil and Water Science Department , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
18
|
Li HB, Li MY, Zhao D, Li J, Li SW, Juhasz AL, Basta NT, Luo YM, Ma LQ. Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10545-10559. [PMID: 31442034 DOI: 10.1021/acs.est.9b03567] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metal contamination in soil, dust, and food matrices impacts the health of millions of people worldwide. During the past decades, various animal bioassays have been developed to determine the relative bioavailability (RBA) of As, Pb, and Cd in contaminated soils, dust, and foods, which vary in operational approaches. This review discusses the strengths and weaknesses of different animal models (swine and mice), dosing schemes (single gavage dose, repeated gavage dose, daily repeated feeding, and free access to diet), and end points (blood, urine, and tissue) in metal-RBA measurement; compares metal-RBA obtained using mouse and swine bioassays, different dosing schemes, and different end points; and summarizes key findings on As-, Pb-, and Cd-RBA values in contaminated soils, dust, and foods. Future directions related to metal-RBA research are highlighted, including (1) comparison of metal-RBA determinations between different bioassays and different laboratories to ensure robust bioavailability data, (2) enhancing the metal-RBA database for contaminated dust and foods, (3) identification of physiological and physicochemical mechanisms responsible for variability in metal-RBA values, (4) formulation of strategies to decrease metal-RBA values in contaminated soils, dust, and foods, and (5) assessing the impacts of cocontaminants on metal-RBA measurement.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Jie Li
- College of Geography and Environment , Shandong Normal University , Jinan 250358 , China
| | - Shi-Wei Li
- School of Water Conservancy and Environment , University of Jinan , Jinan 250022 , China
| | - Albert L Juhasz
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Nicholas T Basta
- School of Environment and Natural Resources , Ohio State University , Columbus , Ohio 43210
| | - Yong-Ming Luo
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
19
|
Zhu X, Li MY, Chen XQ, Wang JY, Li LZ, Tu C, Luo YM, Li HB, Ma LQ. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. ENVIRONMENT INTERNATIONAL 2019; 130:104875. [PMID: 31200159 DOI: 10.1016/j.envint.2019.05.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The robustness of in vitro bioaccessibility assays to predict oral relative bioavailability (RBA) of multiple metals in contaminated soils requires validation using additional soil samples. In this study, 11 contaminated soils from mining/smelting areas were analyzed for As-, Cd-, and Pb-RBA using a mouse bioassay and metal bioaccessibility via the UBM gastric phase assay. Metal-RBA varied considerably among soils, with As-RBA (2.5-23%, mean 12%) being generally lower than Cd-and Pb-RBA (3.4-88 and 3.3-59%, mean 42 and 28%), due to higher proportions of As in the residual fractions. Metal-RBA generally decreased with increasing metal concentrations probably due to reduced labile metal fractions. In addition, strong negative correlations were observed between total Fe with As-, Cd-, and Pb-RBA (R2 = 0.46-0.77), suggesting the role of Fe in controlling metal-RBA in soils. Like RBA, metal bioaccessibility by the UBM assay also varied among samples. However, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility (R2 = 0.52-0.81). Further, there were little differences when As-, Cd-, and Pb-IVIVCs established using soils from this study and soils pooled from literature were compared, suggesting the robustness of the UBM assay to predict metal-RBA in contaminated soils.
Collapse
Affiliation(s)
- Xia Zhu
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lian-Zhen Li
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yong-Ming Luo
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Yan K, Dong Z, Wijayawardena MAA, Liu Y, Li Y, Naidu R. The source of lead determines the relationship between soil properties and lead bioaccessibility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:53-59. [PMID: 30529941 DOI: 10.1016/j.envpol.2018.11.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Lead (Pb) contaminated soil is of particular concern for infants and children due to their susceptibility to exposure, fast metabolic rates and rapidly developing neuronal systems. Determining the bioaccessibility of Pb in soils is critical in human health risk assessments, which can vary due to different soil properties and sources of Pb contamination. In this study, the potential relationships between soil properties and Pb bioaccessibility from various Pb sources including Pb contamination from mining (specifically, Broken Hill), three shooting ranges, a smelter and two industry sites (pottery and battery), were investigated using the Relative Bioavailability Leaching Procedure (RBALP). We found the following: (1) CEC, TOC, sand and silt content, and total Pb were significantly different (p < 0.05) between the two particle size fractions of < 2 mm and < 250 μm; (2) EC, CEC and total Pb were significantly correlated to Pb bioaccessibility (p < 0.05); and (3) soil analyses based on source of Pb demonstrated a strongly significant relationship between Pb bioaccessibility and soil properties (CEC, EC, clay content and total Pb) for mining soils from Broken Hill (r2 = 0.86, p < 0.05, n = 18). These results demonstrated the influences of Pb contamination sources, soil properties and particle size fractions on Pb bioaccessibility as well as the prediction of Pb bioaccessibility using soil properties. The findings documented here will help in developing a predictive tool for human health risk assessment and the remediation of Pb contaminated soils.
Collapse
Affiliation(s)
- Kaihong Yan
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhaomin Dong
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia; School of Space and Environment, Beihang University, Beijing, China
| | - M A Ayanka Wijayawardena
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ravi Naidu
- ATC Building, Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
21
|
Yu Y, Lou S, Wang X, Lu S, Ma S, Li G, Feng Y, Zhang X, An T. Relationships between the bioavailability of polybrominated diphenyl ethers in soils measured with female C57BL/6 mice and the bioaccessibility determined using five in vitro methods. ENVIRONMENT INTERNATIONAL 2019; 123:337-344. [PMID: 30562705 DOI: 10.1016/j.envint.2018.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Several in vitro methods for simulating human gastrointestinal digestion have been validated for predicting the bioavailability of heavy metals, but the methods for successfully predicting the bioavailability of organic pollutants are still limited. In this study, we used an adapted fasting in vitro digestion method (Fa-VDM) from the Simulator of the Human Intestinal Microbial Ecosystem and four other in vitro methods comprising In Vitro Gastrointestinal, a physiologically-based extraction test, the unified BARGE method, and Deutsches Institut für Normung e.V. in order to measure the bioaccessibility of polybrominated diphenyl ethers (PBDEs) in soils from an e-waste dismantling town, China, with a Standard Reference Material (SRM2585) as the control. Furthermore, the bioaccessibility data were compared with the bioavailability measured using female C57BL/6 mice. The bioavailability of PBDEs in the soils and SRM2585 were 1.7% to 38.1% and 3.9% to 48.8%, respectively, and the bioaccessibility determined using Fa-VDM were 1.6-55.4% and 6.7-32.1%. There were negative and parabolic correlations between octanol/water partition coefficient for PBDEs and the bioavailability and bioaccessibility, respectively, whereas the H/C ratios and organic matter contents of the soils did not correlate with them. The bioaccessibility data determined by Fa-VDM were generally higher than those obtained using the other four methods, mainly due to the higher bile concentration and larger liquid to solid ratio in the digestion solution in Fa-VDM. There was a significant linear relationship between the results according to the in vivo and in vitro method of Fa-VDM where the slopes varied from 0.83 to 1.16 (R2 > 0.73) and intercepts from 0.3%-7.7% for BDE47, 99, 100, and 153 measured using Fa-VDM, thereby indicating that the bioaccessibility assessed by this method can potentially be used to predict the bioavailability of moderately brominated congeners in soils.
Collapse
Affiliation(s)
- Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Sufang Lou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinxin Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Guangzhou 518055, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xinyu Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
22
|
Zhao D, Wang JY, Tang N, Yin DX, Luo J, Xiang P, Juhasz AL, Li HB, Ma LQ. Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. ENVIRONMENT INTERNATIONAL 2018; 120:563-571. [PMID: 30172230 DOI: 10.1016/j.envint.2018.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 05/05/2023]
Abstract
Both dietary and non-dietary pathways contribute to metal exposure in residents living near mining-impacted areas. In this study, bioavailability-based metal intake estimation coupled with stable Pb isotope ratio fingerprinting technique were used to discern dietary (i.e., rice consumption) and non-dietary (i.e., housedust ingestion) contribution to As, Cd, and Pb exposure in residents living near mining-impacted areas. Results showed that not only rice (n = 44; 0.10-0.56, 0.01-1.77, and 0.03-0.88 mg kg-1) but also housedust (n = 44; 2.15-2380, 2.55-329, and 87.0-56,184 mg kg-1) were contaminated with As, Cd, and Pb. Based on in vivo mouse bioassays, bioavailability of As, Cd, and Pb in rice (n = 11; 34 ± 15, 59 ± 13, and 31 ± 15%) were greater than housedust (n = 14; 17 ± 6.7, 46 ± 10, and 25 ± 6.8%). Estimated daily intake of As, Cd, and Pb after incorporating metal bioavailability showed that As intake via rice was 5-fold higher than housedust for adults, whereas As intake via housedust was 3-fold higher than rice for children. For both adults and children, rice was the main source for Cd exposure, while housedust was the predominant Pb contributor. To ascertain the dominant Pb source from housedust ingestion, stable Pb isotope ratios (207Pb/206Pb and 208Pb/206Pb) of hair samples of local residents (n = 27, 0.8481 ± 0.0049 and 2.0904 ± 0.0102) were compared to housedust (n = 27, 0.8485 ± 0.0047 and 2.0885 ± 0.0107) and rice (n = 27, 0.8369 ± 0.0057 and 2.0521 ± 0.0119), showing an overlap between hair and housedust, but not rice, confirming that incidental housedust ingestion was the main source of Pb exposure. This study coupled bioavailability and stable isotope techniques to accurately identify the source of metal exposure as well as their potential health risk.
Collapse
Affiliation(s)
- Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jue-Yang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ni Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dai-Xia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ping Xiang
- Research Institute of Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- Research Institute of Soil Contamination and Environment Remediation, Southwest Forestry University, Kunming 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
23
|
Li HB, Li MY, Zhao D, Zhu YG, Li J, Juhasz AL, Cui XY, Luo J, Ma LQ. Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:427-433. [PMID: 30014932 DOI: 10.1016/j.jhazmat.2018.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
To determine the effects of dietary constituents on soil Pb oral bioavailability, Pb relative bioavailability (RBA) in 3 soils contaminated by zinc smelting (ZS), wire-rope production (WR), and metal mining (MM) was measured under fasted and fed states with 9 foods. Under fasted state, Pb-RBA was 84.4 ± 10.3, 82.6 ± 4.70, and 32.3 ± 1.10% for ZS, WR, and MM soils; however, it decreased by 1.3-3.5 fold to 23.9-58.8, 25.6-49.9, and 14.8-24.2% under fed states with foods excluding Pb-RBA with egg in WR soil (97.3 ± 4.46%), and with cabbage and egg in MM soil (40.0 ± 8.62 and 44.4 ± 0.96%). In the presence of foods, egg and pork with significantly higher protein and fat contents leaded to the highest soil Pb-RBA (44.4-97.3%), while Pb-RBA determined with mineral-rich mouse feed was 1.6-7.9 fold lower (9.41-13.5%), suggesting high fat and protein foods tended to increase soil Pb-RBA, while high mineral diets decreased soil Pb-RBA. The increased Pb-RBA of MM soil with cabbage compared to fasted state was due to high organic content in cabbage, which could increase soil Pb solubility by inhibiting Fe and Pb co-precipitation in the intestine. For accurate assessment of health risks of contaminated soils, dietary influence on soil Pb-RBA should be considered.
Collapse
Affiliation(s)
- Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Ya-Guang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, Florida 32611, United States.
| |
Collapse
|
24
|
Yan K, Dong Z, Wijayawardena MAA, Liu Y, Naidu R, Semple K. Measurement of soil lead bioavailability and influence of soil types and properties: A review. CHEMOSPHERE 2017; 184:27-42. [PMID: 28578193 DOI: 10.1016/j.chemosphere.2017.05.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) is a widespread heavy metal which is harmful to human health, especially to young children. To provide a human health risk assessment that is more relevant to real conditions, Pb bioavailability in soils is increasingly employed in the assessment procedure. Both in vivo and in vitro measurements for lead bioavailability are available. In vivo models are time- consuming and expensive, while in vitro models are rapid, economic, reproducible, and reliable while involving more uncertainties. Uncertainties in various measurements create difficulties in accurately predicting Pb bioavailability, resulting in the unnecessary remediation of sites. In this critical review, we utilised available data from in vivo and in vitro studies to identify the key parameters influencing the in vitro measurements, and presented uncertainties existing in Pb bioavailability measurements. Soil type, properties and metal content are reported to influence lead bioavailability; however, the differences in methods for assessing bioavailability and the differences in Pb source limit one's ability to conduct statistical analyses on influences of soil factors on Pb bioavailability. The information provided in the review is fundamentally useful for the measurement of bioavailability and risk assessment practices.
Collapse
Affiliation(s)
- Kaihong Yan
- ATC Building, Global Center for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zhaomin Dong
- ATC Building, Global Center for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - M A Ayanka Wijayawardena
- ATC Building, Global Center for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yanju Liu
- ATC Building, Global Center for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- ATC Building, Global Center for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kirk Semple
- Lancaster Environment Centre, Lancaster University, United Kingdom
| |
Collapse
|