1
|
Yang K, Xue Y, Fan R, Jin N, Dou J, Cheng H. Radiological risk and impact on soil microbial diversity of radionuclides in agricultural topsoils downstream of a decommissioned hydrometallurgical uranium plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122781. [PMID: 39378811 DOI: 10.1016/j.jenvman.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Containing only low levels of U-bearing minerals, U ores often have to undergo hydrometallurgical processing for the separation of other minerals. Hydrometallurgical operations, even after being shut down, could pose radiological risk to the ecosystem and human health due to the radionuclide contamination of surrounding environmental media. This study investigated the contamination of radionuclides in the agricultural topsoils downstream of a decommissioned hydrometallurgical U plant in southern China, and assessed the corresponding radiological risk and evaluated its impact on soil microbial communities. The values of geoaccumulation index and potential ecological risk index indicate that all soil samples were significantly contaminated with U and 226Ra, with their concentrations being 4.4-28.7 times and 4.4-114.8 times higher than the corresponding regional background values, respectively. The mean outdoor annual effective dose (OAED) in the sampling plot next to the drainage ditch downstream of the decommissioned plant was up to 3.9 and 8.2 times higher than the Chinese annual effective dose limit and global average, respectively, which is indicative of unacceptable radiological risk for the local farm workers. Soil microbial composition was obviously impacted by the soil physicochemical properties and radionuclides. Specifically, Cladophialophora, which belongs to the fungal genus, exhibited significantly positive correlations with the contents of total Cd, total U, organic U, residual U, and total K, while Methanosarcina, which belongs to the archaeal genus, exhibited significantly positive correlations with the contents of 226Ra and residual U. Soil pH and total N content were significantly correlated with the abundance of several bacterial genera and the dominant archaeal genus (i.e., Candidatus Nitrocosmicus). These findings demonstrate the existence of potentially significant radiological risk associated with the radionuclides released from historical hydrometallurgical processing of U ores to the surrounding environment, and the need for proper site management and remediation.
Collapse
Affiliation(s)
- Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Runchuan Fan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Luo J, Xie X, Shi J, Wang Y. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:695-703. [PMID: 38141021 DOI: 10.1021/acs.est.3c05867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.
Collapse
Affiliation(s)
- Jiabei Luo
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Malakar A, Ray C, D'Alessio M, Shields J, Adams C, Stange M, Weber KA, Snow DD. Interplay of legacy irrigation and nitrogen fertilizer inputs to spatial variability of arsenic and uranium within the deep vadose zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165299. [PMID: 37419358 DOI: 10.1016/j.scitotenv.2023.165299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The vadose zone is a reservoir for geogenic and anthropogenic contaminants. Nitrogen and water infiltration can affect biogeochemical processes in this zone, ultimately affecting groundwater quality. In this large-scale field study, we evaluated the input and occurrence of water and nitrogen species in the vadose zone of a public water supply wellhead protection (WHP) area (defined by a 50-year travel time to groundwater for public supply wells) and potential transport of nitrate, ammonium, arsenic, and uranium. Thirty-two deep cores were collected and grouped by irrigation practices: pivot (n = 20), gravity (n = 4) irrigated using groundwater, and non-irrigated (n = 8) sites. Beneath pivot-irrigated sites, sediment nitrate concentrations were significantly (p < 0.05) lower, while ammonium concentrations were significantly (p < 0.05) higher than under gravity sites. The spatial distribution of sediment arsenic and uranium was evaluated against estimated nitrogen and water loading beneath cropland. Irrigation practices were randomly distributed throughout the WHP area and presented a contrasting pattern of sediment arsenic and uranium occurrence. Sediment arsenic correlated with iron (r = 0.32, p < 0.05), uranium negatively correlated to sediment nitrate (r = -0.23, p < 0.05), and ammonium (r = -0.19 p < 0.05). This study reveals that irrigation water and nitrogen influx influence vadose zone geochemistry and mobilization of geogenic contaminants affecting groundwater quality beneath intensive agricultural systems.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute and School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, USA.
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-6204, USA
| | - Matteo D'Alessio
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE 68583-0915, USA
| | - Jordan Shields
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute and School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Craig Adams
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute and School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Marty Stange
- Hastings Utilities, 1228 N. Denver Avenue, Hastings, NE 68901, USA
| | - Karrie A Weber
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-6204, USA; School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, NE, USA; Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Lincoln, NE 68588, USA
| | - Daniel D Snow
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute and School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, USA.
| |
Collapse
|
4
|
Bai J, Li S, Yan H, Jin K, Gao F, Zhang C, Wang J. Processable amidoxime functionalized porous hyper-crosslinked polymer with highly efficient regeneration for uranium extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Vengosh A, Coyte RM, Podgorski J, Johnson TM. A critical review on the occurrence and distribution of the uranium- and thorium-decay nuclides and their effect on the quality of groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151914. [PMID: 34856287 DOI: 10.1016/j.scitotenv.2021.151914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This critical review presents the key factors that control the occurrence of natural elements from the uranium- and thorium-decay series, also known as naturally occurring radioactive materials (NORM), including uranium, radium, radon, lead, polonium, and their isotopes in groundwater resources. Given their toxicity and radiation, elevated levels of these nuclides in drinking water pose human health risks, and therefore understanding the occurrence, sources, and factors that control the mobilization of these nuclides from aquifer rocks is critical for better groundwater management and human health protection. The concentrations of these nuclides in groundwater are a function of the groundwater residence time relative to the decay rates of the nuclides, as well as the net balance between nuclides mobilization (dissolution, desorption, recoil) and retention (adsorption, precipitation). This paper explores the factors that control this balance, including the relationships between the elemental chemistry (e.g., solubility and speciation), lithological and hydrogeological factors, groundwater geochemistry (e.g., redox state, pH, ionic strength, ion-pairs availability), and their combined effects and interactions. The various chemical properties of each of the nuclides results in different likelihoods for co-occurrence. For example, the primordial 238U, 222Rn, and, in cases of high colloid concentrations also 210Po, are all more likely to be found in oxic groundwater. In contrast, in reducing aquifers, Ra nuclides, 210Pb, and in absence of high colloid concentrations, 210Po, are more mobile and frequently occur in groundwater. In highly permeable sandstone aquifers that lack sufficient adsorption sites, Ra is often enriched, even in low salinity and oxic groundwater. This paper also highlights the isotope distributions, including those of relatively long-lived nuclides (238U/235U) with abundances that depend on geochemical conditions (e.g., fractionation induced from redox processes), as well as shorter-lived nuclides (234U/238U, 228Ra/226Ra, 224Ra/228Ra, 210Pb/222Rn, 210Po/210Pb) that are strongly influenced by physical (recoil), lithological, and geochemical factors. Special attention is paid in evaluating the ability to use these isotope variations to elucidate the sources of these nuclides in groundwater, mechanisms of their mobilization from the rock matrix (e.g., recoil, ion-exchange), and retention into secondary mineral phases and ion-exchange sites.
Collapse
Affiliation(s)
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
6
|
Pan Z, Roebbert Y, Beck A, Bartova B, Vitova T, Weyer S, Bernier-Latmani R. Persistence of the Isotopic Signature of Pentavalent Uranium in Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1753-1762. [PMID: 35061941 PMCID: PMC8811959 DOI: 10.1021/acs.est.1c06865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain poorly understood. Here, we present a coprecipitation study, in which hexavalent U (U(VI)) was reduced during the synthesis of magnetite and pentavalent U (U(V)) was the dominant species. The measured δ238U values for unreduced U(VI) (∼-1.0‰), incorporated U (96 ± 2% U(V), ∼-0.1‰), and extracted surface U (mostly U(IV), ∼0.3‰) suggested the preferential accumulation of the heavy isotope in reduced species. Upon exposure of the U-magnetite coprecipitate to air, U(V) was partially reoxidized to U(VI) with no significant change in the δ238U value. In contrast, anoxic amendment of a heavy isotope-doped U(VI) solution resulted in an increase in the δ238U of the incorporated U species over time, suggesting an exchange between incorporated and surface/aqueous U. Overall, the results support the presence of persistent U(V) with a light isotope signature and suggest that the mineral dynamics of iron oxides may allow overprinting of the isotopic signature of incorporated U species. This work furthers the understanding of the isotope fractionation of U associated with iron oxides in both modern and paleo-environments.
Collapse
Affiliation(s)
- Zezhen Pan
- Department
of Environmental Science and Engineering, Cluster of Interfacial Processes
Against Pollution (CIPAP), Fudan University, Shanghai 200438, China
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Yvonne Roebbert
- Leibniz,
Universität Hannover, Institut für
Mineralogie, D-30167 Hannover, Germany
| | - Aaron Beck
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Barbora Bartova
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tonya Vitova
- Institute
for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Stefan Weyer
- Leibniz,
Universität Hannover, Institut für
Mineralogie, D-30167 Hannover, Germany
| | - Rizlan Bernier-Latmani
- Environmental
Microbiology Laboratory, École Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Zhang Q, Zeng K, Wang C, Wei P, Zhao X, Wu F, Liu Z. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvothermal polymerization of a porous polymer functionalized with a high concentration of imidazole groups and its application in the efficient extraction of uranium from water.
Collapse
Affiliation(s)
- Qinghua Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Kai Zeng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, China
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Peng Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Xiaohong Zhao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Faming Wu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
8
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
9
|
Zhang T, Chen J, Xiong H, Yuan Z, Zhu Y, Hu B. Constructing new Fe 3O 4@MnO x with 3D hollow structure for efficient recovery of uranium from simulated seawater. CHEMOSPHERE 2021; 283:131241. [PMID: 34470731 DOI: 10.1016/j.chemosphere.2021.131241] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Enrichment of uranium from seawater is a promising method for addressing the energy crisis. Current technologies are generally not effective for enriching uranium from seawater because its concentration in seawater is low. In this study, new Fe3O4@MnOx with 3D hollow structure, which is capable of enriching low concentration uranium, was prepared via a novel redox etching method. The physicochemical characteristics of Fe3O4@MnOx were studied with TEM, HRTEM, SEAD, FTIR, XRD, and N2 adsorption-desorption analysis. Dynamic kinetic studies of different initial U(VI) concentrations revealed that the pseudo-second-order model fit the sorption process better, and the sorption rates of Fe3O4@MnOx in 1, 10, and 25 mg/L U(VI) solution were 0.0124, 0.00298, and 0.000867 g/mg·min, respectively. Isothermal studies showed that the maximum sorption amounts were 50.09, 56.27, and 64.62 mg/g for 1, 10, and 25 mg/L U(VI), respectively, at pH 5.0 and 313 K, suggesting that Fe3O4@MnOx could effectively enrich low concentration U(VI) from water. The sorption amount of U(VI) did not significantly decrease in the presence of Na+, Mg2+, and Ca2+. HRTEM, FTIR, and XPS results demonstrated that Fe(II) and Mn/Fe-O-H active sites in Fe3O4@MnOx were accounted for the high and specific enrichment efficiency. A column experiment was conducted to evaluate the U(VI) sorption efficiency of Fe3O4@MnOx in simulated seawater. The U(VI) sorption efficiency remained above 80% in 28 days run. Our findings demonstrate that Fe3O4@MnOx has extraordinary potential for the enrichment of uranium from simulated seawater.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; College of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Jiemin Chen
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Huiyan Xiong
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China; College of Civil Engineering, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Zongdi Yuan
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Yuling Zhu
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Baowei Hu
- College of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| |
Collapse
|
10
|
Wang J, Yin M, Liu J, Shen CC, Yu TL, Li HC, Zhong Q, Sheng G, Lin K, Jiang X, Dong H, Liu S, Xiao T. Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125466. [PMID: 33657470 DOI: 10.1016/j.jhazmat.2021.125466] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Uranium (U) geochemistry and its isotopic compositions of reservoir sediments in U mine area were poorly understood. Herein, U and Th isotopic compositions were employed to investigate source apportionment and geochemical behavior of U in 41 reservoir sediments from a U mining area, Guangdong, China. The remarkably high contents of both total U (207.3-1117.7 mg/kg) and acid-leachable U (90.3-638.5 mg/kg) in the sediments exhibit a severe U contamination and mobilization-release risk. The U/Th activity ratios (ARs) indicate that all sediments have been contaminated apparently by U as a result of discharge of U containing wastewater, especially uranium mill tailings (UMT) leachate, while the variations of U/Th ARs are dominated by U geochemical behaviors (mainly redox process and adsorption). The U isotopic compositions (δ238U) showed a large variance through the sediment profile, varying from - 0.62 to - 0.04‰. The relation between δ238U and acid-leachable U fraction demonstrates that the U isotopic fractionation in sediments can be controlled by bedrock weathering (natural activity), UMT leachate (anthropogenic activity) and subsequent biogeochemical processes. The findings suggest that U-Th isotopes are a powerful tool to better understand U geochemical processes and enrichment mechanism in sediments that were affected by combined sources and driving forces.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Chuan-Chou Shen
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Luen Yu
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan; Marine Industry and Engineering Research Center, National Academy of Marine Research, Kaohsiung 80661, Taiwan
| | - Hong-Chun Li
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Qiaohui Zhong
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Guodong Sheng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ke Lin
- High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
| | - Xiuyang Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Pudong, Shanghai 201203, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University; Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
11
|
|
12
|
Roebbert Y, Rosendahl CD, Brown A, Schippers A, Bernier-Latmani R, Weyer S. Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7959-7969. [PMID: 34038128 DOI: 10.1021/acs.est.0c08623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 μM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.
Collapse
Affiliation(s)
- Yvonne Roebbert
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| | | | - Ashley Brown
- École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Hannover D-30655, Germany
| | | | - Stefan Weyer
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| |
Collapse
|
13
|
Hu X, Wang Y, Wu P, Li Y, Tu H, Wang C, Yuan D, Liu Y, Cao X, Liu Z. Preparation of graphene/graphene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07208-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Chen X, Zheng W, Anbar AD. Uranium Isotope Fractionation ( 238U/ 235U) during U(VI) Uptake by Freshwater Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2744-2752. [PMID: 31995356 DOI: 10.1021/acs.est.9b06421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uranium contamination in the environment is a serious public health concern. Biotic U(VI) reduction and nonreductive U(VI) uptake by microorganisms (e.g., U(VI) biosorption by cyanobacteria) are effective U remediation techniques. Variations of 238U/235U have been extensively explored to track biotic U(VI) reduction in laboratory experiments and field applications. However, U isotope fractionation during nonreductive U(VI) uptake by microorganisms is poorly constrained. To investigate U isotope fractionation in this process, we cultured freshwater plankton in the presence of U(VI) and measured 238U/235U in the culture media and biomass. We found that nonreductive U(VI) uptake by freshwater plankton fractionated U isotopes in the opposite direction compared to biotic U(VI) reduction. δ238U values in freshwater plankton were consistently ∼0.23 ± 0.06‰ lighter than those in dissolved U in the culture medium at various fractions of U removal (12-30%), consistent with equilibrium isotope fractionation in a closed system. The equilibrium isotope fractionation observed in our experiments possibly results from changes in coordination geometry between dissolved U(VI) in the culture media and adsorbed U(VI) on cell surfaces. Our experimental results highlight the need to consider U isotope fractionation during nonredox U(VI) uptake by microorganisms and organic matter when applying variations of 238U/235U to track biogeochemical processes and evaluate U remediation.
Collapse
Affiliation(s)
- Xinming Chen
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- Department of Earth, Ocean and Atmospheric Sciences and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Reimus PW, Dangelmayr MA, Clay JT, Chamberlain KR. Uranium Natural Attenuation Downgradient of an in Situ Recovery Mine Inferred from a Cross-Hole Field Test. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7483-7493. [PMID: 31132251 DOI: 10.1021/acs.est.9b01572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A field test was conducted at a uranium in situ recovery (solution mining) site to evaluate postmining uranium natural attenuation downgradient of an ore zone. Approximately 1 million liters of water from a previously mined ore zone was injected into an unmined ore zone that served as a proxy for a downgradient aquifer, while a well located approximately 23 m away was pumped. After 1 year of pumping, only about 39% of the injected U(VI) was recovered, whereas essentially 100% of coinjected chloride was recovered. A geochemical/transport model was used to simultaneously match the chloride and uranium concentrations at the pumping well while also qualitatively matching aqueous 238U/235U ratios, which reflect uranium removal from solution by reduction. It was concluded that ∼50% of the injected U(VI) was reduced to U(IV), although the reduction capacity in the flow pathways between the injection and production wells was estimated to be nearly exhausted by the end of the test. Estimating the reduction capacity of the downgradient aquifer can inform restoration strategy and offer a useful metric for regulatory decisions concerning the adequacy of restoration. U(VI) reduction should be effectively irreversible in these anoxic environments, which differ greatly from shallow oxic environments where U(IV) is readily reoxidized.
Collapse
Affiliation(s)
- Paul W Reimus
- Los Alamos National Laboratory , P.O. Box 1663, Los Alamos , New Mexico 87545 , United States
| | - Martin A Dangelmayr
- Los Alamos National Laboratory , P.O. Box 1663, Los Alamos , New Mexico 87545 , United States
| | - James T Clay
- Cameco Resources, Inc. , 762 Ross Road , Douglas , Wyoming 82633 , United States
| | - Kevin R Chamberlain
- University of Wyoming , Department of Geology and Geophysics , 1000 East University Avenue , Dept. 3006, Laramie , Wyoming 82071 , United States
| |
Collapse
|
17
|
Singh J, Yadav D, Singh JD. En Route Activity of Hydration Water Allied with Uranyl (UO 22+) Salts Amid Complexation Reactions with an Organothio-Based (O, N, S) Donor Base. Inorg Chem 2019; 58:4972-4978. [PMID: 30950271 DOI: 10.1021/acs.inorgchem.8b03622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study provides en route activity of hydration water allied with uranyl salts amid complexation reactions with a donor species L bearing O, N, and S (phenolic, -OH; imine, -HC═N-; and thio-, -S-) donor functionalities. The UO22+/L reaction encounters a series of hydrolytic steps with hydration water released from uranyl salts during the complexation processes. Primarily, the coordinated [L(-HC=N)(OH)(-HC=N) → UO2(NO3)2/(OAc)2] species formed during the complexation process undergoes partial hydrolysis of the coordinated ligand resulting in the isolation of an aldehyde coordinated uranyl species [L(-HC=N)(OH)(-HC=O) → UO2(NO3)2/(OAc)2]. The influence of hydration water continued as the reaction further proceeded to the next stage resulting in alteration of the aldehyde coordinated uranyl species [L(-HC=N)(OH)(-HC=O) → UO2(NO3)2/(OAc)2] to an oxidized carboxy coordinated uranyl species [L(-HC=N) (OH){-C(═O)O} → (NO3)/(OAc)]2 without the use of any external oxidizing agents. These studies are of particular significance as they allow one to realize the adventitious role of hydration water released from commonly used uranyl salts during their reaction with organic donor substrates in nonaqueous medium. These results also form an experimental basis to understand the critical behavior of UO22+ ion activity (as oxidizing, reducing, or catalytic) relevant in many chemical, biological, and environmental processes.
Collapse
Affiliation(s)
- Jagriti Singh
- Department of Chemistry , Indian Institute of Technology Delhi (IITD) , Hauz Khas , New Delhi 110 016 , India
| | - Dolly Yadav
- Department of Chemistry , Indian Institute of Technology Delhi (IITD) , Hauz Khas , New Delhi 110 016 , India
| | - Jai Deo Singh
- Department of Chemistry , Indian Institute of Technology Delhi (IITD) , Hauz Khas , New Delhi 110 016 , India
| |
Collapse
|
18
|
Lefebvre P, Noël V, Lau KV, Jemison NE, Weaver KL, Williams KH, Bargar JR, Maher K. Isotopic Fingerprint of Uranium Accumulation and Redox Cycling in Floodplains of the Upper Colorado River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3399-3409. [PMID: 30807121 DOI: 10.1021/acs.est.8b05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Uranium (U) groundwater contamination is a major concern at numerous former mining and milling sites across the Upper Colorado River Basin (UCRB), USA, where U(IV)-bearing solids have accumulated within naturally reduced zones (NRZs). Understanding the processes governing U reduction and oxidation within NRZs is critical for assessing the persistence of U in groundwater. To evaluate the redox cycling of uranium, we measured the U concentrations and isotopic compositions (δ238U) of sediments and pore waters from four study sites across the UCRB that span a gradient in sediment texture and composition. We observe that U accumulation occurs primarily within fine-grained (low-permeability) NRZs that show active redox variations. Low-permeability NRZs display high accumulation and low export of U, with internal redox cycling of U. In contrast, within high-permeability NRZs, U is remobilized under oxidative conditions, possibly without any fractionation, and transported outside the NRZs. The low δ238U of sediments outside of defined NRZs suggests that these reduced zones act as additional U sources. Collectively, our results indicate that fine-grained NRZs have a greater potential to retain uranium, whereas NRZs with higher permeability may constitute a more-persistent but dilute U source.
Collapse
Affiliation(s)
- Pierre Lefebvre
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
- Département de Géosciences , Ecole Normale Supérieure , Paris 75005 , France
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kimberly V Lau
- Department of Geological Sciences , Stanford University , Stanford , California 94305 , United States
| | - Noah E Jemison
- Department of Geology , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Karrie L Weaver
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| | - Kenneth H Williams
- Earth Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kate Maher
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
19
|
Baselga-Cervera B, García-Balboa C, López-Rodas V, Fernández Díaz M, Costas E. Evidence of microalgal isotopic fractionation through enrichment of depleted uranium. Sci Rep 2019; 9:1973. [PMID: 30760845 PMCID: PMC6374374 DOI: 10.1038/s41598-019-38740-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Resulting from the nuclear fuel cycle, large amounts of depleted uranium (DU) tails are piling up, waiting for possible use or final disposal. To date, the recovery of the residual 235U isotope contained in DU has been conducted only marginally by physical processes. Relative isotope abundances are often mediated by biological processes, and the biologically driven U isotopic fractionation has been previously identified in reducing bacteria. Our results indicate that the cells of two microalgal strains (freshwater Chlamydomonas sp. (ChlGS) and marine Tetraselmis mediterranea (TmmRU)) took up DU from the exposure solutions, inducing U isotopic fractionation with a preference for the fissile 235U isotope over 238U. The n(235U)/n(238U) isotopic fractionation magnitudes (δ235) were 23.6 ± 12.5‰ and 370.4 ± 103.9‰, respectively. These results open up new perspectives on the re-enrichment of DU tailings, offering a potential biological alternative to obtain reprocessed natural-equivalent uranium. Additionally, the findings present implications for identifying biological signatures in the geologic records.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Department of Animal Science (Genetics), School of Veterinary Medicine, Complutense University, Madrid, 28040, Spain.
| | - Camino García-Balboa
- Department of Animal Science (Genetics), School of Veterinary Medicine, Complutense University, Madrid, 28040, Spain
| | - Victoria López-Rodas
- Department of Animal Science (Genetics), School of Veterinary Medicine, Complutense University, Madrid, 28040, Spain
| | - Marta Fernández Díaz
- CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, 28040, Spain
| | - Eduardo Costas
- Department of Animal Science (Genetics), School of Veterinary Medicine, Complutense University, Madrid, 28040, Spain.
| |
Collapse
|
20
|
Xu R, Wu K, Han H, Ling Z, Chen Z, Liu P, Xiong J, Tian F, Zafar Y, Malik K, Li X. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. CHEMOSPHERE 2018; 211:1156-1165. [PMID: 30223331 DOI: 10.1016/j.chemosphere.2018.08.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Overexpression of the enzyme phosphatase (PhoN/PhoK) in the radiation-resistant bacterium Deinococcus radiodurans could be an efficient strategy for uranium remediation. However, the presence of other metals in nuclear wastes often interferes with uranium bioprecipitation. In our study, the uranium-precipitating ability of the PhoN-expressing D. radiodurans strain (Deino-phoN) significantly decreased by 45.4% in 13 h in the presence of chromium (VI); however, it was partially recovered after supplementation with chromium (III). Therefore, the reduction of chromium (VI) to chromium (III) was obtained by the co-expression of the YieF protein and PhoN in D. radiodurans (Deino-phoN-yieF). As a result, an increase in the chromium (VI) reduction (25.1%) rate was observed in 24 h. Furthermore, uranium precipitation also increased by 28.0%. For the decontamination of groundwater, we immobilized Deino-phoN-yieF cells using Polyvinyl alcohol (PVA)-sodium alginate (SA) beads, followed by incubation in a bioreactor. Approximately 99% of chromium (VI) and uranium (VI) was removed after 4 continuous cycles operated for a period of over 20 days at room temperature (25 °C). Therefore, Deino-phoN-yieF could be used as a potential biological agent for mixed radioactive nuclear waste remediation.
Collapse
Affiliation(s)
- Rong Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Zhengjun Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Pu Liu
- Department of Development Biology Sciences, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Jian Xiong
- Wuhan Optics Valley Bluefire New Energy Co., Ltd, Fozulingsanlu Wuhan East Lake Development Zone #29, Wuhan, Hubei 430205, PR China
| | - Fake Tian
- Wuhan Optics Valley Bluefire New Energy Co., Ltd, Fozulingsanlu Wuhan East Lake Development Zone #29, Wuhan, Hubei 430205, PR China
| | - Yusuf Zafar
- Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Kamaran Malik
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
21
|
Dang DH, Wang W, Pelletier P, Poulain AJ, Evans RD. Uranium dispersion from U tailings and mechanisms leading to U accumulation in sediments: Insights from biogeochemical and isotopic approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:880-891. [PMID: 28830048 DOI: 10.1016/j.scitotenv.2017.08.156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Uranium contamination is a worldwide problem that grows proportionally to human demands for energy and armory. Understanding U cycling in the environment is of eminent interest, mostly concerning ecosystems directly impacted by point sources. In Bow Lake (Ontario, Canada), which is located adjacent to a former U mine, exceptionally high concentrations of U are related to U dispersion from tailings and biogeochemical processes such as biotic reduction and adsorption. This has been shown by a U-Pb isotope composition model. In this study, we use U isotope fractionation (δ238U) to highlight U cycling and the role of bacteria (Geobacteraceae and sulfate-reducing bacteria) in affecting U cycling. Bacteria affected U cycling directly via biotic U reduction and indirectly via reductive dissolution of carrier phases. All the processes are interconnected through diagenetic reactions with the supply of bioavailable organic matter being the primary driving force of the diagenesis. This study is the first to use multiple biogeochemical and isotopic approaches to track U cycling from a contamination point source to U storage in lake sediments.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Wei Wang
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Philip Pelletier
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - R Douglas Evans
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada; Water Quality Center, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
22
|
Bhattacharyya A, Campbell KM, Kelly SD, Roebbert Y, Weyer S, Bernier-Latmani R, Borch T. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits. Nat Commun 2017; 8:15538. [PMID: 28569759 PMCID: PMC5461479 DOI: 10.1038/ncomms15538] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. Crystalline uraninite is believed to be the dominant form in uranium deposits. Here, the authors find that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in ore deposits, implying that biogenic processes are more important than previously thought.
Collapse
Affiliation(s)
- Amrita Bhattacharyya
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA
| | | | | | - Yvonne Roebbert
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Stefan Weyer
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|