1
|
Dhanda A, Thulluru LP, Mishra S, Chowdhury S, Dubey BK, Ghangrekar MM. Integrated fuel cell system for sustainable wastewater treatment, ammonia recovery, and power production. ENVIRONMENTAL RESEARCH 2024; 262:119821. [PMID: 39173817 DOI: 10.1016/j.envres.2024.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The industrial production of synthetic fertilizers and the wide-scale combustion of fossil fuels have disrupted the global nitrogen cycle, necessitating a prudent shift towards sustainable nitrogen management. Traditional wastewater treatment methods primarily focus on nitrogen elimination rather than recovery in useable form, exacerbating resource depletion and environmental degradation. This review explores integrated technologies, including bio-electroconcentration cells (BEC), direct ammonia fuel cells (DAFC), solid oxide fuel cells (SOFC), and microbial fuel cells (MFC), for effective nutrient recovery in conjugation with energy recovery. Recovered nitrogen, primarily green ammonia, offers a carbon-free energy carrier for diverse applications, including applications in DAFC and SOFC. This review underscores the importance of synchronously retrieving ammonia from wastewater and efficiently diverting it for energy recovery using an integrated fuel cell approach. The key technical challenges and future perspectives are discussed, highlighting the potential of these integrated systems to advance sustainability and circular economy goals.
Collapse
Affiliation(s)
- Anil Dhanda
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Lakshmi Pathi Thulluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Srishti Mishra
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India; School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India; National Institute of Technology Puducherry, Karaikal, 609609, India.
| |
Collapse
|
2
|
Crane L, Merck A, Delanthamajalu S, Grieger K, Marshall AM, Boyer TH. Benchmarks for urine volume generation and phosphorus mass recovery in commercial and institutional buildings. WATER RESEARCH X 2024; 23:100227. [PMID: 38765691 PMCID: PMC11101975 DOI: 10.1016/j.wroa.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Phosphorus (P) is a finite resource and necessary nutrient for agriculture. Urine contains a higher concentration of P than domestic wastewater, which can be recovered by source separation and treatment (hereafter urine diversion). Commercial and institutional (CI) buildings are a logical location for urine diversion since restrooms account for a substantial fraction of water use and wastewater generation. This study estimated the potential for P recovery from human urine and water savings from reduced flushing in CI buildings, and proposed an approach to identify building types and community layouts that are amenable to implementing urine diversion. The results showed that urine diversion is most advantageous in CI buildings with either high daily occupancy counts or times, such as hospitals, schools, office buildings, and airports. Per occupant P recovery benchmarks were estimated to be between 0.04-0.68 g/cap·d. Per building P recovery rates were estimated to be between 0.002-5.1 kg/d, and per building water savings were estimated to be between 3 and 23 % by volume. Recovered P in the form of phosphate fertilizer and potable water savings could accrue profits and cost reductions that could offset the capital costs of new urine diversion systems within 5 y of operation. Finally, urine diversion systems can be implemented at different levels of decentralization based on community layout and organizational structure, which will require socioeconomic and policy acceptance for wider adoption.
Collapse
Affiliation(s)
- Lucas Crane
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Ashton Merck
- Department of Applied Ecology, North Carolina State University, Raleigh NC 27606, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Shwetha Delanthamajalu
- Department of Sociology, University of Illinois Urbana-Champaign, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Khara Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh NC 27606, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Anna-Maria Marshall
- Department of Sociology, University of Illinois Urbana-Champaign, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
- NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| |
Collapse
|
3
|
Diasi M, Singh R, Mahapatra AD, L R, Patel H, Ganatra H, Datta B. Ammonium release in synthetic and human urine by a urease immobilized nanoconstruct. RSC Adv 2024; 14:6972-6984. [PMID: 38414993 PMCID: PMC10898436 DOI: 10.1039/d3ra07606g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
In this work, we have studied the ability of urease immobilized on glutaraldehyde crosslinked chitosan coated magnetic iron oxide nanoparticles (Urease/GA/CS/MIONPs), for the hitherto unreported comparative hydrolysis of urea in synthetic (SUr) and real human urine (HUr). The prepared Urease/GA/CS/MIONPs were characterized by a combination of Fourier transform infrared spectroscopy (FTIR), field emission-scanning-electron-microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS). The nanoconstructs display the highest ammonium ion liberation post-urea hydrolysis in 1/20 or 1/24-fold dilutions of SUr and HUr, respectively. The optimum activity of immobilized urease is observed at pH 7, and the nanoconstructs facilitate efficient urea-hydrolysis till at least 45 °C. Kinetic analysis of the immobilized urease shows km and vmax of 14.81 mM, 12.36 mM, and 18.55 μM min-1 and 10.10 μM min-1, towards SUr and HUr, respectively. The magnetization of the immobilized urease is suitable for reuse across multiple cycles of urea hydrolysis in SUr and HUr. The robust performance of Urease/GA/CS/MIONPs in SUr and HUr is promising for generating ammonium as a useable source of nitrogen from human urine, and underscores the suitability of SUr as a urine mimic for such interventions.
Collapse
Affiliation(s)
- Manab Diasi
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Rinki Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Renuka L
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Hitarth Patel
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Hasit Ganatra
- Blasto Research Private Limited Ahmedabad Gujarat India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| |
Collapse
|
4
|
Mondal H, Datta B. Banana Peel Derived Chitosan-Grafted Biocomposite for Recovery of NH 4+ and PO 43. ACS OMEGA 2023; 8:43674-43689. [PMID: 38027321 PMCID: PMC10666154 DOI: 10.1021/acsomega.3c05229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Biomass-derived adsorbents afford accessible and inexpensive harvesting of nitrogen and phosphorus from wastewater sources. Human urine is widely accepted as a rich source of nitrogen and phosphorus. However, direct use of urine in agriculture is untenable because of its unpleasant smell, pathogen contamination, and pharmaceutical residues. In this work, we have grafted chitosan onto dried and crushed banana peel (DCBP) to generate the biocomposite DCBP/Ch. A combination of FTIR, TGA, XRD, FESEM, EDX, and NMR analyses were used to characterize DCBP/Ch and reveal condensation-aided covalent conjugation between O-H functionalities of DCBP and chitosan. The adsorption performance of DCBP/Ch toward NH4+ and PO43- is in sync with its attractive surface porosity, elevated crystallinity, and thermostability. The maximum adsorption capacity of DCBP/Ch toward NH4+/PO43- was estimated as 42.16/15.91 mg g-1 at an operating pH of 7/4, respectively, and ranks highly when compared to previously reported bioadsorbents. DCBP/Ch performs admirably when tested on artificial urine. While nitrogen and phosphorus harvesting from human urine using single techniques has been reported previously, this is the first report of a single adsorbent for recovery of NH4+ and PO43-. The environmental compatibility, ease of preparation, and economic viability of DCBP/Ch present it as an attractive candidate for deployment in waste channels.
Collapse
Affiliation(s)
- Himarati Mondal
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Bhaskar Datta
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
- Department
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
5
|
Horn EJ, Huddy R, Randall DG. Growing bio-tiles using microbially induced calcium carbonate precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165050. [PMID: 37355135 DOI: 10.1016/j.scitotenv.2023.165050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Using the biomimetic process known as microbially induced calcium carbonate precipitation (MICP), the growth of bio-tiles was investigated as an alternative to conventionally fired ceramic tiles which require operating temperatures above 1000 °C, therefore adding to global carbon emissions. The ureolytic activity of Sporosarcina pasteurii was controlled by centrifuging and dilution with fresh yeast extract media. The bio-tiles were grown using a novel submersion method in which custom moulds were placed in exact positions within the bio-reactor and each was mixed individually from beneath. Five parameters were optimised to achieve bio-tiles (dimensions of 100 × 100 × 10 mm) of breaking strength comparable to conventional tiles of equivalent thickness. By optimising ureolytic activity (4.0 mmol/L·min), the cementation solution concentration (0.3 M), the particle size distribution (D10 = 312 μm; D50 = 469 μm), the volume of cementation solution, as well as the addition of supplemental magnesium (0.3 M), bio-tiles with a breaking strength 637 N ± 60 N and a modulus of rupture of 13.0 N/mm2 ± 2.3 N were produced. These parameters exceed the conventional standards of breaking strength and modulus of rupture of 600 N and 8 N/mm2, respectively, the standards set for tiles with a water absorption above 10 %. This is also the first time that an optimum CaCO3 precipitation rate constant has been identified (0.11-0.18 day-1) for producing bio-tiles that meet the strength properties of conventional extruded ceramic tiles. The tile manufacturing technique described in this study is easy to operate and scale since multiple bio-tiles can be produced in larger cementation tanks. This natural tile making process also benefits the environment by operating at room temperature.
Collapse
Affiliation(s)
- Emma Jane Horn
- Civil Engineering Department, University of Cape Town, Cape Town 7700, South Africa; Future Water Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Robert Huddy
- Research Office, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - Dyllon Garth Randall
- Civil Engineering Department, University of Cape Town, Cape Town 7700, South Africa; Future Water Institute, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
6
|
Zuo Z, Chen Y, Xing Y, Li S, Yang S, Jiang G, Liu T, Zheng M, Huang X, Liu Y. The advantage of a two-stage nitrification method for fertilizer recovery from human urine. WATER RESEARCH 2023; 235:119932. [PMID: 37011577 DOI: 10.1016/j.watres.2023.119932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Recycling nutrients (nitrogen, phosphorus, and potassium) from human urine can potentially offset more than 13% of global agricultural fertilizer demand. Biological nitrification is a promising method for converting volatile ammonia in high-strength human urine into stable ammonium nitrate (a typical fertilizer), but it is usually terminated in the intermediate production of nitrite due to the inhibition of nitrite-oxidizing bacteria by free nitrous acid (FNA). This study aimed to develop a stable nitrification process in a unique two-stage bioreactor by removing critical barriers associated with FNA inhibition. Experimental results show that half of the ammonium in high-strength urine was successfully converted into nitrate, forming valuable ammonium nitrate (with a nitrogen concentration greater than 1500 mg N/L). The ammonium nitrate solution could retain most phosphorus (75% ± 3%) and potassium (96% ± 1%) in human urine, resulting in nearly full nutrient recovery. Once concentrated, the liquid compound fertilizer of ammonium nitrate was generated. Based on an assessment of economic and environmental impacts at the urban scale, urine diversion for nutrient recovery using a technical combination of nitrification and reverse osmosis could reduce total energy input by 43%, greenhouse gas emission by 40%, and cost by 33% compared to conventional wastewater management. Further research is needed to optimize the two-stage nitrification method on a larger scale.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, China
| | - Yan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yaxin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Saingam P, Li B, Nguyen Quoc B, Jain T, Bryan A, Winkler MKH. Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161467. [PMID: 36626989 PMCID: PMC9825140 DOI: 10.1016/j.scitotenv.2023.161467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology has proven to be a supportive tool to better comprehend the dynamics of the COVID-19 pandemic. As the disease moves into endemic stage, the surveillance at wastewater sub-catchments such as pump station and manholes is providing a novel mechanism to examine the reemergence and to take measures that can prevent the spread. However, there is still a lack of understanding when it comes to wastewater-based epidemiology implementation at the smaller intra-city level for better granularity in data, and dilution effect of rain precipitation at pump stations. For this study, grab samples were collected from six areas of Seattle between March-October 2021. These sampling sites comprised five manholes and one pump station with population ranging from 2580 to 39,502 per manhole/pump station. The wastewater samples were analyzed for SARS-CoV-2 RNA concentrations, and we also obtained the daily COVID-19 cases (from individual clinical testing) for each corresponding sewershed, which ranged from 1 to 12 and the daily incidence varied between 3 and 64 per 100,000 of population. Rain precipitation lowered viral RNA levels and sensitivity of viral detection but wastewater total ammonia (NH4+-N) and phosphate (PO43--P) were shown as potential chemical indicators to calibrate/level out the dilution effect. These chemicals showed the potential in improving the wastewater surveillance capacity of COVID-19.
Collapse
Affiliation(s)
- Prakit Saingam
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tanisha Jain
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andrew Bryan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Saliu TD, Olaniyi OO, Bulu YI, Oladele S, Ololade IA, Oladoja NA. Nutrient recovery from yellow water to soil-crop systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26843-26857. [PMID: 36370311 DOI: 10.1007/s11356-022-24058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The potentials of the nutrient recovered (NRM), via a facile green and sustainable approach from human urine, as a fertilizer in soil-crop system was studied. Nutrient was recovered using a highly decentralized modular reactor, with packed bed of granular gastropod shell. The cultivations of Zea mays (maize) and Solanum lycopersicum (tomato) were the cases studied. The total nutrient composition, the P-speciation, and the safety-risk assessment of the NRM were determined. Using NPK as the standard fertilizer, and a non-fertilized soil as the control, the fertilizing potential of the NRM was evaluated. The influence of the different fertilizer application regimes on the wet and dry biomass nutrient composition, after-harvest soil nutrient composition, and pH values was studied. The NRM contained 106 mg/g of TN and 374.6 mg/g of TP, and the P species identified were Ca2-P (31.66%), Ca8-P (14.99%), and Ca10-P (53.32%). The growth rate of the NRM crops were lower than that of the NPK crops until the 17th day, when the NRM crops grew faster than that of the NPK and control (p < 0.05). The NRM is beneficial to acidic soils and also acts as a slow nutrient releasing fertilizer.
Collapse
Affiliation(s)
- Toyin Dunsin Saliu
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Olusegun Olutope Olaniyi
- Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Yetunde Irinyemi Bulu
- Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Segun Oladele
- Department of Agronomy, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | | | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
9
|
Zhang B, Tian S, Wu D. An integrated strategy for nutrient harvesting from hydrolyzed human urine as high-purity products: Tracking of precipitation transformation and precise regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158721. [PMID: 36108829 DOI: 10.1016/j.scitotenv.2022.158721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The nutrient recovery from source-separated urine is of great significance for a sustainable and closed nutrient loop. However, common urine-processing techniques have several constraints, including inefficient recovery, low product purity and incapability of simultaneously harvesting multiple nutrients. In this study, an integrated strategy of P precipitation and N stripping was first proposed to harvest nutrients from hydrolyzed human urine as high-purity products via precisely regulating Ca/P dosing ratio. Ca(OH)2 was utilized to trigger Ca-P precipitation and elevate pH level. Different from the previously reported conventional struvite method, P recovery was oriented to calcium phosphate. P harvesting behavior was investigated as a function of key factors including initial P concentration and the dosing ratio. A thermodynamic model was constructed to unveil the precipitation transformation mechanism and visualize P recovery for an enhanced controllability. For N harvesting, Ca(OH)2 was dosed to increase the pH of the urine to converts ammonium to ammonia. The resulting ammonia was stripped and then adsorbed by H2SO4 as high-purity ammonium sulfate. Moreover, the sulfate derived from acidification treatment was recovered as calcium sulfate in the interests of material recycling and mitigating secondary contaminations. Results exhibited P recovery efficiency could reach 100 % and purity for calcium phosphate could be above 90 % within a Ca/P ratio range of 1.67-2.0. Further boosting pH to 12, over 85 % of S and 95 % of N was retrieved. The comprehensive scheme provides an efficient approach towards the precise P and N harvesting from hydrolyzed urine and advances the knowledge of precipitation transformation mechanism.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shiyu Tian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Zhang B, Tian S, Wu D. Phosphorus harvesting from fresh human urine: A strategy of precisely recovering high-purity calcium phosphate and insights into the precipitation conversion mechanism. WATER RESEARCH 2022; 227:119325. [PMID: 36371917 DOI: 10.1016/j.watres.2022.119325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) harvesting from source-separated urine to optimize the overall nutrient loop is one of the most appealing benefits and is a global research interest in wastewater management and treatment. However, current P precipitation is mainly oriented to struvite, which is limited by the issues such as relatively low product purity and high cost of Mg source. Distinguished from previous conventional struvite precipitation, the strategy of precisely harvesting P from fresh human urine as high-purity calcium phosphate was first proposed in this study. This enhanced strategy can optimize P harvesting performance and product purity by simply regulating the consumption of calcium-based materials via model simulation and experimental validation. The thermodynamic model was constructed to probe the precipitation conversion mechanism, and visually predict the component and yield for products under various operating conditions. Batch experiments were conducted to investigate P recovery performance as a function of initial Mg2+ concentration, initial pH level, as well as degree of urine hydrolysis. Moreover, the alternative dosing scheme with different calcium salts and alkali was presented, diversifying the options for efficient P recovery. The results showed that, from the perspective of acidic storage for fresh urine, P recovery can be boosted along with eliminating urine hydrolysis. In urine with an initial pH=2.0, P can be completely recovered and purity for calcium phosphate can be optimized to 100% within a Ca/P ratio range of 1.67-2.3. Overall, this work is of great significance for precisely and efficiently harvesting P from urine and provides an integrated strategy for P resource recovery from urine.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shiyu Tian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Govers LP, Devuyst O. Urine: from waste to fertilizer. Kidney Int 2022; 102:1206-1208. [PMID: 36411013 DOI: 10.1016/j.kint.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Larissa P Govers
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Kundu D, Dutta D, Samanta P, Dey S, Sherpa KC, Kumar S, Dubey BK. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157709. [PMID: 35908693 DOI: 10.1016/j.scitotenv.2022.157709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal 735210, India
| | - Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Knawang Chhunji Sherpa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
13
|
Imwene KO, Ngumba E, Kairigo PK. Emerging technologies for enhanced removal of residual antibiotics from source-separated urine and wastewaters: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116065. [PMID: 36063692 DOI: 10.1016/j.jenvman.2022.116065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic residues are of significant concern in the ecosystem because of their capacity to mediate antibiotic resistance development among environmental microbes. This paper reviews recent technologies for the abatement of antibiotics from human urine and wastewaters. Antibiotics are widely distributed in the aquatic environment as a result of the discharge of municipal sewage. Their existence is a cause for worry due to the potential ecological impact (for instance, antibiotic resistance) on bacteria in the background. Numerous contaminants that enter wastewater treatment facilities and the aquatic environment, as a result, go undetected. Sludge can act as a medium for some chemicals to concentrate while being treated as wastewater. The most sewage sludge that has undergone treatment is spread on agricultural land without being properly checked for pollutants. The fate of antibiotic residues in soils is hence poorly understood. The idea of the Separation of urine at the source has recently been propagated as a measure to control the flow of pharmaceutical residues into centralized wastewater treatment plants (WWTPs). With the ever increasing acceptance of urine source separation practices, visibility and awareness on dedicated treatement technologies is needed. Human urine, as well as conventional WWTPs, are point sources of pharmaceutical micropollutants contributing to the ubiquitous detection of pharmaceutical residues in the receiving water bodies. Focused post-treatment of source-separated urine includes distillation and nitrification, ammonia stripping, and adsorption processes. Other reviewed methods include physical and biological treatment methods, advanced oxidation processes, and a host of combination treatment methods. All these are aimed at ensuring minimized risk products are returned to the environment.
Collapse
Affiliation(s)
- K O Imwene
- University of Nairobi, Faculty of Science and Technology, Department of Chemistry, PO Box 30197, 00100, Nairobi, Kenya
| | - E Ngumba
- Jomo Kenyatta University of Agriculture and Technology, Department of Chemistry, P.O. Box 62000-00200, Nairobi, Kenya
| | - P K Kairigo
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyvaskyla, Finland.
| |
Collapse
|
14
|
Liu D, Yu F, Zhong L, Zhang T, Xu Y, Qin Y, Ma J, Wang W. Armor-Structured Interconnected-Porous Membranes for Corrosion-Resistant and Highly Permeable Waste Ammonium Resource Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6658-6667. [PMID: 35471028 DOI: 10.1021/acs.est.2c00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonium recovery from wastewater by gas-permeable membranes is promising but suffers from the tradeoff between membrane stability and permeability under harsh operating conditions. Chemical-resistant membranes display modest permeability due to the poor solubility and processibility; chemically active membranes are easier to be endowed with better permeability however hinder by instability. To resolve such a problem, we cleverly design a novel membrane configuration via one-step solution-electrospinning, with the chemical-active component (low-strength fluorine polymer) as the inner skeleton to construct interconnected porous structures and the chemical-resistant component (high-strength fluorine polymer) as the outer armor to serve as a protective layer. Due to the significantly enhanced mass transfer coefficient, the interconnected-porous armor-structured membrane exhibited much higher permeability for NH4+-N recovery, which was 1.4 and 5 times that of the traditional PTFE membrane and PP membrane, respectively. Through long-term intermittent and consecutive experiments, the reusability and durability of the armor-structured nanofibrous membrane were verified. When treating actual hoggery wastewater with complicated water quality, the armor-structured nanofibrous membrane also displayed robust stable performance with excellent antiwettability. The mechanisms of membrane formation, corrosion resistance, and mass transfer were discussed in detail.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Fuyun Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Yingjie Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
15
|
Sharma R, Kumari R, Pant D, Malaviya P. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells. CHEMOSPHERE 2022; 292:133437. [PMID: 34973250 DOI: 10.1016/j.chemosphere.2021.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Urine is a 'valuable waste' that can be exploited to generate bioelectricity and recover key nutrients for producing NPK-rich biofertilizers. In recent times, improved and innovative waste management technologies have emerged to manage the rapidly increasing environmental pollution and to accomplish the goal of sustainable development. Microbial fuel cells (MFCs) have attracted the attention of environmentalists worldwide to treat human urine and produce power through bioelectrochemical reactions in presence of electroactive bacteria growing on the anode. The bacteria break down the complex organic matter present in urine into simpler compounds and release the electrons which flow through an external circuit generating current at the cathode. Many other useful products are harvested at the end of the process. So, in this review, an attempt has been made to synthesize the information on MFCs fuelled with urine to generate bioelectricity and recover value-added resources (nutrients), and their modifications to enhance productivity. Moreover, configuration and mode of system operation, and factors enhancing the performance of MFCs have been also presented.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rekha Kumari
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
16
|
Courtney C, Randall DG. Concentrating stabilized urine with reverse osmosis: How does stabilization method and pre-treatment affect nutrient recovery, flux, and scaling? WATER RESEARCH 2022; 209:117970. [PMID: 34936975 DOI: 10.1016/j.watres.2021.117970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Human urine can be used as a fertilizer, however, due to the high water content (97%), concentration is required to make transportation economically feasible. Reverse osmosis (RO) has been identified as an energy efficient concentration method. Furthermore, to maximize nitrogen recovery from source-separated urine it should be stabilized with an acid or base to prevent urea hydrolysis. However, the method of stabilization will have an impact on the downstream RO process. Calcium hydroxide is often used as a base stabilization method for human urine but would require pre-treatment to remove excess calcium and subsequent membrane scaling. Three pre-treatment methods such as air bubbling, NaHCO3 addition, and NH4HCO3 addition, were investigated in this study. Each method successfully reduced the scaling potential and air bubbling was determined to be the most effective method as it resulted in the highest nutrient recovery during concentration and did not require the addition of any chemicals. Base stabilization with air bubbling pre-treatment was then compared to urine stabilized with citric acid. Acid stabilized urine had a higher nitrogen recovery (7.6% higher). However, solids formed in the real acidified urine and during concentration a brown organic compound formed on the membrane surface. The crystals were identified as uric acid dihydrate and the brown organic fouling resulted in a significant decrease in permeate flux as compared to the base stabilized urine with air bubbling pre-treatment. At a 60% water recovery, 85.5% of the urea and 99.2% of the potassium was recovered in the brine stream and more than 99.9% of the phosphorus was recovered as a separate solid calcium phosphate fertilizer. Whilst nutrient recovery was higher with acid stabilization, the membrane fouling that occurred with this stabilization method meant that base stabilization with air bubbling pre-treatment was the preferred treatment option. It is recommended that acid stabilized urine be concentrated using evaporation processes instead.
Collapse
Affiliation(s)
- Caitlin Courtney
- Civil Engineering Department & Future Water Institute, University of Cape Town, Cape Town 7700, South Africa
| | - Dyllon G Randall
- Civil Engineering Department & Future Water Institute, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
17
|
Zhang J, Xie M, Yang D, Tong X, Qu D, Feng L, Zhang L. The design of multi-stage open-loop hollow fiber membrane contactor and its application in ammonia capture from hydrolyzed human urine. WATER RESEARCH 2021; 207:117811. [PMID: 34763277 DOI: 10.1016/j.watres.2021.117811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Dandan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xin Tong
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
18
|
Larsen TA, Riechmann ME, Udert KM. State of the art of urine treatment technologies: A critical review. WATER RESEARCH X 2021; 13:100114. [PMID: 34693239 PMCID: PMC8517923 DOI: 10.1016/j.wroa.2021.100114] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 05/26/2023]
Abstract
Over the last 15 years, urine treatment technologies have developed from lab studies of a few pioneers to an interesting innovation, attracting attention from a growing number of process engineers. In this broad review, we present literature from more than a decade on biological, physical-chemical and electrochemical urine treatment processes. Like in the first review on urine treatment from 2006, we categorize the technologies according to the following objectives: stabilization, volume reduction, targeted N-recovery, targeted P-recovery, nutrient removal, sanitization, and handling of organic micropollutants. We add energy recovery as a new objective, because extensive work has been done on electrochemical energy harvesting, especially with bio-electrochemical systems. Our review reveals that biological processes are a good choice for urine stabilization. They have the advantage of little demand for chemicals and energy. Due to instabilities, however, they are not suited for bathroom applications and they cannot provide the desired volume reduction on their own. A number of physical-chemical treatment technologies are applicable at bathroom scale and can provide the necessary volume reduction, but only with a steady supply of chemicals and often with high demand for energy and maintenance. Electrochemical processes is a recent, but rapidly growing field, which could give rise to exciting technologies at bathroom scale, although energy production might only be interesting for niche applications. The review includes a qualitative assessment of all unit processes. A quantitative comparison of treatment performance was not the goal of the study and could anyway only be done for complete treatment trains. An important next step in urine technology research and development will be the combination of unit processes to set up and test robust treatment trains. We hope that the present review will help guide these efforts to accelerate the development towards a mature technology with pilot scale and eventually full-scale implementations.
Collapse
Affiliation(s)
- Tove A. Larsen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel E. Riechmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
19
|
Xu L, Ding R, Mao Y, Peng S, Li Z, Zong Y, Wu D. Selective recovery of phosphorus and urea from fresh human urine using a liquid membrane chamber integrated flow-electrode electrochemical system. WATER RESEARCH 2021; 202:117423. [PMID: 34284122 DOI: 10.1016/j.watres.2021.117423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) extraction from human urine is a potential strategy to address global resource shortage, but few approaches are able to obtain high-quality liquid P products. In this study, we introduced an innovative flow-electrode capacitive deionization (FCDI) system, also called ion-capture electrochemical system (ICES), for selectively extracting P and N (i.e., urea) from fresh human urine simply by integrating a liquid membrane chamber (LMC) using a pair of anion exchange membrane (AEM). In the charging process, negatively charged P ions (i.e., HPO42- and H2PO4-) can be captured by acidic extraction solutions (e.g., solutions of HCl, HNO3 and H2SO4) on their way to the anode chamber, leading to the conversion of P ions to uncharged H3PO4, while other undesired ions such as Cl- and SO42- are expelled. Simultaneously, uncharged urea molecules remain in the urine effluent with the removal of salt. Thus, high-purity phosphoric acid and urea solutions can be obtained in the LMC and spacer chambers, respectively. The purification of P in an acidic environment is ascribed largely to the competitive migration and protonation of ions. The latter contributes ~27% for the selective capture of P. Under the optimal operating conditions (i.e., ratio of the urine volume to the HCl volume = 7:3, initial pH of the extraction solution = 1.43, current density = 20 A/m2 and threshold pH ~ 2.0), satisfactory recovery performance (811 mg/L P with 73.85% purity and 8.3 g/L urea-N with 81.4% extraction efficiency) and desalination efficiency (91.1%) were obtained after 37.5 h of continuous operation. Our results reveal a promising strategy for improving in selective separation and continuous operation via adjustments to the cell configuration, initiating a new research dimension toward selective ion separation and high-quality P recovery.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Ren Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zheng Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
20
|
Echevarria D, Trimmer JT, Cusick RD, Guest JS. Defining Nutrient Colocation Typologies for Human-Derived Supply and Crop Demand To Advance Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10704-10713. [PMID: 34260214 DOI: 10.1021/acs.est.1c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resource recovery from human excreta can advance circular economies while improving access to sanitation and renewable agricultural inputs. While national projections of nutrient recovery potential provide motivation for resource recovery sanitation, elucidating generalizable strategies for sustainable implementation requires a deeper understanding of country-specific overlap between supply and demand. For 107 countries, we analyze the colocation of human-derived nutrients (in urine) and crop demands for nitrogen, phosphorus, and potassium. To characterize colocation patterns, we fit data for each country to a generalized logistic function. Using fitted logistic curve parameters, three typologies were identified: (i) dislocated nutrient supply and demand resulting from high density agriculture (with low population density) and nutrient islands (e.g., dense cities) motivating nutrient concentration and transport; (ii) colocated nutrient supply and demand enabling local reuse; and (iii) diverse nutrient supply-demand proximities, with countries spanning the continuum between (i) and (ii). Finally, we explored connections between these typologies and country-specific contextual characteristics via principal component analysis and found that the Human Development Index was clustered by typology. By providing a generalizable, quantitative framework for characterizing the colocation of human-derived nutrient supply and agricultural nutrient demand, these typologies can advance resource recovery by informing resource management strategies, policy, and investment.
Collapse
Affiliation(s)
- Desarae Echevarria
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody Dr., Urbana, Illinois 61801, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody Dr., Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
First experimental evidence of the piezoelectric nature of struvite. Sci Rep 2021; 11:14860. [PMID: 34290345 PMCID: PMC8295349 DOI: 10.1038/s41598-021-94410-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, we present the first experimental evidence of the piezoelectric nature of struvite (MgNH4PO4·6H2O). Using a single diffusion gel growth technique, we have grown struvite crystals in the form of plane parallel plates. For struvite crystals of this shape, we measured the piezoelectric coefficients d33 and d32. We have found that at room temperature the value of piezoelectric coefficient d33 is 3.5 pm/V, while that of d32 is 4.7 pm/V. These values are comparable with the values for other minerals. Struvite shows stable piezoelectric properties up to the temperature slightly above 350 K, for the heating rate of 0.4 K/min. For this heating rate, and above this temperature, the thermal decomposition of struvite begins, which, consequently, leads to its transformation into dittmarite with the same non-centrosymmetric symmetry as in case of struvite. The struvite-dittmarite transformation temperature is dependent on the heating rate. The higher the heating rate, the higher the temperature of this transformation. We have also shown that dittmarite, like struvite exhibits piezoelectric properties.
Collapse
|
22
|
Clark JA, Yang Y, Ramos NC, Hillhouse HW. Selective oxidation of pharmaceuticals and suppression of perchlorate formation during electrolysis of fresh human urine. WATER RESEARCH 2021; 198:117106. [PMID: 33933918 DOI: 10.1016/j.watres.2021.117106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Urine comprises only a small (~1%) volumetric fraction of municipal wastewater, but represents a dominant source of pharmaceuticals, many of which may pass through conventional wastewater treatment and pose risks to aquatic ecosystems. Point-source treatment of source-separated urine presents a unique opportunity to degrade pharmaceuticals before dilution with wastewater, and electrochemical advanced oxidation processes are one increasingly investigated option. However, they often lead to the formation of oxidation byproducts including chlorate, perchlorate at very high concentrations. Here, we show that the high urea content of fresh human urine suppresses the formation of oxychlorides by inhibiting formation of HOCl/OCl‒ during electrolysis, while still enabling pharmaceutical degradation due to the slow rate of urea oxidation by •OH. This results in improved performance compared to equivalent treatment of hydrolyzed aged urine. This electrochemical oxidation scheme is shown to degrade the model contaminants cyclophosphamide and sulfamethoxazole with surface-area-to-volume-normalized pseudo-first-order rate constants greater than 0.08 cm/min in authentic fresh human urine. It results in ~100 × decrease in pharmaceutical concentrations in 2 h while generating ~1000 × lower oxychloride byproduct concentrations in synthetic fresh urine than synthetic hydrolyzed aged urine matrixes. Importantly, this proof-of-principle shows that simple and safe electrochemical methods can be used for point-source-remediation of pharmaceuticals in fresh human urine (before storage and hydrolysis), without formation of significant oxychloride byproducts.
Collapse
Affiliation(s)
- James A Clark
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195-1750, USA
| | - Yuhang Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Nathanael C Ramos
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195-1750, USA
| | - Hugh W Hillhouse
- Department of Chemical Engineering, Clean Energy Institute, Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195-1750, USA.
| |
Collapse
|
23
|
Zhang J, Xie M, Tong X, Yang D, Liu S, Qu D, Feng L, Zhang L. Ammonia capture from human urine to harvest liquid N-P compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144478. [PMID: 33444863 DOI: 10.1016/j.scitotenv.2020.144478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In this study, we developed a submerged hollow fiber membrane contactor (HFMC) to recover ammonia from human urine to get compound N-P fertilizers. The ammonia capture performance, water vapor transmembrane performance, ion rejection performance and the liquid fertilizer components using 1-4 mol/L H3PO4 as the stripping solution was comprehensively investigated. Increasing H3PO4 concentration did not significantly affect the ammonia capture performance but the water vapor transfer and fertilizer components. The ammonia mass transfer coefficients were in a range of 1.95×10-6±4.77×10-8 to 2.28×10-6±6.71×10-8 m/s and the ammonia flux fluctuated between 17.80 and 20.80 g/m2·h. The water vapor flux increased with the increase of stripping solution concentration and the time elapsed. The N content (21.29-55.24 g/L) was in the range of the commercial products while the P2O5 content (99.41-281 g/L) was slightly higher, which can be used in the soils or plants with a high demand for phosphorus. The liquid fertilizers were all mixtures of (NH4)2HPO4 and NH4H2PO4, but the distribution ratio slightly changed with the different initial H3PO4 concentration. The economic assessment showed that harvesting liquid N-P fertilizer from human urine using HFMC can make a profit of $7.089/L.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Mengfei Xie
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xin Tong
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dandan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Su Liu
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
24
|
Govindan K, Im SJ, Muthuraj V, Jang A. Electrochemical recovery of H 2 and nutrients (N, P) from synthetic source separate urine water. CHEMOSPHERE 2021; 269:129361. [PMID: 33383251 DOI: 10.1016/j.chemosphere.2020.129361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study examined an electrochemical method of H2 production and nutrient recovery from synthetic source separated urine (SSU). The efficacy of H2 production was examined through hydrogen recovery experiments (HRE) using Ni foam electrodes. Similarly, nutrient (N and P) recovery was also examined in post-nutrient recovery experiments (NRE) with sacrificial Mg electrodes. To achieve higher nutrient recovery in the post-nutrient recovery process, the most important operating parameters (initial solution pH (pHi) and current density) were optimized. Optimization of NRE revealed that > 90% NH3-N and PO43--P could be recovered at 8 mA cm-2 with a pHi of 6-8. Notable NH3-N and PO43--P reduction were observed at an equimolar Mg2+ dissolution ratio (1:1) of Mg2+:NH4+ and a 1.1:1 ratio of Mg2+:PO43- respectively. However, poor total Kjeldahl nitrogen (TKN) reduction was observed. Thus, we anticipate that direct electrochemical conversion of urea to N2 at the anode followed by H2 generation at the cathode is a more sustainable way to reduce TKN. Batch HRE showed that the initial TKN, 1094 mg L-1 (934 mg L-1 from urea-N and 160 mg L-1 from NH4Cl), was significantly reduced to 360 mg L-1 by Ni-Ni electrolysis, whereas around 53.8 g H2 gas was received from this Ni-Ni electrolysis system with a flow rate of 5-5.8 g mol-1 day-1. Overall, this work produced a 68% reduction in TKN due to electrochemical conversion of urea into H2.
Collapse
Affiliation(s)
- Kadarkarai Govindan
- Sustainable Water Treatment Laboratory, Graduate School of Water Resources, Sungkyunkwan University, Natural Science Campus, Gyeonggi-do, 16419, Republic of Korea.
| | - Sung-Ju Im
- Sustainable Water Treatment Laboratory, Graduate School of Water Resources, Sungkyunkwan University, Natural Science Campus, Gyeonggi-do, 16419, Republic of Korea.
| | - Velluchamy Muthuraj
- Department of Chemistry, V.H.N Senthikumara Nadar College (Autonomous), Virudhunagar 626 001, Tamil Nadu, India.
| | - Am Jang
- Sustainable Water Treatment Laboratory, Graduate School of Water Resources, Sungkyunkwan University, Natural Science Campus, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
25
|
Saliu TD, Ali J, Ololade IA, Oladoja NA. Preparation and characterization of a decentralized modular yellow water nutrient recovery system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111345. [PMID: 32920459 DOI: 10.1016/j.jenvman.2020.111345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The peculiarity of human urine as a resource, in terms of ethical and cultural considerations, and human perception, demands the development of a highly decentralized modular system, to enable the feasibility of the emerging concept of nutrient recovery in this regard. Consequently, a modular reactor, with packed bed of granular Gastropod shell (GS) was constructed for nutrient recovery from yellow water and the operational parameters were derived in simulated and pilot studies. Prior to the design of the modular reactor, both the raw and calcined GS were screened in a batch reactor for nutrient fraction recovery (i.e. total phosphorus (TP) and total nitrogen (TN)). The TP recovery was more favorable than the TN, but the TN recovery was the rate determining step. Despite the low TN capture efficiency of the reactor, the hydrolysis of the urea fraction that promotes nitrogen loss from yellow water was greatly impeded. The system showed higher selectivity for the nutrient fraction than the other constituents of the human urine, as manifested in the high residual COD and creatinine values in the treated yellow water. The volume of yellow water treated and the nutrient recovery capacity of the modular reactor were HRT dependent. A diminution in the nutrient recovery efficiency was observed in the pilot study, when compared with the simulated studies of the same HRT.
Collapse
Affiliation(s)
- T D Saliu
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - J Ali
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - I A Ololade
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - N A Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
26
|
|
27
|
Corrado S, Caldeira C, Carmona-Garcia G, Körner I, Leip A, Sala S. Unveiling the potential for an efficient use of nitrogen along the food supply and consumption chain. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2020; 25:100368. [PMID: 32566471 PMCID: PMC7299078 DOI: 10.1016/j.gfs.2020.100368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Ensuring global food security is one of the challenges of our society. Nitrogen availability is key for food production, while contributing to different environmental impacts. This paper aims firstly to assess nitrogen flows and to highlight hotspots of inefficient use of nitrogen along the European food chain, excluding primary production. Secondly, it aims to analyse the potential for reducing the identified inefficiencies and increase nitrogen circularity. A baseline and three scenarios-reflecting waste targets reported in EU legislation and technological improvements- are analysed. Results highlighted a potential to reduce reactive nitrogen emissions up to more than 45%. However, this would imply the conversion of reactive nitrogen in molecular nitrogen, such as urea, before re-entering in the food chain. Techniques to harvest reactive nitrogen directly from urine and wastewater are considered promising to increase nitrogen use efficiency along the food chain. Nitrogen flows from post-farm gate to consumption in food system were investigated. Only 45% of the nitrogen flows in the post-farm gate food system ends up as ingested N. Emissions of reactive nitrogen can be reduced up to 70% in tested scenarios. Tertiary wastewater treatment plants reduce reactive nitrogen emissions but not contribute to N circularity. Nitrogen circularity can be increased with innovative techniques capturing reactive nitrogen.
Collapse
Affiliation(s)
- Sara Corrado
- European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| | - Carla Caldeira
- European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| | - Gema Carmona-Garcia
- European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| | - Ina Körner
- Hamburg University of Technology, Institute of Wastewater Management and Water Protection, Bioresource Management Group, Eißendorfer Straße 42 (M), 21073, Hamburg, Germany
| | - Adrian Leip
- European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| | - Serenella Sala
- European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| |
Collapse
|
28
|
Recovery of ammonium nitrogen from human urine by an open-loop hollow fiber membrane contactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Wan Y, Huang Z, Zhou L, Li T, Liao C, Yan X, Li N, Wang X. Bioelectrochemical Ammoniation Coupled with Microbial Electrolysis for Nitrogen Recovery from Nitrate in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3002-3011. [PMID: 31891257 DOI: 10.1021/acs.est.9b05290] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrate-N in wastewaters is hard to be recovered because it is difficult to volatilize with an opposite charge to ammonium. Here, we have proved the feasibility of dissimilatory nitrate reduction to ammonia (DNRA) by the easy-acclimated mixed electroactive bacteria, achieving the highest DNRA efficiency of 44%. It was then coupled with microbial electrolysis to concentrate ammonium by a factor of 4 in the catholyte for recovery. The abundance of electroactive bacteria in the biofilm before nitrate addition, especially Geobacter spp., was found to determine the DNRA efficiency. As the main competitors of DNRA bacteria, the growth of denitrifiers was more sensitive to C/N ratios. The DNRA microbial community contrarily showed a stable and recoverable ammoniation performance over C/N ratios ranging from 0.5 to 8.0. A strong competition of the electrode and nitrate on electron donors was observed at the early stage (15 d) of electroactive biofilm formation, which can be weakened when the biofilm was mature on 40 d. Quantitative PCR showed a significant increase in nirS and nrfA transcripts in the ammoniation process. nirS was inhibited significantly after nitrate depletion while nrfA was still upregulated. These findings provided a novel way to recover nitrate-N using organic wastes as both electron donor and power, which has broader implications on the sustainable wastewater treatment and the ecology of nitrogen cycling.
Collapse
Affiliation(s)
- Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zongliang Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
30
|
Li N, Wan Y, Wang X. Nutrient conversion and recovery from wastewater using electroactive bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135690. [PMID: 31784166 DOI: 10.1016/j.scitotenv.2019.135690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Wastewater is widely recognized as a sink of active nitrogen and phosphorus, and the recovery of both nutrients as fertilizers is widely studied in recent years. Electroactive bacteria increasingly attract attentions in this area because they are able to produce an electric field in microbial electrochemical systems to concentrate ammonium and phosphate for recovery. Importantly, these unique bacteria are able to convert nitrate and nitrite directly to ammonium, maximizing the active nitrogen species capable of recovery. Ferric ions produced by electroactive bacteria can be precipitated with phosphate to recover as vivianite in neutral wastewaters. All these processes employed electroactive bacteria as both nitrate and iron reducer and bioelectric field generator. The mechanism as well as technologies are summarized, and the challenges to further improve their performance are discussed.
Collapse
Affiliation(s)
- Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
31
|
Guan T, Kuang Y, Li X, Fang J, Fang W, Wu D. The recovery of phosphorus from source-separated urine by repeatedly usable magnetic Fe 3O 4@ZrO 2 nanoparticles under acidic conditions. ENVIRONMENT INTERNATIONAL 2020; 134:105322. [PMID: 31739135 DOI: 10.1016/j.envint.2019.105322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The separation of urine at source for phosphorus (P) recovery is attractive taking into account the high P concentration and small volume. However, the treatment of urine is still challenging due to its unpleasant odor and hygiene problems. Because the above problems could be solved by acidification to keep the pH of urine below 4, we propose a novel strategy to recover P from acidified urine using tailored hydrous zirconia-coated magnetite nanoparticles (Fe3O4@ZrO2). This strategy involves the selective adsorption of phosphate by easily separable and reusable Fe3O4@ZrO2, the desorption of adsorbed phosphate, and the precipitation of desorbed phosphate as calcium phosphate fertilizer. The results indicated that at pH 4, the P in synthetic urine was selectively adsorbed and could be exhausted using Fe3O4@ZrO2. Nearly all (>97.5%) of the sequestered P on the Fe3O4@ZrO2 nanoparticles was stripped using ≥1 M NaOH solution and ~100% of the stripped P was then successfully transformed into calcium phosphate, upon adding CaCl2 at pH >12 and a Ca/P molar ratio of 3. The liquid/solid (Fe3O4@ZrO2 particles) mixture could be conveniently separated for reuse using an external magnetic field. The reusability of the Fe3O4@ZrO2 nanoparticles in the extraction of P from synthetic urine was confirmed using five cycles of the adsorption-desorption process and their performance validated using real urine samples. The mechanism of phosphate adsorption was investigated using XPS, FTIR and zeta potential measurements, showing that phosphate was chemically adsorbed on the surface through direct coordination to zirconium atom via ligand exchange.
Collapse
Affiliation(s)
- Tong Guan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | - Yue Kuang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | - Xiaodi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | - Jing Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | - Wenkan Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
32
|
Tao W, Bayrakdar A, Wang Y, Agyeman F. Three-stage treatment for nitrogen and phosphorus recovery from human urine: Hydrolysis, precipitation and vacuum stripping. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109435. [PMID: 31450199 DOI: 10.1016/j.jenvman.2019.109435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/29/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Source separation of human urine has not been widely adopted because of scaling on urine collecting fixtures and lack of verified technologies for on-site utilization of waterless urine. This study investigated the effects of flushing liquid, temperature and urease amendment on hydrolysis of urea to ammonia, explored ammonia recovery via vacuum stripping in connection with phosphorus recovery via struvite precipitation in different sequences, and performed economic analysis of a proposed nutrient recovery strategy. It was found that acetic acid could be dosed at 0.05-0.07 N to flush urine-diverting toilets and urinals for hygiene and prevention of scaling. However, a high dosage of 0.56 N completely inhibited urea hydrolysis. Source-separated urine could be stored at 25 °C with ample urease for complete urea hydrolysis within approximately 20 h. Fully hydrolyzed waterless urine contained 9.0-11.6 g/L ammonia-N, 0.53-0.95 g/L phosphate-P and only 2.3-9.1 mg/L magnesium. When magnesium was supplemented to attain the optimum Mg2+: PO43- molar concentration ratio of 1.0 in hydrolyzed urine, batch operation of a pilot-scale air-lift crystallizer removed 93-95% of phosphate and produced 3.65-4.93 g/L struvite in 1-5 h. Batch operation of a pilot-scale vacuum stripping - acid absorption system for 12 h stripped 72-77% of ammonia and produced 37.6-39.7 g/L (NH4)2SO4. Compared with the ammonia → phosphorus recovery sequence, the struvite precipitation → vacuum stripping sequence produced more struvite and ammonium sulfate. The strategy of urea hydrolysis → struvite precipitation → vacuum stripping of ammonia is a sustainable alternative to the conventional phosphorus fertilizer production and ammonia synthesis processes.
Collapse
Affiliation(s)
- Wendong Tao
- Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA.
| | - Alper Bayrakdar
- Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA; Environmental Engineering Department, Necmettin Erbakan University, Meram, Konya, 42140, Turkey
| | - Yanru Wang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Fred Agyeman
- Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA
| |
Collapse
|
33
|
Pradhan SK, Mikola A, Heinonen-Tanski H, Vahala R. Recovery of nitrogen and phosphorus from human urine using membrane and precipitation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:596-602. [PMID: 31272048 DOI: 10.1016/j.jenvman.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
The nitrogen (N) and phosphorus (P) contents in human urine have been recovered using struvite precipitation and N-stripping techniques. Struvite precipitation technique recovers mainly phosphorus whereas N-stripping technique only recovers nitrogen. In this study, we developed an NPharvest technique which recovered both nitrogen and phosphorus separately in the same process, enabling their use independently. The technique used Ca(OH)2 to increase the pH of urine converting ammonium into NH3 gas and simultaneously precipitating P with Ca. The NH3 gas is passed through a gas permeable hydrophobic membrane (GPHM) and reacts with H2SO4 forming ammonium sulfate. Our result showed that more than 98% (w/w) of N and P can be harvested from urine in 8 h at 30 °C. The harvested ammonium sulfate contained 19% (w/w) N, and the sediment contained 1-2% (w/w) P. The extraction of N and P from 1 m3 of urine could give a profit of 1.5 €.
Collapse
Affiliation(s)
- Surendra K Pradhan
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland.
| | - Anna Mikola
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland
| | - Helvi Heinonen-Tanski
- Department of Environmental and Biological Sciences, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, FI-00076 Aalto, Finland
| |
Collapse
|
34
|
Lambert SE, Randall DG. Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. WATER RESEARCH 2019; 160:158-166. [PMID: 31136849 DOI: 10.1016/j.watres.2019.05.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/24/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the use of a natural process called microbial induced calcium carbonate precipitation (MICP) to 'grow' bio-bricks using the urea present in human urine. We first collected fresh urine and stabilized the urine with calcium hydroxide. This prevented any significant loss of urea which allowed it to then be used for the MICP process. We used Sporosarcina pasteurii bacteria to help drive the MICP process. The bacteria degraded the urea present in the urine to form carbonate ions which then combined with the calcium ions present in the urine solution to produce calcium carbonate. This calcium carbonate was then used as a bio-cement to glue loose sand particles together in the shape of a brick. The maximum compressive strength we obtained for a bio-brick was 2.7 MPa which compares well with conventionally made bricks. We successfully showed that human urine can be used to manufacture bio-bricks thus offering an additional use of human urine.
Collapse
|
35
|
Damergi E, Madi H, Sharma S, Boukis N, Marechal F, Van Herle J, Ludwig C. A combined hydrothermal gasification - solid oxide fuel cell system for sustainable production of algal biomass and energy. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Trimmer JT, Margenot AJ, Cusick RD, Guest JS. Aligning Product Chemistry and Soil Context for Agronomic Reuse of Human-Derived Resources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6501-6510. [PMID: 31017776 DOI: 10.1021/acs.est.9b00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recovering human-derived nutrients from sanitation systems can offset inorganic fertilizer use and improve access to agricultural nutrients in resource-limited settings, but the agronomic value of recovered products depends upon product chemistry and soil context. Products may exacerbate already-compromised soil conditions, offer benefits beyond nutrients, or have reduced efficacy depending on soil characteristics. Using global spatial modeling, we evaluate the soil suitability of seven products (wastewater, sludge, compost, urine, ammonium sulfate, ammonium struvite, potassium struvite) and integrate this information with local recovery potential of each product from sanitation systems that will need to be installed to achieve universal coverage (referred to here as "newly-installed sanitation"). If product recovery and reuse are colocated, the quantity and suitability of nutrient reuse was variable across countries. For example, alkaline products (e.g., struvite) may be particularly beneficial when applied to acidic soils in Uganda but potentially detrimental in the southwestern United States. Further, we illustrate discrepancies across soil data sets and highlight the need for locally accurate data, knowledge, and interpretation. Overall, this study demonstrates soil context is critical to comprehensively characterize the value proposition of nutrient recovery, and it provides a foundation for incorporating soil suitability into local and global sanitation decision-making.
Collapse
Affiliation(s)
- John T Trimmer
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Andrew J Margenot
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 1201 S. Dorner Dr. , Urbana , Illinois 61801 , United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| |
Collapse
|
37
|
Senecal J, Nordin A, Simha P, Vinnerås B. Hygiene aspect of treating human urine by alkaline dehydration. WATER RESEARCH 2018; 144:474-481. [PMID: 30075443 DOI: 10.1016/j.watres.2018.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Over four billion people are discharging untreated human excreta into the environment without any prior treatment, causing eutrophication and spreading disease. The most nutrient rich fraction is the urine. Urine can be collected separately and dehydrated in an alkaline bed producing a nutrient rich fertiliser. However, faecal cross-contamination during the collection risks to introduce pathogens to the urine. The objective of this hygiene assessment was to study the inactivation of five microorganisms (Ascaris suum, Enterococcus faecalis, bacteriophages MS2 and ΦX 174 and Salmonella spp) in alkaline dehydrated urine. Fresh human urine was dehydrated in wood ash at 42 °C until the pH decreased to ≤10.5, at which point the saturated ash was inoculated with faeces containing the microorganisms and left open to the air (mimicking stockpiling of the end product) at temperatures of 20 and 42 °C. The bacteria and bacteriophages were inactivated to below the detection limit (100 cfu ml-1 for bacteria; 10 pfu mL-1 for bacteriophages) within four days storage at 20 °C. A. suum inactivation data was fitted to a non-linear regression model, which estimated a required 325 days of storage at 20 °C and 9.2 days at 42 °C to reach a 3 log10 reduction. However, the urine dehydration in itself achieved a concentration <1 A. suum per 4 g of dehydrated medium which fulfil the WHO guidelines for unrestricted use.
Collapse
Affiliation(s)
- Jenna Senecal
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07, Uppsala, Sweden.
| | - Annika Nordin
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07, Uppsala, Sweden
| | - Prithvi Simha
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07, Uppsala, Sweden
| | - Björn Vinnerås
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07, Uppsala, Sweden
| |
Collapse
|
38
|
Zhou X, Li Z, Zheng T, Yan Y, Li P, Odey EA, Mang HP, Uddin SMN. Review of global sanitation development. ENVIRONMENT INTERNATIONAL 2018; 120:246-261. [PMID: 30103124 PMCID: PMC6192828 DOI: 10.1016/j.envint.2018.07.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 05/31/2023]
Abstract
The implementation of the United Nations (UN) Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs) has resulted in an increased focus on developing innovative, sustainable sanitation techniques to address the demand for adequate and equitable sanitation in low-income areas. We examined the background, current situation, challenges, and perspectives of global sanitation. We used bibliometric analysis and word cluster analysis to evaluate sanitation research from 1992 to 2016 based on the Science Citation Index EXPANDED (SCI-EXPANDED) and Social Sciences Citation Index (SSCI) databases. Our results show that sanitation is a comprehensive field connected with multiple categories, and the increasing number of publications reflects a strong interest in this research area. Most of the research took place in developed countries, especially the USA, although sanitation problems are more serious in developing countries. Innovations in sanitation techniques may keep susceptible populations from contracting diseases caused by various kinds of contaminants and microorganisms. Hence, the hygienization of human excreta, resource recovery, and removal of micro-pollutants from excreta can serve as effective sustainable solutions. Commercialized technologies, like composting, anaerobic digestion, and storage, are reliable but still face challenges in addressing the links between the political, social, institutional, cultural, and educational aspects of sanitation. Innovative technologies, such as Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs), and struvite precipitation, are at the TRL (Technology readiness levels) 8 level, meaning that they qualify as "actual systems completed and qualified through test and demonstration." Solutions that take into consideration economic feasibility and all the different aspects of sanitation are required. There is an urgent demand for holistic solutions considering government support, social acceptability, as well as technological reliability that can be effectively adapted to local conditions.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Yichang Yan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengyu Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Emmanuel Alepu Odey
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Heinz Peter Mang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Sayed Mohammad Nazim Uddin
- Department of Geography, Faculty of Social Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
39
|
Abstract
In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an electrical current and transported to the cathode. Subsequently, it can be removed or recovered through stripping, chemisorption, or forward osmosis. A crucial parameter that determines the energy required to recover TAN is the load ratio: the ratio between TAN loading and applied current. For electrochemical TAN recovery, an energy input is required, while in bioelectrochemical recovery, electric energy can be recovered together with TAN. Bioelectrochemical recovery relies on the microbial oxidation of COD for the production of electrons, which drives TAN transport. Here, the state-of-the-art of (bio)electrochemical TAN recovery is described, the performance of (B)ES for TAN recovery is analyzed, the potential of different wastewaters for BES-based TAN recovery is evaluated, the microorganisms found on bioanodes that treat wastewater high in TAN are reported, and the toxic effect of the typical conditions in such systems (e.g., high pH, TAN, and salt concentrations) are described. For future application, toxicity effects for electrochemically active bacteria need better understanding, and the technologies need to be demonstrated on larger scale.
Collapse
|