1
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Tang K, Chen Y, Tang S, Wu X, Zhao P, Fu J, Lei H, Yang Z, Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159073. [PMID: 36179841 DOI: 10.1016/j.scitotenv.2022.159073] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Catalytic oxidation of methylene blue by using Ni-Fe bimetallic catalyst/NaClO system: Performance, kinetics, mechanism, and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Li Y, Gao Y, Jia J, Deng Y, Zhang K, Yan B, Zhou X. Protein corona-induced extraction coupled to Fenton oxidation for selective and non-destructive preconcentration of Ag 2S nanoparticles from waters. WATER RESEARCH 2022; 224:119042. [PMID: 36103778 DOI: 10.1016/j.watres.2022.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Sulfidation of silver nanoparticles (AgNPs) to generate silver sulfide nanoparticles (Ag2S-NPs) significantly influences their fate and toxicity in natural environments. However, the correlational research in this field was limited by the lack of methods for speciation analysis of Ag2S-NPs. To address this challenge, a novel protocol for the selective Ag2S-NP extraction from real waters was developed using protein corona-induced extraction coupled to Fenton oxidation of AgNPs with Fe3+/H2O2 reagents. The ability of various concentrations of Fe3+/H2O2 to selectively dissociate AgNPs into ions was first evaluated. Then, selective separation and preconcentration of the remaining Ag2S-NPs was established by optimizing the parameters that may affect the protein corona-induced extraction efficiency, followed by quantification with inductively coupled plasma mass spectrometry (ICP-MS), enabling an ultrahigh enrichment factor of 10,000 and extremely low detection limit (LOD) of 1.8 ng/L. The presence of humic acid (HA), inorganic salts and particles at the environmentally relevant levels had limited effects on Ag2S-NP extraction. As demonstrated by transmission electron microscopy (TEM) analysis and single particle ICP-MS (spICP-MS), the sizes, shapes, and compositions of Ag2S-NPs extracted with the proposed method remain in intact. Good recoveries of 83.7-105% were achieved for the Ag2S-NPs spiked in four natural waters at the level of 97.8 ng/L. Due to the high yields and applicability to Ag2S-NPs at environmentally relevant concentrations, this proposed method is particularly suitable to track the generation and transformation of Ag2S-NPs in various scenarios.
Collapse
Affiliation(s)
- Yingjie Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Youwei Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kena Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Kokturk M, Yıldırım S, Atamanalp M, Calimli MH, Nas MS, Bolat I, Ozhan G, Alak G. Assessment of oxidative DNA damage, apoptosis and histopathological alterations on zebrafish exposed with green silver nanoparticle. CHEMISTRY AND ECOLOGY 2022; 38:655-670. [DOI: 10.1080/02757540.2022.2108808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/29/2022] [Indexed: 10/04/2024]
Affiliation(s)
- Mine Kokturk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, Igdir, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Iğdır University, Iğdır, Turkey
| | - Mehmet Salih Nas
- Faculty of Engineering, Department of Environmental Engineering, Iğdır University, Iğdır, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gonca Alak
- Faculty of Fisheries, Department of Seafood Processing Technology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Xiao B, Yang R, Chen P, Yang J, Sun B, Wang K, Zhang T, Zhu L. Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150228. [PMID: 34798747 DOI: 10.1016/j.scitotenv.2021.150228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) released into the environment are subject to environmental transformation processes before accumulating in aquatic organisms and transferring along the food chain. Lack of understanding on how environmental transformation affects trophic transfer of AgNPs hinders accurate prediction of the environmental risks of these widely present nanomaterials. Here we discover that pristine AgNPs as well as their sulfidation products (Ag2S-NPs) and dissolution products (Ag+) tend to be accumulated in Daphnia magna and subsequently transferred to zebrafish. In D. magna, Ag+ exhibits the highest bioaccumulation potential whereas Ag2S-NPs show the lowest bioaccumulation. Surprisingly, the biomagnification factor of Ag+ along the D. magna-zebrafish food chain appears to be significantly lower relative to AgNPs and Ag2S-NPs, likely due to the limited release of Ag from D. magna to zebrafish during digestion. Moreover, AgNPs and their transformation products mainly accumulate in the internal organs, particularly intestine, of zebrafish. Adsorption of AgNPs on the surface of the intestinal cell membrane mitigates depuration of AgNPs and, at least in part, leads to the larger biomagnification factor of AgNPs, relative to their transformation products. This research highlights the necessity of considering environmental transformation processes of nanomaterials in assessing their bioavailability and risk.
Collapse
Affiliation(s)
- Bowen Xiao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongyan Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jing Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Xiao X, He EJ, Lu XR, Wu LJ, Fan YY, Yu HQ. Evaluation of antibacterial activities of silver nanoparticles on culturability and cell viability of Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148765. [PMID: 34225149 DOI: 10.1016/j.scitotenv.2021.148765] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 05/22/2023]
Abstract
Nanoparticles released into the environment are attracting increasing concern because of their potential toxic effects. Conventional methods for assessing the toxicity of nanoparticles are usually confined to cultivable cells, but not applicable to viable but non-culturable (VBNC) cells. However, it remains unknown whether silver nanoparticles (AgNPs), a typical antimicrobial agent, could induce bacteria into a VBNC state in natural environments. In this work, the viability of E. coli, an indicator bacterium widely used for assessing the antibacterial activity of AgNPs, was examined through coupling plate counting, fluorescence staining and adenosine triphosphate (ATP) production. AgNPs were found to have a considerable antibacterial ability, which resulted in less than 0.0004% of culturable cells on plates. However, more than 80% of the cells still maintained their cell membrane integrity under the stress of 80 mg/L AgNPs. Meanwhile, the residue of ATP production (0.6%) was 1500 times higher than that of the culturable cells (< 0.0004%). These results clearly demonstrate that when exposed to AgNPs, most of cells fell into a VBNC state, instead of dying. Environmental factors, e.g., Cl- and illumination, which could change the dissolution, hydrophilicity and zeta potential of AgNPs, eventually influenced the culturability of E. coli. Inhibition of dissolved Ag+ and reactive oxygen species was found to facilitate the mitigation of the strain into a VBNC state. Our findings suggest the necessity of re-evaluating the environmental effects and antibacterial activities of AgNPs.
Collapse
Affiliation(s)
- Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xue-Rong Lu
- School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Jun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Han-Qing Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Fu QL, Zhong CJ, Qing T, Du ZY, Li CC, Fei JJ, Peijnenburg WJGM. Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L. CHEMOSPHERE 2021; 280:130863. [PMID: 34162100 DOI: 10.1016/j.chemosphere.2021.130863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The potential effects of extracellular polymeric substances (EPS) on the behavior and toxicity of silver nanoparticle (Ag-NPs) and silver sulfide nanoparticle (Ag2S-NPs) remains ambiguous. The interaction of EPS from Bacillus subtilis with Ag2S-NPs, metallic Ag-NPs, or ionic Ag, and the associated plant safety had been examined in this study. The biological impacts of Ag-NPs and Ag2S-NPs were Ag form-dependent and highly influenced by microbial EPS. Compared with metallic Ag-NPs, Ag2S-NPs exert inert biological impacts, as revealed by 3.44 times lower Ag bioaccumulation in wheat (Triticum aestivum L.) seedlings and nearly reduce plant biomass when wheat was subjected to 1.0 mg-Ag L-1 of Ag-NPs and Ag2S-NPs with the transfer factors of 151.56-930.87 vs. 12.52-131.81, respectively. These observations were coincident with the low dissolved Ag ([Ag]diss) in the Ag2S-NPs treatment than the Ag-NPs treatment (114.0 vs. 0.0791, μg L-1). Compared with the enhanced toxicity of Ag2S-NPs to wheat, Bacillus subtilis EPS significantly alleviate the phytotoxicity of Ag-NPs, as revealed by the relative root elongation (7.15-45.40% decrease vs. 2.39-11.75% increase), and malondialdehyde (1.47-83.22% increase vs. 8.57-25.25% decrease) and H2O2 (11.27-71.78% increase vs. 5.16-36.67% decrease) contents. These constrasting plant responses of B. subtilis EPS are mainly caused by their complexation property with toxic Ag+ and nutrient elements for wheat stressed by Ag-NPs and Ag2S-NPs, respectively. Our findings highlight the importance of rhizospheric EPS in affecting the biogeochemistry and ecotoxicity of metal nanoparticles including Ag-NPs and Ag2S-NPs in agricultural systems.
Collapse
Affiliation(s)
- Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Chun-Jie Zhong
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Ting Qing
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Zi-Yan Du
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Cheng-Cheng- Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China; National Innovation Institute of Defense Technology, Chinese Academy of Military Sciences, Beijing, 100071, PR China; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Jun-Jie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| |
Collapse
|
9
|
Kong Y, Sun H, Zhang S, Zhao B, Zhao Q, Zhang X, Li H. Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126016. [PMID: 33992015 DOI: 10.1016/j.jhazmat.2021.126016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/01/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Lead sulfide nanoparticle (nano-PbS) released into environment can cause hazards to human or ecosystem. Nano-PbS potentially undergoes oxidation in the environment, but oxidation mechanism is not understood yet. Herein, oxidation kinetics and products of nano-PbS by ozone (O3), hydrogen peroxide (H2O2) and hydroxyl radical (HO·) in the atmosphere or natural water were investigated. Results show that oxidation process of nano-PbS can be divided into three stages, producing sulfate, ions and oxides of lead in sequence. O3 or HO·leads to faster release of ionic lead from nano-PbS in the initial stage than H2O2, but causes significant decrease of ionic lead by transforming divalent lead to tetravalent lead oxides in the second or third stage. Toxicity determined taking Chlorella Vulgaris as an example follows an order of PbO2 < Pb3O4 < nano-PbS < PbO < PbSO4. Toxicity of lead particles is mainly determined by sizes influencing cellular uptake and solubility product constant (Ksp) related with dissolution of lead in cells. The results indicate that the toxicity of nano-PbS increases in an initial oxidation stage and decreases in further oxidation stages. This study provides new insights into environmental behavior of nano-PbS and mechanism understandings for assessing ecological risks of nano-PbS.
Collapse
Affiliation(s)
- Yu Kong
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongyu Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Ecotoxicology and Environmental Remediation Laboratory Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Bing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
10
|
Cao C, Huang J, Yan CN, Zhang XX, Ma YX. Impacts of Ag and Ag 2S nanoparticles on the nitrogen removal within vertical flow constructed wetlands treating secondary effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145171. [PMID: 33676207 DOI: 10.1016/j.scitotenv.2021.145171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of silver (Ag NPs) and sliver sulfide nanoparticles (Ag2S NPs) on nitrogen removal and nitrogen functional microbes in constructed wetlands were investigated. The obtained results demonstrated that inhibition extent on nitrogen removal relied on NPs types and high concentrations NPs showed higher negative effects. 0.5 mg/L Ag NPs had no influence on NH4+-N removal, amoA and nxrA gene copies, whereas Ag2S NPs and Ag+ decreased NH4+-N removal by reducing abundances of nitrifying genes. The concentrations of NO3--N and TN in all 0.5 mg/L obviously increased compared with control, resulting from decreasing functional genes and denitrifying bacteria. And 0.5 mg/L Ag NPs exhibited largest inhibitory effects, with the highest NO3--N effluent concentrations. 2 mg/L Ag NPs decreased NH4+-N removal, but adverse effects gradually vanished with extension of time, whereas both Ag2S NPs and Ag+ at 2 mg/L influenced NH4+-N transformation and decreased the abundance of amoA and nxrA genes and the AOB Nitrosomonas in CWs. Moreover, 2 mg/L of Ag NPs reduced NO3--N removal by decreasing abundance of nirS and key denitrifying bacteria. To sum up, the inhibition mechanisms concluded from current results were possibly in that Ag NPs exhibited nanotoxicity rather than ionic toxicity.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xin-Xin Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Xuan Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
11
|
Qian B, Zhao Y, Fan M, Zhou W, Feng S, Wang Y, Li Y, Gao B. The role of natural organic matter in the silver release from sludge generated from coagulation of wastewater spiked with silver nanoparticles. NANOIMPACT 2021; 23:100347. [PMID: 35559848 DOI: 10.1016/j.impact.2021.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Sludge is an integral part in the migration pathway of silver nanoparticles (AgNPs) from manufacture to the terrestrial environment. However, the detailed information on the role of natural organic matters (NOMs) remains limited. In this study, the sludge generated from coagulation of wastewater spiked with AgNPs (denoted as sludgeC-AgNPs) was taken as the model. Effects of humic acid (HA), alginate (AA) and bovine serum albumin (BSA) on the release amount, dynamics and speciation of silver from the sludgeC-AgNPs were investigated by a series of leaching experiments. The results showed that HA, AA and BSA in the leaching solution could enhance the silver release from the sludgeC-AgNPs. The concentrations of the dissolved and colloidal silver in the BSA solution were the highest at the initial stage of dynamic leaching. The controlling step of the silver release was internal diffusion in the HA and AA solution, while the release of dissolved silver was controlled by both chemical reaction and internal diffusion in the BSA solution. In addition, the released colloidal silver fractions in the BSA solution contained more particles with size >50 nm compared with the HA and AA solutions. The results suggested that the properties of NOMs may be the key factor affecting the transfer of AgNPs from the sludge to the terrestrial environment.
Collapse
Affiliation(s)
- Binghong Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yi Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Fan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Wenlin Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Yanwei Li
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, People's Republic of China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
12
|
Singh A, Hou WC, Lin TF. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa. CHEMOSPHERE 2021; 272:129825. [PMID: 35534960 DOI: 10.1016/j.chemosphere.2021.129825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) have shown to be toxic to freshwater cyanobacterial species, and sodium hypochlorite (NaOCl) is a common oxidant for the treatment of cyanobacterial cells. AgNPs have a high possibility of co-existing with the cyanobacterial cells in the aqueous environments leading to its exposure to NaOCl during water treatment; however, their combined effects on the cyanobacterial cells are largely undocumented. This work compares the individual and combined effect of AgNP and NaOCl on the integrity and toxin (microcystins) release of Microcystis aeruginosa at varying levels. The results show that the AgNP (0.2-0.6 mg/L) alone has negligible effects on the cell lysis, while NaOCl alone shows concentration-dependent (0.2 < 0.4 < 0.6 mg/L) rupturing of cells. In contrast, the AgNP + NaOCl (0.2-0.6 mg/L) samples show increasing loss in cell integrity at higher AgNP (0.4 and 0.6 mg/L) levels than the NaOCl only samples. NaOCl exposure results in increasing dissolution of AgNPs with time, releasing silver ions (Ag+), affecting its size and morphology. The cell-associated total Ag declines over time with an increase in NaOCl levels, maybe due to increasing cell-lysis or NaOCl induced oxidative dissolution of AgNPs. The cell-associated total Ag and released Ag+ possibly weaken the cellular membrane, thus assisting NaOCl in faster cell-lysis. The combined exposure of AgNP and NaOCl also results in a higher release of toxin from the cells. This work collectively reveals that the AgNPs combined with NaOCl can enhance the cell lysis and release of toxins.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
13
|
Kang JS, Park JW. Silver Ion Release Accelerated in the Gastrovascular Cavity of Hydra vulgaris Increases the Toxicity of Silver Sulfide Nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1662-1672. [PMID: 33595126 DOI: 10.1002/etc.5017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag-NPs) streamed into aquatic environments are chemically transformed into various forms, and one of the predominant forms is silver sulfide NPs (Ag2 S-NPs). Because of the lower dissolution rate of silver ions (Ag+ ), the toxicity of Ag2 S-NPs could be lower than that of Ag-NPs. However, the toxicity of Ag2 S-NPs has been observed to be restored under oxidative or acidic conditions. In the present study, 4 aquatic organisms, Pseudokirchneriella subcapitata (algae), Daphnia magna (crustacean), Danio rerio (fish), and Hydra vulgaris (cnidarian), were exposed to Ag2 S-NPs transformed from Ag-NPs using Na2 S under anoxic conditions; and acute toxicity was evaluated. The acute toxicity of Ag2 S-NPs was rarely observed in algae, crustaceans, and fish, whereas it was significantly restored in cnidarians. Although the dissolution rate was low in the medium exposed to Ag2 S-NPs, high Ag+ was detected in H. vulgaris. To understand the mechanisms of Ag2 S-NP toxicity in cnidarians, transcriptional profiles of H. vulgaris exposed to Ag-NPs, Ag2 S-NPs, and AgNO3 were analyzed. As a result, most of the genes that were significantly changed in the Ag2 S-NPs group were also found to be significantly changed in the AgNO3 group, indicating that the toxicity of Ag2 S-NPs was caused by Ag+ dissolved by the acidic condition in the gastrovascular cavity of H. vulgaris. This finding is the first in an aquatic organism and suggests the need to reconsider the stability and safety of Ag2 S-NPs in the aquatic environment. Environ Toxicol Chem 2021;40:1662-1672. © 2021 SETAC.
Collapse
Affiliation(s)
- Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, Jinju, Gyeongsangnam-do, South Korea
| | - June-Woo Park
- Environmental Risk Assessment Research Division, Korea Institute of Toxicology, Munsan-eup, Jinju, Gyeongsangnam-do, South Korea
- Human and Environmental Toxicology Program, Korea University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
14
|
Hao Z, Li F, Liu R, Zhou X, Mu Y, Sharma VK, Liu J, Jiang G. Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5569-5578. [PMID: 33683864 DOI: 10.1021/acs.est.0c08790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural formation of silver nanoparticles (AgNPs) via biotic and abiotic pathways in water and soil media contributes to the biogeochemical cycle of silver metal in the environment. However, the formation of AgNPs in the atmosphere has not been reported. Here, we describe a previously unreported source of AgNPs via the reduction of Ag(I) by SO2 in the atmosphere, especially in moist environments, using multipronged advanced analytical and surface techniques. The rapid reduction of Ag(I) in the atmospheric aqueous phase was mainly caused by the sulfite ions formed from the dissolution of SO2 in water, which contributed to the formation of AgNPs and was consistent with the Finke-Watzky model with a major contribution of the reduction-nucleation process. Sunlight irradiation excited SO2 to form triplet SO2, which reacted with water to form H2SO3 and greatly enhanced Ag(I) reduction and AgNP formation. Different pH values affected the speciation of Ag(I) and S(IV), which were jointly involved in the reduction of Ag(I). The formation of AgNPs was also observed in the atmospheric gas phase via direct reduction of Ag(I) by SO2(gas), which occurred even in 50 ppbv SO2(gas). The natural occurrence of AgNPs in the atmosphere may also be involved in silver corrosion, AgNP transformation and regeneration, detoxification of gaseous pollutants, and the sulfur cycle in the environment.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fasong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui 246011, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Virender K Sharma
- Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, 1266 TAMU, College Station, Texas 77843, United States
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
15
|
Nie Y, Wang S, Lin Y, Lai W, Weng W, Tang D. Highly sensitive fluorescent probe for selective detection of hypochlorite ions using nitrogen-fluorine co-doped carbon nanodots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119231. [PMID: 33277209 DOI: 10.1016/j.saa.2020.119231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Hypochlorite ions (ClO-) are widely used in bleaching agents and disinfectants. However, high concentrations of chloride species are harmful to human health. Therefore, effective methods for the detection of ClO- ions are required. In this study, using 4-fluorophthalic acid and glycine, nitrogen-fluorine co-doped carbon nanodots (N,F-CDs) were synthesized by one-pot hydrothermal synthesis for use as a fluorescent probe for the fluorometric detection of ClO- in aqueous media, based on the inhibition of n → π* transitions. The excitation and emission peak centers of the N,F-CDs are at 387 and 545 nm, respectively. The N,F-CDs show a fast quenching response (<1 min) for ClO- and can be used in a wide pH range (pH 4-13). Under optimal conditions, the fluorescence intensity decreased with increase in the ClO- concentration from 0 to 35 μM, and a low limit of detection (9.6 nM) was achieved. This probe possesses excellent selectivity and high sensitivity and was used to analyze standardized samples of piped water, achieving a satisfactory recovery. Thus, this nitrogen-fluorine co-doped nanodot probe is promising for the detection of pollutants.
Collapse
Affiliation(s)
- Yujing Nie
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| | - Shuhan Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Wen Weng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
16
|
Hong A, Tang Q, Khan AU, Miao M, Xu Z, Dang F, Liu Q, Wang Y, Lin D, Filser J, Li L. Identification and Speciation of Nanoscale Silver in Complex Solid Matrices by Sequential Extraction Coupled with Inductively Coupled Plasma Optical Emission Spectrometry. Anal Chem 2021; 93:1962-1968. [DOI: 10.1021/acs.analchem.0c04741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aimei Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ashfeen Ubaid Khan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenlan Xu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Juliane Filser
- Centre for Environmental Research and Sustainable Technology (UFT), Department of General and Theoretical Ecology, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen 28359, Germany
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Mohamed EM, Kattaia AAA, Abdul-Maksoud RS, Abd El-Baset SA. Cellular, Molecular and Biochemical Impacts of Silver Nanoparticles on Rat Cerebellar Cortex. Cells 2020; 10:E7. [PMID: 33375137 PMCID: PMC7822184 DOI: 10.3390/cells10010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The excessive exposure to silver nanoparticles (Ag-NPs) has raised concerns about their possible risks to the human health. The brain is a highly vulnerable organ to nano-silver harmfulness. The aim of this work was to evaluate the impacts of Ag-NPs exposure on the cerebellar cortex of rats. METHODS Rats were assigned to: Control, vehicle control and Ag-NP-exposed groups (at doses of 10 mg and 30 mg/kg/day). Samples were processed for light and electron microscopy examinations. Immunohistochemical localization of c-Jun N-terminal kinase (JNK), nuclear factor kappa beta (NF-κB) and calbindin D28k (CB) proteins was performed. Analyses of expression of DNA damage inducible transcript 4 (Ddit4), flavin containing monooxygenase 2 (FMO2) and thioredoxin-interacting protein (Txnip) genes were done. Serum levels of inflammatory cytokines were also measured. RESULTS Ag-NPs enhanced apoptosis as evident by upregulation of Ddit4 gene expressions and JNK protein immune expressions. Alterations of redox homeostasis were verified by enhancement of Txnip and FMO2 gene expressions, favoring the activation of inflammatory responses by increasing NF-κB protein immune expressions and serum inflammatory mediator levels. Another cytotoxic effect was the reduction of immune expressions of the calcium regulator CB. CONCLUSION Ag-NPs exposure provoked biochemical, cellular and molecular changes of rat cerebellar cortex in a dose-dependent manner.
Collapse
Affiliation(s)
- Eman M. Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (E.M.M.); (S.A.A.E.-B.)
| | - Asmaa A. A. Kattaia
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (E.M.M.); (S.A.A.E.-B.)
| | - Rehab S. Abdul-Maksoud
- Department of Medical Biochemistry, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Samia A. Abd El-Baset
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (E.M.M.); (S.A.A.E.-B.)
| |
Collapse
|
18
|
Wang J, Wang H, Yue D. Insights into Mechanism of Hypochlorite-Induced Functionalization of Polymers toward Separating BFR-Containing Components from Microplastics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36755-36767. [PMID: 32692926 DOI: 10.1021/acsami.0c09586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface functionalization of polymers is significant for an emerging flotation technique for separation of microplastics toward the recycling of plastic wastes. In this study, the hypochlorite-induced functionalization of polymers, including ABS, PMMA, PS, and PVC polymers, was intensively investigated. Afterward, its emerging application in flotation separation of microplastic mixtures was assessed based on a Box-Behnken design of the response surface methodology. The functionalization favorably induced decreases in the contact angle and zeta potential of polymers, suggesting hydrophilic and negatively charged surfaces. Particularly, the functionalization of ABS polymers was the most effective, leading to the obviously decreased contact angle (from 92.5° to 67.8°) and zeta potential (from -26.4 mV to -41.7 mV) at neutral condition. The major mechanism for these variations was the oxidation of the sp3-C and butenyl group by hydroxyl radical and the hydrolysis of cyano group, which introduced the hydroxyl, carboxyl, and amide groups and rough topographies on the surface of ABS polymers. Oxygen functionalities introduced on the surfaces of other polymers were far less than those of ABS polymers. This selectivity inspired us to apply the functionalization in flotation separation of ABS microplastics from microplastic mixtures. After functionalization, ABS microplastics showed a significantly decreased floatability in flotation tests since the hydrophilic surface was repulsive to the adhesion of air bubbles. An empirical model was built to optimize the separation efficiency using the overall desirability function. Under optimum conditions, ABS microplastics were efficiently separated, and their removal rate, recovery, and purity were 99.8%, 99.8%, and >99.9%, respectively. These findings provide significant insights into the mechanism of the functionalization of polymers and show a promising prospect for pollution control of plastic wastes.
Collapse
Affiliation(s)
- Jianchao Wang
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan P. R. China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
19
|
Lai Y, Dong L, Zhou H, Yan B, Chen Y, Cai Y, Liu J. Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag +in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138050. [PMID: 32217391 DOI: 10.1016/j.scitotenv.2020.138050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Health concerns of silver nanoparticles (AgNPs) emerged with the increase of their industrial and biomedical application and thus human exposure. The highly dynamic properties of AgNPs lead to coexposure to nanoparticulate and ionic silver, and the combined effects of different Ag species might alter their individual toxicity. Herein, the toxicity of AgNPs combined with ionic Ag+ toward the rat was investigated after intravenous (i.v.) exposure to either AgNPs (5 mg/kg), Ag+ (5 mg/kg), or a mixture of Ag+ and AgNPs (5 mg/kg for both). Comparable results by histopathological and biochemical studies revealed that the exposure to individual AgNPs causes no apparent toxicity in rats, while Ag+ ions at the same dose induced marked acute toxicity. More importantly, while there was a negligible combined effect on the Ag accumulation, the less toxic AgNPs ameliorated Ag+ induced toxicity to rat organs after coexposure to the mixture of Ag+ and AgNPs, which might result from the complexation of Ag+ with the thiols like metallothioneins. Therefore, the combined toxicity of particulate and ionic Ag was complicated by their individual toxicities and also their interaction with intracellular detoxification biomolecules, regardless of differences in Ag accumulation. Although further investigations are still needed for the potential toxic mechanisms of the coexposed AgNPs and Ag+, considerations of the combined toxicity of different Ag species will reflect more accurate assessments of their health impacts.
Collapse
Affiliation(s)
- Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhou
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Lieb HC, Nguyen BD, Ramsayer ER, Mullaugh KM. A voltammetric investigation of the sulfidation of silver nanoparticles by zinc sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137685. [PMID: 32325601 DOI: 10.1016/j.scitotenv.2020.137685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag NPs) are among the most common forms of nanoparticles in consumer products, yet the environmental implications of their widespread use remain unclear due to uncertainties about their fate. Because sulfidation of Ag NPs results in the formation of a stable silver sulfide (Ag2S) product, it is likely an important removal mechanism of bioavailable silver in natural waters. In addition to sulfide, the complete conversion of Ag NPs to Ag2S will require dissolved oxygen or some other oxidant so dispersed metal sulfides may be an important pool of reactive sulfide for such reactions in oxygenated systems. The reaction of Ag NPs with zinc sulfide (ZnS) was investigated using a voltammetric method, anodic stripping voltammetry (ASV). ASV provided sensitive, in situ measurements of the release of zinc (Zn2+) cations resulting from the cation exchange reaction between Ag NPs and ZnS. The effects of Ag NP size and surface coatings on the initial rates of sulfidation by ZnS were examined. Sulfidation of smaller Ag NPs generally occurred faster and to a greater extent due to their larger relative surface areas. Sulfidation of Ag NPs capped by citrate and lipoic acid occurred more rapidly relative to polyvinylpyrrolidone (PVP) and branched polyethylene (BPEI). This study demonstrates the utility of voltammetry for such investigations and provides insights into important factors controlling Ag NP sulfidation such as availability of dissolved oxygen, Ag NP size and Ag NP surface coating. Furthermore, this work demonstrates the importance of cation exchange reactions between silver and metal sulfides, and how the environmental release of Ag NPs could alter the speciation of other metals of environmental significance.
Collapse
Affiliation(s)
- Heather C Lieb
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Bach D Nguyen
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Emily R Ramsayer
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Katherine M Mullaugh
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA.
| |
Collapse
|
21
|
Huang Y, Liu C, Cui P, Dang F, Li M, Xing B, Zhou D. Copper(I) Promotes Silver Sulfide Dissolution and Increases Silver Phytoavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5589-5597. [PMID: 32275397 DOI: 10.1021/acs.est.0c00929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal sulfides, including acanthite (Ag2S), are persistent in the environment. In colloidal form, however, they can serve as a "Trojan horse", facilitating the mobility of trace metal contaminants. The natural processes that lead to the in situ dissolution of colloidal metal sulfides in soil are largely unknown. In this study, the dissolution of colloidal Ag2S in topsoil and Ag phytoavailability to wheat were examined in Ag2S-Cu(II)-thiosulfate systems. Cu(II) and thiosulfate strongly increased silver release (up to 83% of total Ag) from Ag2S in the dark. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and Cu K-edge X-ray absorption spectroscopy identified Cu(I) as the driving force of Ag2S dissolution. Density functional theory calculations further demonstrated the ability of Cu(I) to substitute for surface Ag on Ag2S in an energetically favorable manner. However, excess Cu(II) could enhance the formation of precipitates containing Cu(I), Ag, and S. Our results indicate that at ambient temperature and in the dark, Cu(I) can promote the dissolution of Ag2S and act as a precipitating agent. These findings reveal previously unrecognized biogeochemical processes of colloidal Ag2S and their importance in determining the fate of metal sulfides in the environment and probably also in vivo.
Collapse
Affiliation(s)
- Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
22
|
Li H, Lin M, Xiao T, Long J, Liu F, Li Y, Liu Y, Liao D, Chen Z, Zhang P, Chen Y, Zhang G. Highly efficient removal of thallium(I) from wastewater via hypochlorite catalytic oxidation coupled with adsorption by hydrochar coated nickel ferrite composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122016. [PMID: 31958614 DOI: 10.1016/j.jhazmat.2020.122016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, tannery wastewater was used as carbon source to hydrothermally synthesize magnetic carbon-coated nickel ferrite composite (NiFe2O4@C), which was employed as a catalyst for thallium (Tl) oxidation by hypochlorite and simultaneously as an adsorbent for Tl removal from wastewater. Compared with NiFe2O4@C adsorption or hypochlorite oxidation alone, the combination of NiFe2O4@C and hypochlorite substantially enhanced the rate and efficiency of Tl(I) removal. In addition, this process was highly effective for Tl(I) removal over a wide pH range (6-12). The maximum Tl(I) removal capacity was 1699 mg/g at pH 10, which is the highest one reported so far. Electron spin resonance spectra suggested the formation of hypochlorite-based free radicals induced by the NiFe2O4@C composite, which enhanced the Tl(I) oxidation and removal. Oxidation-induced surface precipitation and surface complexation were found to be the main Tl(I) removal mechanisms. Consecutive cyclic regeneration tests implied robust regeneration and reuse performance of the composite. Moreover, it was effective for Tl(I) removal from real industrial wastewater. Therefore, the hypochlorite catalytic oxidation coupled with adsorption by the magnetic NiFe2O4@C composite is a promising technique for Tl(I) removal from wastewater. This hybrid process also has great potential for the removal of other pollutants.
Collapse
Affiliation(s)
- Huosheng Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mao Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fengli Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuting Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dandan Liao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zexin Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Gaosheng Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Yang L, Li S, Wu L, Ma Y, Christie P, Luo Y. A field study of the fate of biosolid-borne silver in the soil-crop system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113834. [PMID: 31918132 DOI: 10.1016/j.envpol.2019.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Land application of biosolids is a major route for the introduction of silver (Ag) into the terrestrial environment. Previous studies have focused on the risks from Ag to the human food chain but there is still a lack of quantitative information on the flow of biosolid-borne Ag in the soil-crop system. Two long-term field experiments were selected to provide contrasting soil properties and tillage crops to investigate the fate of Ag from sequentially applied biosolids. Biosolid-borne Ag accumulated in the soil and < 1‰ of applied Ag was taken up by the crops. The biosolid-borne Ag also migrated down and accumulated significantly (p < 0.05) in the soil profile to a depth of 60-80 cm at an application rate of 72 t biosolids ha-1. Soil texture significantly affected the downward transport of biosolid-borne Ag and the migration of Ag appeared to be more pronounced in a soil profile with a low clay content. Moreover, loss of Ag by leaching may not be related to the biosolid application rate. Leaching losses of Ag may have continued for some time after biosolid amendment was suspended. The results indicate that soil texture may be a key factor affecting the distribution of biosolid-borne Ag in the soil-crop system.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Simin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yibing Ma
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
24
|
Li Y, Li H, Liu F, Zhang G, Xu Y, Xiao T, Long J, Chen Z, Liao D, Zhang J, Lin L, Zhang P. Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: Materials characterization, process optimization and removal mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121900. [PMID: 31896005 DOI: 10.1016/j.jhazmat.2019.121900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Nano zero-valent metals adsorption coupled with advanced oxidation for environmental pollutants removal has been gaining attention recently. In this study, zero-valent iron-manganese (nZVIM) bimetallic nanocomposites were prepared via one-pot borohydride reduction and coupled with hypochlorite (ClO-) oxidation for enhanced thallium (Tl) removal from wastewater. Amorphous nZVIM nanoparticles were successfully synthesized, with a specific surface area of 106.89 m2/g, and a saturation magnetization of 65.16 emu/g. In comparison with the nZVIM adsorption or ClO- oxidation alone, the hybrid nZVIM/ClO- process achieved much faster Tl(I) removal rate over a wide pH range from 6 to 10. Maximum Tl(I) removal capacity was as high as 990.0 mg/g. The oxidation-induced adsorption for Tl(I) removal well followed the pseudo-first kinetic order model. Stable and effective adsorbent regeneration was achieved during the cyclic adsorption-desorption tests. This process also had high resistance to the interference of external cations, can act as an effective pretreatment for Tl(I) removal from the actual saline industrial wastewater. The main mechanisms for Tl(I) removal were found to be oxidation, surface precipitation, pore retention, and surface complexation. The nZVIM coupled with ClO- approach has great potential for Tl(I) removal from wastewater, and its application in other fields is highly anticipated.
Collapse
Affiliation(s)
- Yuting Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huosheng Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Fengli Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gaosheng Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanhong Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zexin Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dandan Liao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiajun Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lianhua Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Abdelkhaliq A, van der Zande M, Peters RJB, Bouwmeester H. Combination of the BeWo b30 placental transport model and the embryonic stem cell test to assess the potential developmental toxicity of silver nanoparticles. Part Fibre Toxicol 2020; 17:11. [PMID: 32156294 PMCID: PMC7063716 DOI: 10.1186/s12989-020-00342-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are used extensively in various consumer products because of their antimicrobial potential. This requires insight in their potential hazards and risks including adverse effects during pregnancy on the developing fetus. Using a combination of the BeWo b30 placental transport model and the mouse embryonic stem cell test (EST), we investigated the capability of pristine AgNPs with different surface chemistries and aged AgNPs (silver sulfide (Ag2S) NPs) to cross the placental barrier and induce developmental toxicity. The uptake/association and transport of AgNPs through the BeWo b30 was characterized using ICP-MS and single particle (sp)ICP-MS at different time points. The developmental toxicity of the AgNPs was investigated by characterizing their potential to inhibit the differentiation of mouse embryonic stem cells (mESCs) into beating cardiomyocytes. RESULTS The AgNPs are able to cross the BeWo b30 cell layer to a level that was limited and dependent on their surface chemistry. In the EST, no in vitro developmental toxicity was observed as the effects on differentiation of the mESCs were only detected at cytotoxic concentrations. The aged AgNPs were significantly less cytotoxic, less bioavailable and did not induce developmental toxicity. CONCLUSIONS Pristine AgNPs are capable to cross the placental barrier to an extent that is influenced by their surface chemistry and that this transport is likely low but not negligible. Next to that, the tested AgNPs have low intrinsic potencies for developmental toxicity. The combination of the BeWo b30 model with the EST is of added value in developmental toxicity screening and prioritization of AgNPs.
Collapse
Affiliation(s)
- Ashraf Abdelkhaliq
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700, AE, Wageningen, the Netherlands
- Food Science and Technology Department, Faculty of Agriculture - Alexandria University, Alexandria, Egypt
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700, AE, Wageningen, the Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research (WFSR), P.O. Box 230, 6700, AE, Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. box 8000, 6700, EA, Wageningen, the Netherlands.
| |
Collapse
|
26
|
Li H, Xiong J, Zhang G, Liang A, Long J, Xiao T, Chen Y, Zhang P, Liao D, Lin L, Zhang H. Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134166. [PMID: 31494421 DOI: 10.1016/j.scitotenv.2019.134166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The development of efficient and regenerable adsorbent coupled with advanced oxidation for enhanced thallium (Tl) removal has been a recent focus on wastewater treatment. In this study, a magnetite-based biochar derived from watermelon rinds was synthesized and used as a sustainable adsorbent and catalyst for hypochlorite oxidation and removal of Tl(I) from wastewater. The addition of hypochlorite substantially enhanced the Tl(I) removal under normal pH range (6-9). Maximum Tl adsorption capacity of 1123 mg/g was achieved, which is 12.3% higher than the highest value previously reported. The magnetic biochar can be regenerated using 0.1 mol/L HNO3 solution for elution in only 5 min, with a Tl desorption efficiency of 78.9%. The Tl removal efficiency was constantly higher than 98.5% during five consecutive recycle tests, indicating the effective reuse performance of the adsorbent. Oxidation, surface precipitation, pore retention and surface complexation were the main mechanisms for Tl(I) removal. The re-dissolution of Tl compounds and ion exchange of Tl cations with proton were the main mechanisms for adsorbent regeneration. Given the fast oxidation rate, high adsorption capacity, steady reusability and facile separability, this magnetic biochar-hypochlorite technique is a promising means for Tl(I) removal from wastewater. The catalytic hypochlorite oxidation induced by the magnetic biochar has also great potential to the effective removal of other pollutants.
Collapse
Affiliation(s)
- Huosheng Li
- Institute of Environmental Studies at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jingfang Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gaosheng Zhang
- Institute of Environmental Studies at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Aiping Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yongheng Chen
- Institute of Environmental Studies at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ping Zhang
- College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dandan Liao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lianhua Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, China.
| |
Collapse
|
27
|
Das B, Saikia P, Sharma M, Baruah MJ, Roy S, Bania KK. Direct cyanidation of silver sulfide by heterolytic C–CN bond cleavage of acetonitrile. RSC Adv 2020; 10:8314-8318. [PMID: 35497870 PMCID: PMC9049911 DOI: 10.1039/d0ra00940g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Extraction of silver as silver cyanide from silver sulfide was made possible using acetonitrile as the source of cyanide. The process of cyanidation took place through the oxidation of sulfide to sulfur oxides and cleavage of the C–CN bond of acetonitrile. The reaction was found to be catalyzed by vanadium pentoxide and hydrogen peroxide. The different species involved in the cyanidation process were duly characterized using FTIR, ESI-MS, HRMS, XPS and UV-vis spectroscopic analysis. The mechanism of the cyanidation process was confirmed through in situ FTIR analysis. Herein, we report the cleavage of the C–CN bond of acetonitrile, catalyzed by vanadium pentoxide, for the direct cyanidation of silver sulfide.![]()
Collapse
Affiliation(s)
- Biraj Das
- Department of Chemical Sciences
- Tezpur University
- India
| | - Pinku Saikia
- Department of Chemical Sciences
- Tezpur University
- India
| | - Mukesh Sharma
- Department of Chemical Sciences
- Tezpur University
- India
| | | | - Subhasish Roy
- Department of Chemistry
- School of Applied Sciences
- University of Science and Technology, Meghalaya
- India 793101
| | | |
Collapse
|
28
|
Adverse effects of nanosilver on human health and the environment. Acta Biomater 2019; 94:145-159. [PMID: 31125729 DOI: 10.1016/j.actbio.2019.05.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/02/2023]
Abstract
Silver and silver nanoparticles (AgNPs) exhibit antimicrobial properties against some bacteria, fungi and viruses, however, the ever-increasing application of nanosilver in consumer products, water disinfection and healthcare settings, have raised concerns over the public health/environmental safety of this nanomaterial. The current ubiquity of nanosilver may result in repeated exposure through various routes (skin, inhalation, or ingestion) which may lead to health complications. While there are a number of review articles and case studies published to date on the subject, an updated coherent review that clearly delineates thresholds and safe doses is lacking. Thus, it is plausible to have an overview of the most recent findings on the threshold limits, safe doses of silver and its related nanoscale forms, and the needed actions to ensure the safety and health of human, terrestrial and aquatic lives. This review provides an account of the effects of nanosilver in our daily lives. STATEMENT OF SIGNIFICANCE: This manuscripts is a review of the toxicity of nanosized silver. With respect to the existing literature, it goes beyond stating that there is a knowledge gap, drawing the attention of a wider readership to the ever-growing evidence of nanosilver toxicity to human and nature, and outlining the dose thresholds based on comprehensive data mining and visualisation. There are nearly 500 consumer products that claim to contain nanosilver. Thus, we trust a review of recent conclusive findings is timely. This manuscript is in line with the scope of the Journal, enabling a better understanding of the biological response to a widely-used bionanomaterial. Moreover, it provides a bigger picture of the link between surface properties and biocompatibility of nanosilver in different forms.
Collapse
|
29
|
Fletcher ND, Lieb HC, Mullaugh KM. Stability of silver nanoparticle sulfidation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:854-860. [PMID: 30138885 DOI: 10.1016/j.scitotenv.2018.08.239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
The adoption of silver nanoparticles in consumer goods has raised concerns about the potential environmental harm of their widespread use. We studied chemical transformations that Ag NPs may undergo as they pass through sulfide-rich conditions common in waste water treatment plants (WWTPs), which may limit the release of Ag+ from Ag NPs due to the formation of low-solubility silver sulfide (Ag2S). However, it is uncertain whether sulfidation is complete and if sulfidized Ag NPs continue to release Ag+. To address these uncertainties, we monitored the reaction of Ag NPs with various levels of sulfide with an ion selective electrode and UV/visible spectrophotometry over the course of two months. We characterized the products of the sulfidation reactions with a purge-and-trap acid volatile sulfide (AVS) analysis, which served as a measure of the stability of the sulfidized products because sulfide would be readily lost to oxidation unless it is stabilized as Ag2S. The Ag NP surface plasmon resonance (SPR) absorbance peak was initially diminished and then returned over the course of several days after reaction with limited amounts of sulfide, suggesting a dynamic system that may retain some characteristics of the pristine Ag NPs. However, ICP-MS analysis of sulfidized Ag NP suspensions over a two-month period demonstrates that sulfidation limits the release of Ag+ ions from nanosilver that pass through a WWTP, even when sulfide concentrations are limited relative to silver.
Collapse
Affiliation(s)
- Nathaniel D Fletcher
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Heather C Lieb
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA
| | - Katherine M Mullaugh
- Department of Chemistry & Biochemistry, 66 George St., College of Charleston, Charleston, SC, USA.
| |
Collapse
|
30
|
Guo Z, Cui K, Zeng G, Wang J, Guo X. Silver nanomaterials in the natural environment: An overview of their biosynthesis and kinetic behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1325-1336. [PMID: 30189549 DOI: 10.1016/j.scitotenv.2018.06.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Silver nanomaterials (Ag NMs) are fabricated by many biological components in our environment. Recently, research on their biosynthesis and reactions has become a focus of attention. Due to the complexity of biological systems and samples, specific processes and mechanisms involving Ag NMs are difficult to identify and elucidate on the molecular and chemical-bond level. The microorganisms and composite components of plant extracts are of great interest in many biological syntheses. Although potential biomolecules have been shown to play essential roles in biological systems in Ag NM biosynthesis, the detailed mechanism of the electron transfer process and crucial molecules that control this reaction have only recently come into focus. The reactive behavior of the Ag NMs is of great significance for understanding their overall behavior and toxicity. Additionally, only limited knowledge is available about their kinetics. All reactions involve chemical bond formation, electron transfer, or electrostatic interactions. An overview is presented of the biosynthesis of Ag NMs based on molecular supports including a nitrate reductase/NADH oxidase-involved electron transfer reaction and their mechanisms in Ag+ reduction: quinol-mediated mechanism and superoxide-dependent mechanism, and molecular supports in plant extracts, is presented. The environmental reaction kinetics and mechanisms of the interactions of Ag NMs with substances are introduced based on the formation and classification of chemical bonds. The particle-particle reaction kinetics of Ag NMs in the environment are discussed to directly explain their stability and aggregation behavior. The toxicity of Ag NMs is also presented. In addition, future prospects are summarized. This review is the first to provide an insight into the mediating molecules and chemical bonds involved in the biosynthesis, kinetics, and mechanisms of action of Ag NMs.
Collapse
Affiliation(s)
- Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
31
|
Shi E, Xu Z, Zhang X, Yang X, Liu Q, Zhang H, Wimmer A, Li L. Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1242-1251. [PMID: 30267921 DOI: 10.1016/j.envpol.2018.09.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Stability of silver sulfide nanoparticle (Ag2S-NP) in the environment has recently drawn considerable attention since it is associated with environmental risk. Although the overestimated stability of Ag2S-NP in aqueous solution has already been recognized, studies on transformation of Ag2S-NP in environmental water are still very scarce. Here we reported that Ag2S-NP could undergo dissolution by manganese(IV) oxide (MnO2), an important naturally occurring oxidant in the environment, even in environmental water, although the dissolved silver would probably be adsorbed onto the particles (>0.45 μm) in environmental water, mitigating the measurable levels of dissolved silver. The extent and rate of Ag2S-NP dissolution rose with the increasing concentration of MnO2. In addition, environmental factors including natural organic matter, inorganic salts and organic acids could accelerate the Ag2S-NP dissolution by MnO2, wherein an increase in dissolution extent was also observed. We further documented that Ag2S-NP dissolution by MnO2 was highly dependent on O2 and it was an oxidative dissolution, with the production of SO42-. Finally, dissolution of Ag2S-NP by MnO2 affected zebra fish (Danio rerio) embryo viability, showing significant reduction in embryo survival and hatching rates, compared to embryos exposed to Ag2S-NP, MnO2 or dissolved manganese alone. These findings would further shed light on the stability of Ag2S-NP in the natural environment - essential for comprehensive nano risk assessment.
Collapse
Affiliation(s)
- En Shi
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoxia Zhang
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Andreas Wimmer
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, Garching, 85748, Germany
| | - Lingxiangyu Li
- Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
32
|
Liu Y, Yang T, Wang L, Huang Z, Li J, Cheng H, Jiang J, Pang S, Qi J, Ma J. Interpreting the effects of natural organic matter on antimicrobial activity of Ag 2S nanoparticles with soft particle theory. WATER RESEARCH 2018; 145:12-20. [PMID: 30118974 DOI: 10.1016/j.watres.2018.07.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) ubiquitously exists in natural waters and would adsorb onto the particle surface. Previous studies showed that NOM would alleviate the toxicity of nanomaterials, while the mechanism is seldom quantitatively interpreted. Herein, the effects of humic substances [Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA)] and biomacromolecules [alginate and bovine serum albumin (BSA)] on the aggregation and antimicrobial effects of silver sulfide nanoparticles (Ag2S-NPs) were investigated. The aggregation kinetics of Ag2S-NPs in electrolyte solutions were in agreement with the results based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The dynamic light scattering (DLS) results showed that the SRFA, SRHA, alginate and BSA molecules coated on the Ag2S-NPs surfaces. The NOM coating layer prevented salt-induced coagulation of Ag2S-NPs, and the effects of BSA and SRHA on Ag2S-NPs stabilizing were more obvious than that of SRFA and alginate. Flow cytometry analysis results suggested that BSA and SRHA were more effective on alleviating the Ag2S-NPs induced cell (Escherichia coli) membrane damage than SRFA and alginate. After interpreting the electrophoretic mobility (EPM) data of the NOM coated Ag2S-NPs by Ohshima's soft particle theory, it was found that the thickness of the NOM coating layers followed the orders of BSA > SRHA > alginate > SRFA. The E.coli cell membrane damage level was negatively correlated with the thickness and softness of the coating layer. NOM coating may physically alleviate the contact between NPs and E. coli cells and thus attenuate the extent of cell membrane damage caused by the NP-cell interaction. This work provides a new perspective for quantitatively interpreting the influence of NOM on the environmental behaviors and risks of nanomaterials.
Collapse
Affiliation(s)
- Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Juan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Suyan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
33
|
Rong H, Garg S, Waite TD. Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11621-11631. [PMID: 30227709 DOI: 10.1021/acs.est.8b02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The engineered silver nanoparticles (AgNPs) used in consumer products are ultimately released to the environment either as Ag(0), silver sulfide (Ag2S(s)), silver chloride (AgCl(s)), and/or dissolved Ag(I) complexes. Of these, AgCl(s) and Ag2S(s) exhibit semiconducting properties and hence may have significant implications to oxidant generation and subsequent redox transformations in natural waters. In this work, we investigate the transformation and photoreactivity of AgCl(s) under simulated natural water conditions with the photoreactivity probed by measuring the oxidation of formate (HCOO-), a simple compound with a well-defined oxidation pathway. Our results show that AgCl(s) undergoes rapid dissolution in the presence of chloride concentrations representative of seawater (ca. 0.5 M NaCl) forming dissolved Ag(I) complexes but is stable in fresh waters and slightly brackish waters (≤200 mM NaCl). We further show that under these lower salinity conditions in which AgCl(s) is stable, pH has a significant impact on the reactivity of semiconducting AgCl(s). The photoreactivity (measured as initial HCOO- oxidation rate) of AgCl(s) is relatively constant at pH 4.0 for periods of 24 h or more; however, it decreases rapidly under alkaline conditions. The rapid transformation (or "aging") of AgCl(s) under alkaline conditions suggests that AgCl(s), potentially transported through wastewater effluent to fresh or brackish water environments, may not have a significant impact in such environments. In comparison, in situ formed AgCl(s), potentially formed as a result of the oxidation of high concentrations (≥60 μg Ag·L-1) of Ag(0) and/or Ag2S(s), may have significant implications to oxidant generation in natural waters. Our results further show that rapid cycling of Ag between the 0 and +I redox states in sunlit surface waters as a result of the presence of AgNP oxidants (such as H2O2 and organic radicals) will further enhance the rate and extent of oxidant generation by AgCl(s).
Collapse
Affiliation(s)
- Hongyan Rong
- UNSW Water Research Center, School of Civil and Environmental Engineering , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Shikha Garg
- UNSW Water Research Center, School of Civil and Environmental Engineering , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Center, School of Civil and Environmental Engineering , The University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
34
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
35
|
Alivio TEG, Fleer NA, Singh J, Nadadur G, Feng M, Banerjee S, Sharma VK. Stabilization of Ag-Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7269-7278. [PMID: 29864275 DOI: 10.1021/acs.est.8b01003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold and silver nanoparticles can be stabilized endogenously within aquatic environments from dissolved ionic species as a result of mineralization induced by dissolved organic matter. However, the ability of fulvic and humic acids to stabilize bimetallic nanoparticles is entirely unexplored. Elucidating the formation of such particles is imperative given their potential ecological toxicity. Herein, we demonstrate the nucleation, growth, and stabilization of bimetallic Ag-Au nanocrystals from the interactions of Ag+ and Au3+ with Suwannee River fulvic and humic acids. The mechanisms underpinning the stabilization of Ag-Au alloy NPs at different pH (6.0-9.0) values are studied by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). Complexation of free Ag+ and Au3+ ions with the Lewis basic groups (carbonyls, carboxyls, and thiols) of FA and HA, followed by electron-transfer from redox-active moieties present in dissolved organic matter initiates the nucleation of the NPs. Alloy formation and interdiffusion of Au and Ag atoms are further facilitated by a galvanic replacement reaction between AuCl4- and Ag. Charge-transfer from Au to Ag stabilizes the formed bimetallic NPs. A more pronounced agglomeration of the Ag-Au NPs is observed when HA is used compared to FA as the reducing agent. The bimetallic NPs are stable for greater than four months, which suggests the possible persistence and dispersion of these materials in aquatic environments. The mechanistic ideas have broad generalizability to reductive mineralization processes mediated by dissolved organic matter.
Collapse
Affiliation(s)
- Theodore E G Alivio
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Nathan A Fleer
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Jashanpreet Singh
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Govind Nadadur
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Sarbajit Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| |
Collapse
|
36
|
Li L, Zhu B, Yan X, Zhou Q, Wang Y, Jiang G. Effect of silver sulfide nanoparticles on photochemical degradation of dissolved organic matter in surface water. CHEMOSPHERE 2018; 193:1113-1119. [PMID: 29874739 DOI: 10.1016/j.chemosphere.2017.11.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Silver sulfide nanoparticles (Ag2SNPs) have shown photocatalytic activity, yet little is known about the effect of Ag2SNPs on the photochemical degradation of dissolved organic matter (DOM) in surface water, which seriously impairs understanding of Ag2SNPs' environmental risks. Herein, this study on the basis of electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) showed for the first time that photodegradation of natural organic matter (NOM, 2R101 N) could be accelerated by both bared and polyvinylpyrrolidone (PVP)-coated Ag2SNPs; the NOM with Ag2SNPs (e.g., 500 μg/L) exposed to light irradiation for 96 h showed molecular formulas with lower O/C ratios as compared to the NOM alone. Also, added number of points (ranging from 1 to 2 carboxyl groups) having the same Kendrick mass defect (KMD) (COO) values and higher intensity in smaller Kendrick mass (KM) (COO) values were observed in NOM with Ag2SNPs compared to NOM alone. However, negligible effects of Ag2SNPs on photodegradation of humic acid (HA, 2S101H) were observed, even when the concentration of Ag2SNPs was as high as 5 mg/L. Besides molecular characteristics, a great reduction in organic carbon content of NOM within 96 h was only observed in the presence of Ag2SNPs under light condition. More importantly, the enhanced photodegradation of DOM by Ag2SNPs even at a concentration of 100 μg/L was also validated in surface water. These findings suggest that Ag2SNPs have the potential to accelerate the photochemical degradation of DOM in surface water.
Collapse
Affiliation(s)
- Lingxiangyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bao Zhu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
37
|
A visual photothermal paper sensor for H2S recognition through rational modulation LSPR wavelength of plasmonics. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9179-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|