1
|
Ouyang S, Bi Z, Zhou Q. Nanocolloids in the soil environment: Transformation, transport and ecological effects. ENVIRONMENTAL RESEARCH 2024; 262:119852. [PMID: 39197486 DOI: 10.1016/j.envres.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Nanocolloids (Ncs) are ubiquitous in natural systems and play a critical role in the biogeochemical cycling of trace metals and the mobility of organic pollutants. However, the environmental behavior and ecological effects of Ncs in the soil remain largely unknown. The accumulation of Ncs may have detrimental or beneficial effects on different compartments of the soil environment. This review discusses the major transformation processes (e.g., agglomeration/aggregation, absorption, deposition, dissolution, and redox reactions), transport, bioavailability of Ncs, and their roles in element cycles in soil systems. Notably, Ncs can act as effective carriers for other pollutants and contribute to environmental pollution by spreading pathogens, nutrients, heavy metals, and organic contaminants to adjacent water bodies or groundwater. Finally, the key knowledge gaps are highlighted to better predict their potential risks, and important new directions include exploring the geochemical process and mechanism of Ncs's formation; elucidating the transformation, transport, and ultimate fate of Ncs, and their long-term effect on contaminants, organisms, and elemental cycling; and identifying the impact on the growth and quality of important crops, evaluating its dominant effect on agro-ecosystems in the soil environment.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhicheng Bi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Baccaro M, Montaño MD, Cui X, Mackevica A, Lynch I, von der Kammer F, Lodge RW, Khlobystov AN, van den Brink NW. Influence of dissolution on the uptake of bimetallic nanoparticles Au@Ag-NPs in soil organism Eisenia fetida. CHEMOSPHERE 2022; 302:134909. [PMID: 35551940 DOI: 10.1016/j.chemosphere.2022.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A key aspect in the safety testing of metal nanoparticles (NPs) is the measurement of their dissolution and of the true particle uptake in organisms. Here, based on the tendency of Ag-NP to dissolve and Au-NP to be inert in the environment, we exposed the earthworm Eisenia fetida to Au core-Ag shell NPs (Au@Ag-NPs, Ag-NPs with a Au core) and to both single and combined exposures of non-coated Au-NPs, Ag-NPs, Ag+ and Au+ ions in natural soil. Our hypothesis was that the Ag shell would partially or completely dissolve from the Au@Ag-NPs and that the Au core would thereby behave as a tracer of particulate uptake. Au and Ag concentrations were quantified in all the soils, in soil extract and in organisms by inductively coupled plasma mass spectrometry (ICP-MS). The earthworm exposed to Au@Ag-NPs, and to all the combinations of Ag and Au, were analyzed by single particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) to allow the quantification of the metals that were truly part of a bimetallic particle. Results showed that only 5% of the total metal amounts in the earthworm were in the bimetallic particulate form and that the Ag shell increased in thickness, suggesting that biotransformation processes took place at the surface of the NPs. Additionally, the co-exposure to both metal ions led to a different uptake pattern compared to the single metal exposures. The study unequivocally confirmed that dissolution is the primary mechanism driving the uptake of (dissolving) metal NPs in earthworms. Therefore, the assessment of the uptake of metal nanoparticles is conservatively covered by the assessment of the uptake of their ionic counterpart.
Collapse
Affiliation(s)
- M Baccaro
- Division of Toxicology, Wageningen University & Research, P.O. Box 8000, 6700, EA, Wageningen, the Netherlands.
| | - M D Montaño
- Department of Environmental Geosciences, University of Vienna, 14 Althanstraße, Vienna, 1090, Austria
| | - X Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - A Mackevica
- Department of Environmental Geosciences, University of Vienna, 14 Althanstraße, Vienna, 1090, Austria
| | - I Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - F von der Kammer
- Department of Environmental Geosciences, University of Vienna, 14 Althanstraße, Vienna, 1090, Austria
| | - R W Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - A N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - N W van den Brink
- Division of Toxicology, Wageningen University & Research, P.O. Box 8000, 6700, EA, Wageningen, the Netherlands
| |
Collapse
|
3
|
Chang XL, Chen L, Liu B, Yang ST, Wang H, Cao A, Chen C. Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Gomez‐Gonzalez MA, Rehkämper M, Han Z, Ryan MP, Laycock A, Porter AE. ZnO Nanomaterials and Ionic Zn Partition within Wastewater Sludge Investigated by Isotopic Labeling. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100091. [PMID: 35284090 PMCID: PMC8902288 DOI: 10.1002/gch2.202100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The increasing commercial use of engineered zinc oxide nanomaterials necessitates a thorough understanding of their behavior following their release into wastewater. Herein, the fates of zinc oxide nanoparticles (ZnO NPs) and ionic Zn in a real primary sludge collected from a municipal wastewater system are studied via stable isotope tracing at an environmentally relevant spiking concentration of 15.2 µg g-1. Due to rapid dissolution, nanoparticulate ZnO does not impart particle-specific effects, and the Zn ions from NP dissolution and ionic Zn display indistinguishable behavior as they partition equally between the solid, liquid, and ultrafiltrate phases of the sludge over a 4-h incubation period. This work provides important constraints on the behavior of engineered ZnO nanomaterials in primary sludge-the first barrier in a wastewater treatment plant-at low, realistic concentrations. As the calculated solid-liquid partition coefficients are significantly lower than those reported in prior studies that employ unreasonably high spiking concentrations, this work highlights the importance of using low, environmentally relevant doses of engineered nanomaterials in experiments to obtain accurate risk assessments.
Collapse
Affiliation(s)
- Miguel A. Gomez‐Gonzalez
- Department of Materials and London Centre for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Mark Rehkämper
- Department of Earth Science & EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zexiang Han
- Department of Materials and London Centre for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Mary P. Ryan
- Department of Materials and London Centre for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Adam Laycock
- UK Health Security AgencyCentre for RadiationChemical and Environmental HazardsHarwell Science and Innovation CampusDidcotOX11 0RQUK
| | - Alexandra E. Porter
- Department of Materials and London Centre for NanotechnologyImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
5
|
Jośko I, Kusiak M, Oleszczuk P. The chronic effects of CuO and ZnO nanoparticles on Eisenia fetida in relation to the bioavailability in aged soils. CHEMOSPHERE 2021; 266:128982. [PMID: 33276995 DOI: 10.1016/j.chemosphere.2020.128982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The bioavailability and bioaccumulation of metal-based engineered nanoparticles (ENPs) in soils need to be evaluated in environmentally relevant scenarios. The aim of this study was an analysis of potentially available metal-component ENPs (nano-ZnO and nano-CuO) in soils. Earthworms (Eisenia fetida) were used to examine the bioaccumulation potential of ENPs. Micro-particles (micro-ZnO and micro-CuO) and metal salts (ZnCl2 and CuCl2) were used to evaluate the nano-effect and the activity of dissolved ions, respectively. Zn- and Cu-compounds were added to sandy loam and silt loam at a concentration of 10 mg kg-1. The bioavailable fractions of metals were extracted from soil using H2O, MgCl2 with CH3COONa or EDTA. EDTA was the most effective extractant of Zn and Cu (10.06-11.65 mg Zn kg-1 and 2.69-3.52 mg Cu kg-1), whereas the H2O-extractable metal concentration was at the lowest level (1.98-2.12 mg Zn kg-1 and 0.54-0.82 Cu mg kg-1). The bioavailable metal concentrations were significantly higher in silt loam than sandy loam soil, which was related to the higher pH value of silt. There were no significant differences between the Zn content in the earthworms incubated in the two soils, which may confirm the auto-regulation of the Zn content by earthworms. However, the bioaccumulation of Cu was strongly correlated with the extractable Cu concentrations. The juvenile earthworms accumulated Cu and Zn more than adults. Based on our results, aging neutralized the differences between the ionic and particulate effects of metal-compounds.
Collapse
Affiliation(s)
- Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Shao Z, Guagliardo P, Jiang H, Wang WX. Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:433-446. [PMID: 33325689 DOI: 10.1021/acs.est.0c04621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extensive application of silver nanoparticles (AgNPs) requires a full examination of their biological impacts, especially in aquatic systems where AgNPs are likely to end up. Despite numerous toxicity studies from molecular to individual levels, it is still a daunting challenge to achieve in situ subcellular imaging of Ag and to determine the sites of AgNP interaction with organelles or macromolecules simultaneously. Here, by coupling high-resolution nanoscale secondary ion mass spectrometry elemental mapping with scanning electron microscopy ultrastructural characterization, we successfully visualized the subcellular localization and the potential toxicity effects of AgNPs in the oyster gill filaments. The stable isotope tracing method was also adopted to investigate the respective uptake and transport mechanisms of differently labeled 109AgNPs and 107Ag+ ions. 109Ag hotspots were colocalized with endosomes or lysosomes, proving an endocytosis-based entry of AgNPs which passed through the barrier of oyster gill epithelium. These 109Ag hotspots showed a strong colocalization with 32S-. For the first time, we provided visualized evidence of AgNP-induced autophagy in the oyster gill cells. We further identified two categories of hemocytes (blood cells) and illustrated their roles in AgNP transport and sequestration. The integration of morphological and functional aspects of Ag subcellular distribution in different target cells suggested that oysters were equipped with a specialized endolysosomal (epithelial cells) or phagolysosomal system (hemocytes) in regulating the cellular process of AgNPs, during which the lysosome was the most involved organelle and sulfur was the most relevant macronutrient element. This study highlighted not only the intracellular but also the intercellular AgNP translocation and transformation, providing important subcellular imaging of silver and reliable methodology regarding bio-nano interactions in natural environments.
Collapse
Affiliation(s)
- Zishuang Shao
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment, State Key Laboratory of Marine Pollution, and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Bao S, Huang M, Tang W, Wang T, Xu J, Fang T. Opposite effects of the earthworm Eisenia fetida on the bioavailability of Zn in soils amended with ZnO and ZnS nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114045. [PMID: 32045968 DOI: 10.1016/j.envpol.2020.114045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The increasing release of metallic nanoparticles (NPs) or their sulfidized forms into soils have raised concerns about their potential risks to soil ecosystems. Hence, there is a need for novel strategies to remediate metallic NPs pollution in soils. In this study, to explore the feasibility of using earthworm Eisenia fetida to manage soils contaminated with metallic NPs, we simultaneously investigated the chronic soil toxicities of ZnO NPs and ZnS NPs to E. fetida, and the effects of E. fetida on Zn extractability in soils amended with ZnO NPs and ZnS NPs. After a 28 d exposure, survival rate and weight loss of earthworms were not impacted by either ZnO NPs or ZnS NPs at a concentration of 400 mg Zn per kg soil. Further, while ZnO NPs activated earthworm antioxidative system, ZnS NPs resulted in significant alleviation of oxidative damage in earthworm. The presence of earthworms significantly decreased the bioavailability of Zn in ZnO NPs contaminated soil, whereas significantly increased the bioavailability of Zn in ZnS NPs contaminated soil. These findings implied that the earthworm E. fetida could play an important role in altering the mobilization of metals originating from metallic NPs in soils, which may further aid in the development of a method for the treatment of metallic NPs pollution in soils.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Manqi Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Peng C, Tong H, Shen C, Sun L, Yuan P, He M, Shi J. Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136662. [PMID: 31958734 DOI: 10.1016/j.scitotenv.2020.136662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 05/16/2023]
Abstract
To determine the bioavailability and translocation of metal oxide nanoparticles (MONPs) in the soil-rice plant system, we examined the accumulation and micro-distribution of ZnO nanoparticles (NPs), CuO NPs and CeO2 NPs (50, 100 and 500 mg/kg) in the paddy soil and rice plants under flooded condition for 30 days using single-step chemical extraction and diffusive gradients in thin films (DGT) technique combined with micro X-ray fluorescence spectroscopy (μ-XRF). The results show that various MONPs changed the soil properties, especially the redox potential was enhanced to -165.33 to -75.33 mV compared to the control. The extraction efficiency of Zn, Cu and Ce in the paddy soil from high to low was EDTA, DTPA, CaCl2 and DGT. Moreover, exposure to 500 mg/kg CuO NPs and CeO2 NPs induced the primary accumulation of Cu and Ce elements in rice roots as high as 235.48 mg Cu/kg and 164.84 mg Ce/kg, respectively, while the Zn concentration in shoots was up to 313.18 mg/kg under highest ZnO NPs with a 1.5 of translocation factor. The effect of MONPs on the plant growth was mainly related to the chemical species and solubility of MONPs. Micro-XRF analysis shows that Zn was mostly located in the root cortex while Cu was primarily accumulated in the root exodermis and few Ce distributed in the root. Pearson correlation coefficients indicate that only DTPA-extracted metals in soil were significantly and well correlated to the Zn, Cu and Ce accumulation in rice seedlings exposed to MONPs. This work is of great significance for evaluating the environmental risks of MONPs in soil and ensuring the safety of agricultural products.
Collapse
Affiliation(s)
- Cheng Peng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hong Tong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lijuan Sun
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Peng Yuan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Miao He
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiyan Shi
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Zhang P, Misra S, Guo Z, Rehkämper M, Valsami-Jones E. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. Nat Protoc 2019; 14:2878-2899. [PMID: 31515516 DOI: 10.1038/s41596-019-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
Abstract
Engineered nanomaterials (NMs) are often compositionally indistinguishable from their natural counterparts, and thus their tracking in the environment or within the biota requires the development of appropriate labeling tools. Stable isotope labeling has become a well-established such tool, developed to assign 'ownership' or a 'source' to engineered NMs, enabling their tracing and quantification, especially in complex environments. A particular methodological challenge for stable isotope labeling is to ensure that the label is traceable in a range of environmental or biological scenarios but does not induce modification of the properties of the NM or lose its signal, thus retaining realism and relevance. This protocol describes a strategy for stable isotope labeling of several widely used metal and metal oxide NMs, namely ZnO, CuO, Ag, and TiO2, using isotopically enriched precursors, namely 67Zn or 68Zn metal, 65CuCl2, 107Ag or 109Ag metal, and 47TiO2 powder. A complete synthesis requires 1-8 d, depending on the type of NM, the precursors used, and the synthesis methods adopted. The physicochemical properties of the labeled particles are determined by optical, diffraction, and spectroscopic techniques for quality control. The procedures for tracing the labels in aquatic (snail and mussel) and terrestrial (earthworm) organisms and for monitoring the environmental transformation of labeled silver (Ag) NMs are also described. We envision that this labeling strategy will be adopted by industry to facilitate applications such as nanosafety assessments before NMs enter the market and environment, as well as for product authentication and tracking.
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Superb Misra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Zhang W, Long J, Li J, Zhang M, Xiao G, Ye X, Chang W, Zeng H. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23119-23128. [PMID: 31183760 DOI: 10.1007/s11356-019-05551-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
With the widespread use of metal oxide nanoparticles (MNPs), agricultural soil is gradually becoming a primary sink for MNPs. The effect of these nanoparticles on the fate and the toxicity of co-existing heavy metals is largely unknown. In this paper, pot experiments were conducted to evaluate the impact of ZnO nanoparticles (ZnO-NPs) on Cd toxicity and bioaccumulation in a soil-rice system. Different amounts of ZnO-NPs were added to three different levels of Cd-contaminated paddy soil (L-Cd, 1.0 mg kg-1; M-Cd, 2.5 mg kg-1; H-Cd, 5.0 mg kg-1). The results showed that the addition of ZnO-NPs significantly increased the soil pH value, and the soil pH value increased with the increase in ZnO-NP concentration. Reductions in plant height and biomass under Cd stress were recovered and increased after the addition of ZnO-NPs; the addition of ZnO-NP promoted rice biomass increased by 13~22% and 25~43% in the M-Cd and H-Cd groups, respectively, compared with that of the respective control treatment. A high concentration of ZnO-NPs could increase the concentration of bioavailable Cd in rhizosphere soil. In the L-Cd group, the Cd concentration of the rice in the L-Z500 treatment increased to 0.51 mg kg-1, exceeding the limit for acceptable Cd concentrations in rice of China (0.2 mg kg-1). This work revealed that ZnO-NPs could improve plant growth, especially in the early-growth stage, and alleviate the toxic effects of Cd. However, the addition of high-concentration (500 mg kg-1) ZnO-NPs in the lower Cd pollution soil could significantly facilitate the accumulation of Cd by Oryza sativa L.
Collapse
Affiliation(s)
- Wei Zhang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jinghua Long
- School of Public Administration, Hebei University of Economics and Business, Shijiazhuang, 050061, China
| | - Jie Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Meng Zhang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoliang Xiao
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xingyin Ye
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Chang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hui Zeng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- School of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Yang Q, Shan W, Hu L, Zhao Y, Hou Y, Yin Y, Liang Y, Wang F, Cai Y, Liu J, Jiang G. Uptake and Transformation of Silver Nanoparticles and Ions by Rice Plants Revealed by Dual Stable Isotope Tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:625-633. [PMID: 30525513 DOI: 10.1021/acs.est.8b02471] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Knowledge on the uptake and transformation of silver nanoparticles (AgNPs) and Ag+ ions by organisms is critical for understanding their toxicity. Herein, the differential uptake, transformation, and translocation of AgNPs and Ag+ ions in hydroponic rice ( Oryza sativa L.) is assessed in modified Hewitt (with Cl- ions, HS(Cl)) and Hogland solutions (without Cl- ions, HS) using dual stable isotope tracing (107AgNO3 and 109AgNPs). After coexposure to 107Ag+ ions and 109AgNPs at 50 μg L-1 (as Ag for both) for 14 days, a stimulatory effect was observed on root elongation (increased by 68.8 and 71.9% for HS(Cl) and HS, respectively). Most of the Ag+ ions (from 107Ag+ ions and 109AgNPs) were retained on the root surface, while the occurrence of AgNPs (from 109AgNPs and 107Ag+ ions) was observed in the root, suggesting the direct uptake of AgNPs and/or reduction of Ag+ ions. Higher fractions of Ag+ ions in the shoot suggest an in vivo oxidation of AgNPs. These results demonstrated the intertransformation between Ag+ ions and AgNPs and the role of AgNPs as carriers and sources of Ag+ ions in organisms, which is helpful for understanding the fate and toxicology of Ag.
Collapse
Affiliation(s)
- Qingqing Yang
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Wanyu Shan
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
| | - Ligang Hu
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yongguang Yin
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yong Cai
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
12
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Tatsi K, Shaw BJ, Hutchinson TH, Handy RD. Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:462-473. [PMID: 30296611 DOI: 10.1016/j.ecoenv.2018.09.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENMs) may be functionalised with a surface coating to enhance their properties, but the ecotoxicity of the coatings and how hazard changes with ageing in soil is poorly understood. This study determined the toxic effect of CuO ENMs with different chemical coatings on the earthworm (Eisenia fetida) in fresh soil, and then after one year in aged soil. In both experiments, earthworms were exposed for 14 days to the CuO materials at nominal concentrations of 200 and 1000 mg Cu kg-1 dry weight and compared to CuSO4. In the fresh soil experiment, CuO-COOH was found to be the most acutely toxic of the nanomaterials (survival, 20 ± 50%), with tenfold increase of total Cu in the earthworms compared to controls. Sodium pump activity was reduced in most CuO ENM treatments, although not in the CuSO4 control. There was no evidence of glutathione depletion or the induction of superoxide dismutase (SOD) activity in any treatment. Histology showed a mild hypoplasia of mucous cells in the epidermis with some nanomaterials. In the aged soil, the CuO-NH4+ was the most acutely toxic ENM (survival 45 ± 3%) and Cu accumulation was lower in the earthworms than in the fresh soil study. Depletion of tissue Mn and Zn concentrations were seen in earthworms in aged soil, while no significant effects on sodium pump or total glutathione were observed. Overall, the study showed some coating-dependent differences in ENM toxicity to earthworms which also changed after a year of ageing the soil.
Collapse
Affiliation(s)
- Kristi Tatsi
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Thomas H Hutchinson
- School of Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|