1
|
Choudhary A, Tsunduru A, Tsianou M, Alexandridis P, Bedrov D. Structure, orientation, and dynamics of per- and polyfluoroalkyl substance (PFAS) surfactants at the air-water interface: Molecular-level insights. J Colloid Interface Sci 2025; 679:1207-1218. [PMID: 39426085 DOI: 10.1016/j.jcis.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Understanding the intricate molecular-level details of toxic per- and polyfluoroalkyl substances (PFAS) partitioning to the air-water interface holds paramount importance in evaluating their fate and transport, as well as for finding safer alternatives for various applications, including aqueous film forming foams. The behavior of these substances at interfaces strongly depends on molecular architecture, chemistry, and concentration, which define molecular packing, self-assembly, interfacial diffusion, and the surface tension. SIMULATIONS Modeling of three PFAS surfactants, namely, longer-tail (perfluorooctanoate (PFOA)) and shorter-tail (perfluorobutanoate (PFBA) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate (GenX)) has been conducted using atomistic molecular dynamics simulations. A systematic comparison between these representative PFAS of different sizes and structure reveals factors influencing their association behavior, mechanism of surface tension reduction, and interfacial mobility as a function of surface coverage. FINDINGS Shorter-chain PFAS surfactants (GenX or PFBA) require lower surface coverage compared to longer chain (PFOA) PFAS to achieve the same decrease in surface tension. However, a higher concentration of GenX and PFBA is necessary in the bulk aqueous solution to achieve the same surface coverage as PFOA, due to their higher solubility in water. The PFAS molecular orientation and mobility at the interface are found to be vastly influenced by the length and architecture of the hydrophobic fluorocarbon tail. A significant ordering of the water dipole moment near the anionic headgroup is apparent at high surface concentration. A direct correlation is established between the PFAS interfacial properties and PFAS-PFAS, PFAS-counterion, and PFAS-water interactions.
Collapse
Affiliation(s)
- Aditya Choudhary
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Aashish Tsunduru
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Lemay AC, Bourg IC. Interactions between Per- and Polyfluoroalkyl Substances (PFAS) at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39836531 DOI: 10.1021/acs.est.4c08285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS)─so-called "forever chemicals"─contaminate the drinking water of about 100 million people in the U.S. alone and are inefficiently removed by standard treatment techniques. A key property of these compounds that underlies their fate and transport and the efficacy of several promising remediation approaches is that they accumulate at the water-air interface. This phenomenon remains incompletely understood, particularly under conditions relevant to natural and treatment systems where water-air interfaces often carry significant loads of other organic contaminants or natural organic matter. To understand the impact of organic loading on PFAS adsorption, we carried out molecular dynamics simulations of PFAS at varying interfacial densities. We find that adsorbed PFAS form strong mutual interactions (attraction between perfluoroalkyl chains and electrostatic interactions among charged head groups) that give rise to ordered interfacial coatings. These interactions often involve near-cancellation of hydrophobic attraction and Coulomb repulsion. Our findings explain an apparent paradox whereby PFAS adsorption isotherms often suggest minimal mutual interactions while simultaneously displaying a high sensitivity to the composition and density of interfacial coatings. Consideration of the compounds present with PFAS at the interface has the potential to allow for more accurate predictions of fate and transport and the design of more efficient remediation approaches.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Vahedian F, Silva JAK, Šimůnek J, McCray JE. Influence of kinetic air-water interfacial partitioning on unsaturated transport of PFAS in sandy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177420. [PMID: 39532180 DOI: 10.1016/j.scitotenv.2024.177420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the impact of kinetic air-water partitioning on the transport of perfluoroalkyl substances (PFAS) within homogeneous and heterogeneous sandy vadose zones under transient unsaturated flow conditions. These experimental conditions are realistic for field behavior, where transient flow foments the continual growth and collapse of air-water interfaces (AWIs), and where layered heterogenous conditions enhance the perturbations of AWIs. Short-chain PFAS behave like conservative tracers with negligible air-water interface partitioning, whereas longer-chain PFAS demonstrate non-equilibrium retention behavior, especially in heterogeneous media. AWI partitioning kinetics were found to be important in controlling PFAS transport and mass flux, particularly during PFAS sorption to the air-water interface, which results because of the different nature and more rapid changes in AWI during drainage, wherein PFAS are moving toward the interface to achieve equilibrium, than during imbibition, where PFAS are leaving the interface to achieve equilibrium. Neglecting these kinetic AWI sorption processes can result in an underestimate of the PFAS transport velocities and mass flux reaching the water table. The presence of trapped air may also inhibit PFAS partitioning in a similar manner by causing longer diffusion paths from bulk water to a portion of the AWIs. The modified HYDRUS effectively captured the transport processes and provided an excellent match to the measured breakthrough curves. To assess relevance using realistic transient infiltration rates, simulations were conducted using precipitation data from an actual site. The results showed that accounting for kinetic AWI partitioning increases the cumulative PFOS mass flux to groundwater by a factor of 2.3 compared to equilibrium conditions, significantly impacting PFAS porewater concentrations. This difference was threefold under experimental conditions, suggesting that the importance of kinetic effects may vary significantly over the long term and under different climatic conditions or soil types, due to their strong dependence on water flux.
Collapse
Affiliation(s)
- Faran Vahedian
- Civil & Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
| | - Jeff A K Silva
- Civil & Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, USA; Arclight Research & Consulting, LLC, Golden, CO 80401, USA.
| | - Jiří Šimůnek
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - John E McCray
- Civil & Environmental Engineering Department, Hydrologic Science and Engineering Program, Hydrologic Science & Engineering Program, ReNuWit-The Urban Water Engineering Research Center, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
4
|
Fang Y, Devon J, Rao D, Liu J, Schaefer C. Destruction of perfluorooctane sulfonic acid (PFOS) in gas sparging incorporated UV-indole reductive treatment system - Benefits and challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135935. [PMID: 39326146 DOI: 10.1016/j.jhazmat.2024.135935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Ultraviolet (UV) reductive treatment systems that generate hydrated electrons (eaq-) have emerged as a promising technology for the destruction of chemically inert per- and polyfluoroalkyl substances (PFAS). Here, we report on the evaluation of an indole derivative-based UV reductive treatment system that utilizes the amphipathic properties of PFAS at the gas-water interface (via nitrogen (N2) sparging) for more energy-efficient destruction of perfluorooctane sulfonic acid (PFOS). Results from this work illustrated that N2 sparging within UV systems can enhance the degradation and defluorination of PFOS compared to non-sparged conditions, but their overall treatment efficiency is low to industry standard. The inadequate system performance is likely originated from the insufficient accumulation of electron sources at the gas-water interface and their low water solubility level. In addition, carbonate species, which are ubiquitous in natural water and commonly applied as buffers in UV reductive treatment systems, negatively impact PFOS defluorination when indole is the electron source. The species-specific quenching imposed by carbonate species (e.g., HCO3- > H2CO3*) indicates that naturally occurring constituents and varying reactor conditions can substantially influence the remediation of PFOS. Other notable findings in this work include: 1) gramine, a cationic indole derivative, was able to remove > 99 % PFOS mass via electrostatic interaction within 0.5 h of reaction, signifying the electron source's structural property importance in UV reductive treatment systems, and 2) energy consumption calculations showed indole species are less energy-efficient as electron sources for PFOS destruction comparing to sulfite-iodide, but performance tradeoffs exist in both systems. The results of this work revealed both the benefits and challenges of utilizing N2 sparging and indole derivatives in UV-PFAS reductive treatment processes and provided critical information needed to improve the prediction and design of similar PFAS destruction technologies.
Collapse
Affiliation(s)
- Yida Fang
- Haley & Aldrich, 3131 Elliot Ave, Suite 600, Seattle, WA 98121, United States.
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, #100, Bellevue, WA 98007, United States
| | - Dandan Rao
- University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| | - Jinyong Liu
- University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States
| | - Charles Schaefer
- CDM Smith, 110 Fieldcrest Ave, #8, Edison, NJ 08837, United States
| |
Collapse
|
5
|
Wang Y, Good KD. Microplastics and PFAS air-water interaction and deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176247. [PMID: 39277013 DOI: 10.1016/j.scitotenv.2024.176247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Although microplastics (MPs) and per- and polyfluoroalkyl substances (PFAS) have received tremendous attention separately, understanding their ubiquitous presence in the environment, persistence and toxicity requires comprehensive study of the fate and transport of co-existing MPs and PFAS. MPs may have large sorption capacity and can serve as vectors for PFAS to undergo long-range transport in water. Atmospheric deposition of both PFAS and MPs has been reported in urban, rural, and remote areas. This review identifies types and levels of PFAS and MPs in air, their interactions, and environmental factors contributing to their air-water deposition. MPs in combination with PFAS may carry combined toxicity and pose elevated risks to ecosystems and human health. Our review shows that air-water deposition of MPs and PFAS can be governed by environmental factors including precipitation, humidity, UV, wind, and particulate matter levels in the air. Increasing humidity may increase MP particle size due to hygroscopic growth, which affects its distribution and deposition rate. Humidity has been observed to have both positive and negative impacts on PFAS partitioning onto MPs. More attention should be paid to MPs and PFAS co-occurrence when addressing their transport behavior in air and deposition to aquatic systems.
Collapse
Affiliation(s)
- Yuxin Wang
- Systems Science and Industrial Engineering, State University of New York at Binghamton, United States of America.
| | - Kelly D Good
- Civil and Environmental Engineering, Villanova University, United States of America.
| |
Collapse
|
6
|
Alam MS, Abbasi A, Chen G. Fate, distribution, and transport dynamics of Per- and Polyfluoroalkyl Substances (PFASs) in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123163. [PMID: 39515017 DOI: 10.1016/j.jenvman.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFASs) are persistent organic pollutants with significant environmental and health impacts due to their widespread occurrence, bioaccumulation potential, and resistance to degradation. This paper comprehensively reviews current knowledge of PFAS fate and transport mechanisms by correlating PFAS leaching, retention, and movement to their physicochemical properties and environmental factors based on observing PFAS fate and transport in unsaturated zones, surface water, sediments, plants, and atmosphere. The complex and unique physiochemical properties of PFASs, such as their carbon-fluorine bonds and amphiphilic nature, determine their environmental behavior and persistence. Recent studies emphasize that concentration-dependent affinity coefficients predict the transport of diverse PFAS mixtures by considering the impact of the Air-Water Interface (AWI). These studies highlight the complex interactions that influence PFAS behavior in environmental systems and the need for refined modeling techniques to account for transport dynamics. Competitive adsorption at the AWI, influenced by PFAS physicochemical properties and environmental factors, is crucial. PFAS chain length profoundly affects PFAS volatility and mobility, i.e., longer chains show higher solid matrix adsorption, while shorter chains exhibit greater atmospheric deposition potential. Solution chemistry, encompassing pH and ionic strength, variably alters PFAS sorption behaviors. Mathematical models, such as the Leverett Thermodynamic Model (LTM) and Surface Roughness Multipliers (SRM), effectively predict PFAS retention, offering enhanced accuracy for surface-active solutes through empirical adjustments. Co-contaminants' presence influences the transport behavior of PFASs in the environment. Microbial activity alters PFAS retention, while microplastics, especially polyamide, contribute to their adsorption. These complex interactions govern PFAS fate and transport in the environment. The paper identifies critical gaps in current understanding, including the fate of PFASs, analytical challenges, ecological risk assessment methods, and the influence of episodic events on PFAS transport dynamics. This paper also investigates the research gap in refining current models and experimental approaches to predict PFAS transport accurately and enhance risk mitigation efforts. Addressing these gaps is crucial for advancing remediation strategies and regulatory frameworks to mitigate PFAS contamination effectively.
Collapse
Affiliation(s)
- Md Shahin Alam
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA.
| | - Alireza Abbasi
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
7
|
Trobisch KM, Reeves DM, Cassidy DP. Environmental fate and transport of PFAS in wastewater treatment plant effluent discharged to rapid infiltration basins. WATER RESEARCH 2024; 266:122422. [PMID: 39276479 DOI: 10.1016/j.watres.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Fate and transport of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant (WWTP) effluent discharged to rapid infiltration basins (RIBs) is investigated using data from 26 WWTPs in Michigan, USA. PFAS were found to accumulate in groundwater downgradient from RIBs with median groundwater-effluent enrichment factors for ten commonly detected, terminal-form perfluoroalkyl acids (PFAAs) ranging from 1.3 to 5.2. Maximum contaminant levels for drinking water were exceeded in groundwater at all WWTPs with available PFAS data. Numerical models of unsaturated fluid flow and PFAS transport honoring RIB site properties, such as median vertical separation distance to the water table and a realistic range of area-normalized effluent fluxes, show long-chain PFAS undergo significant delays from air-water interface (AWI) adsorption, requiring up to 15 times longer to reach maximum mass flux to the saturated zone under low-flux conditions, where AWI area is 2.5 times greater. Short-chain PFAS commonly detected in effluent are only minimally affected by AWI adsorption and show little to no attenuation under high-flux conditions. The nonlinear inverse relationship between water content and AWI area highlights the important role of AWI adsorption in modulating unsaturated transport of long-chain PFAS to underlying groundwater due to the broad range of flux rates applied to RIB systems.
Collapse
Affiliation(s)
- Kai M Trobisch
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| |
Collapse
|
8
|
Zhou M, Foudazi R. Towards a universal model for the foaming behavior of surfactants: a case study on per- and polyfluoroalkyl substances (PFAS). SOFT MATTER 2024. [PMID: 39499500 DOI: 10.1039/d4sm00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Foam fractionation offers a promising solution for the separation of surface-active contaminants from water. Therefore, this work aims to comprehensively investigate foaming behavior and its correlations with the interfacial properties. As a case study, we evaluate foaming of per- and polyfluoroalkyl substances (PFAS), which are one of significant environmental issues worldwide due their pervasive presence in the environment. Since there is no universal model to describe the foaming behavior of surfactants that can be applied to PFAS, this research utilizes dimensional analysis to establish a correlation between the foaming behavior of PFAS solutions-characterized by expansion rate of foaming-and dimensionless numbers that represent both processing and interfacial characteristics. Foaming parameters, such as gas flow rate and aeration time, are varied to study their effect on PFAS foamability. In addition, we study PFAS with different headgroups and with different chain lengths in the presence of electrolytes with different concentrations. Our study elucidates distinct, condition-specific equations for individual PFAS, revealing that long-chain PFAS foaming is significantly influenced by interfacial property-related dimensionless numbers, such as the Boussinesq number. Additionally, the Froude number and Weber number affect the foamability of both long- and short-chain PFAS. Moreover, our study identifies specific trends, including a maximum foaming capacity at a certain Capillary number, aligning with the maximum in dilatational interfacial modulus. The results suggest more studies are needed on bubble interaction and foam film behavior.
Collapse
Affiliation(s)
- Muchu Zhou
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| | - Reza Foudazi
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
9
|
Wei Y, Wang W, Dong Q, Fan Q, Zhang M, Li C, Li H. Perfluorooctanoic acid transport and fate difference driven by iron-sulfide minerals transformation interacting with different types of groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135785. [PMID: 39255661 DOI: 10.1016/j.jhazmat.2024.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant that threatens human health and ecosystems. However, the intricate mechanism of the change in PFOA transport behavior that interacts with FexSy minerals under groundwater-type differences is not clear. To address this knowledge gap, multi-scale experiments and multi-process reaction models were constructed to investigate the underlying mechanisms. The results showed that different groundwater (NO3-, Cl--Na+, SO42-, and HCO3- types) had significant effects on PFOA transport. NO3-, Cl--Na+, SO42-, and HCO3- decreased the retardation effect of PFOA in the FexSy media. Compared to other groundwater types, the adsorption sites of FexSy were the least occupied in the NO3- groundwater. This observation was supported by the least inhabition of λ in FexSy-NO3- interaction system, which demonstrated that more PFOA was in a high reaction zone and electrostatic repulsion was weakest. The surface tension of different ion types in groundwater provided evidence explaining the lowest inhibition in the FexSy-NO3- system. The 2D spatiotemporal evolution results showed that in FexSy with NO3- system, the pollutant flux (6.00 ×10-5 mg·(m2·s)-1) was minimal. The pollutant flux in the SO42- groundwater system was 9.95-fold that in FexSy with the NO3- groundwater. These findings provide theoretical support for understanding the transport and fate of PFOA in FexSy transformations that interact with different types of groundwater.
Collapse
Affiliation(s)
- Yongkang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Stults JF, Higgins CP, Illangasekare TH, Singha K. Non-Fickian transport processes accelerate the movement of PFOS in unsaturated media: An experimental and modelling study. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104424. [PMID: 39260021 DOI: 10.1016/j.jconhyd.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.
Collapse
Affiliation(s)
- John F Stults
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, United States.
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Tissa H Illangasekare
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Kamini Singha
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| |
Collapse
|
11
|
Garza-Rubalcava U, Klevan C, Pennell KD, Abriola LM. Transport and competitive interfacial adsorption of PFOA and PFOS in unsaturated porous media: Experiments and modeling. WATER RESEARCH 2024; 268:122728. [PMID: 39522483 DOI: 10.1016/j.watres.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation. Although there is a growing body of literature on vadose zone transport, few studies have explored PFAS mixture transport, particularly under conditions where nonlinear sorption processes are important. The present study aims to advance our understanding of PFAS transport in variably saturated porous media through integration of experiments and mathematical modeling. Experiments include batch studies to quantify sorption to the solid phase, interfacial tension (IFT) measurements to estimate adsorption at the air-water interface (AWI), and column studies with F-70 Ottawa sand at 100 % and ca. 50 % water saturation to explore transport mechanisms. Employed PFAS solutions encompass individual solutes and binary mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentration levels spanning four orders of magnitude to assess competitive and nonlinear sorption at the AWI. Observations demonstrate that concentration levels and competitive effects substantially influence PFAS transport in unsaturated systems. In the presence of PFOS, PFOA experienced less retention than would be anticipated based on single-solute behavior, and effluent breakthrough curves exhibited chromatographic peaking. The presented mathematical model for simultaneous flow and transport of PFAS was able to capture experimental observations with a consistent set of parameters and minimal curve fitting. These results demonstrate the robustness of the model formulation that included rate-limited interfacial mass transfer, an extended Langmuir-Szyszkowski model for adsorption at the AWI, and a scaled Leverett thermodynamic model to predict the AWI specific area. Overall, the results of this work underscore the importance of the AWI in PFAS transport and highlight the relevance of competition effects in adsorption formulations.
Collapse
Affiliation(s)
| | - Craig Klevan
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA
| | - Kurt D Pennell
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| | - Linda M Abriola
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| |
Collapse
|
12
|
Luo T, Chen T, Cheng W, Lassabatère L, Boily JF, Hanna K. Impact of Water Saturation on the Fate and Mobility of Antibiotics in Reactive Porous Geomedia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15827-15835. [PMID: 39171685 DOI: 10.1021/acs.est.4c06222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Understanding contaminant transport through unsaturated porous media is a considerable challenge, given the complex interplay of nonlinear physical and biogeochemical processes driven by variations in water saturation. In this study, we tackled this challenge through a series of column experiments involving fine (100-300 μm) and coarse (1.0-1.4 mm) sand particles coated with birnessite (MnO2) under variable saturation degrees. Dynamic flow experiments in sand columns revealed that desaturation altered the ability of MnO2 in removing tetracycline (TTC), a redox-active antibiotic, yet the effect depends on the sand type and then on the saturation degree. Moderate saturation degrees in fine-grained sand columns promoted fractional and preferential water flow which favored a more acidic pH and increased dissolved oxygen levels. These conditions enhanced TTC removal, despite the reduced physical accessibility of reactive phases. In contrast, lower saturation degrees in coarse-grained sand columns induced stronger flow heterogeneity with a very small fraction of the water content participating in flow. The mobility behavior of all the columns was predicted using transport models that consider TTC adsorption and transformation, as well as dual porosity under variable water saturation degrees. This research offers valuable insights into predicting the fate and transport of redox-active contaminants in unsaturated soils and subsurface environments.
Collapse
Affiliation(s)
- Tao Luo
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Tao Chen
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Wei Cheng
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P.R. China
| | - Laurent Lassabatère
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Vaulx-en-Velin 69518, France
| | | | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| |
Collapse
|
13
|
Bigler M, He X, Brusseau ML. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. WATER RESEARCH 2024; 260:121922. [PMID: 38878314 DOI: 10.1016/j.watres.2024.121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transport of PFOS and PFOA in well-characterized sand was investigated for relatively low water saturations. An instrumented column was used for some experiments to provide real-time in-situ monitoring of water saturation and matric potential. The results showed that water saturations and matric potentials varied minimally during the experiments. Flow rates were monitored continuously and were essentially constant. These results demonstrate that surfactant-induced flow and other nonideal hydraulic processes did not materially impact PFAS transport for the experiment conditions. Air-water interfacial adsorption was demonstrated to provide the great majority of retention for PFOS and PFOA. Retention was significantly greater at the lower water saturations (0.35-0.45) compared to the higher saturations (∼0.66) for both PFAS, due to the larger extant air-water interfacial areas. Retardation factors were 5 and 3-times greater at the lower water saturations for PFOS and PFOA, respectively. Early breakthrough was observed for the PFAS but not for the non-reactive tracers at the lower water saturations, indicating the possibility that air-water interfacial adsorption was rate-limited to some degree. Independently determined retention parameters were used to predict retardation factors for PFOS and PFOA, which were similar to the measured values in all cases. The consistency between the predicted and measured values indicates that PFAS retention was accurately represented. In addition, air-water interfacial adsorption coefficients measured from the transport experiments were consistent with independently measured equilibrium-based values. Based on these results, it appears that the air-water interfacial adsorption processes mediating the magnitude of PFOS and PFOA retention under lower water-saturation conditions are consistent with those for higher water saturations. This provides some confidence that our understanding of PFAS retention obtained from work conducted at higher water saturations is applicable to lower water saturations.
Collapse
Affiliation(s)
- Matthew Bigler
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Xuexiang He
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Mark L Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
14
|
Rasmusson K, Fagerlund F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. CHEMOSPHERE 2024; 362:142663. [PMID: 38908440 DOI: 10.1016/j.chemosphere.2024.142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants in the environment. An increased awareness of adverse health effects related to PFAS has further led to stricter regulations for several of these substances in e.g. drinking water in many countries. Groundwater constitutes an important source of raw water for drinking water production. A thorough understanding of PFAS subsurface fate and transport mechanisms leading to contamination of groundwater resources is therefore essential for management of raw water resources. A review of scientific literature on the subject of processes affecting subsurface PFAS fate and transport was carried out. This article compiles the current knowledge of such processes, mainly focusing on perfluoroalkyl acids (PFAA), in soil- and groundwater systems. Further, a compilation of data on transport parameters such as solubility and distribution coefficients, as well as, insight gained and conclusions drawn from the reviewed material are presented. As the use of certain fire-fighting foams has been identified as the major source of groundwater contamination in many countries, research related to this type of pollution source has been given extra focus. Uptake of PFAS in biota is outside the scope of this review. The review showed a large spread in the magnitude of distribution coefficients and solubility for individual PFAS. Also, it is clear that the influence of multiple factors makes site-specific evaluation of distribution coefficients valuable. This article aims at giving the reader a comprehensive overview of the subject, and providing a base for further work.
Collapse
Affiliation(s)
- Kristina Rasmusson
- Uppsala Water and Waste AB, Virdings allé 32B, SE-75450, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Stults JF, Schaefer CE, Fang Y, Devon J, Nguyen D, Real I, Hao S, Guelfo JL. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104382. [PMID: 38861839 DOI: 10.1016/j.jconhyd.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States.
| | - Charles E Schaefer
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; CDM Smith, 110 Fieldcrest Avenue, #8, 6th Floor, Edison, NJ 08837, United States
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, United States
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Shilai Hao
- Civil & Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Lu L, Na C. Halogen Bonding in Perfluoroalkyl Adsorption. ACS OMEGA 2024; 9:26050-26057. [PMID: 38911733 PMCID: PMC11190928 DOI: 10.1021/acsomega.4c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024]
Abstract
Adsorption is a promising technology to remove perfluoroalkyl substances (PFAS), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), from contaminated water. Although a large number of materials have been evaluated for PFAS adsorption, guidelines that can facilitate the rational design and selection of adsorbents have not been established due to the lack of a mechanistic understanding on the molecular level. Using a novel interpretation of the Freundlich isotherm, this study identifies halogen bonding as the main mechanism controlling perfluoroalkyl adsorption by using a materiomic approach that compares the electrostatic polarities of a variety of carbon, polymer, and mineral-based materials reported in the literature. Comparisons show that both PFOS and PFOA are favorably adsorbed by materials containing high densities of π electrons, lone electron pairs, and negative charges, consistent with the formation of halogen bonding between the positive σ-hole of fluorine as a Lewis acid and a nucleophilic solid as a Lewis base. The identification of this previously unappreciated noncovalent bonding mechanism offers fresh insight into the search of suitable materials for perfluoroalkyl adsorption.
Collapse
Affiliation(s)
- Lei Lu
- Department of Civil, Environmental
and Construction Engineering, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Chongzheng Na
- Department of Civil, Environmental
and Construction Engineering, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
17
|
Schaefer CE, Nguyen D, Fang Y, Gonda N, Zhang C, Shea S, Higgins CP. PFAS Porewater concentrations in unsaturated soil: Field and laboratory comparisons inform on PFAS accumulation at air-water interfaces. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104359. [PMID: 38697007 DOI: 10.1016/j.jconhyd.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.
Collapse
Affiliation(s)
- Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, USA.
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Nicholas Gonda
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
18
|
Endo S, Matsuzawa S. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C 18 Chromatographic Retention Measurement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7628-7635. [PMID: 38646668 DOI: 10.1021/acs.est.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Partitioning from water to nonaqueous phases is an important process that controls the behavior of contaminants in the environment and biota. However, for ionic chemicals including many perfluoroalkyl and polyfluoroalkyl substances (PFAS), environmentally relevant partition coefficients cannot be predicted using the octanol/water partition coefficient, which is commonly used as a hydrophobicity indicator for neutral compounds. As an alternative, this study measured C18 liquid chromatography retention times of 39 anionic PFAS and 20 nonfluorinated surfactants using isocratic methanol/water eluent systems. By measuring a series of PFAS with different perfluoroalkyl chain lengths, retention factors at 100% water (k0) were successfully extrapolated even for long-chain PFAS. Molecular size was the most important factor determining the k0 of PFAS and non-PFAS, suggesting that the cavity formation process is the key driver for retention. Log k0 showed a high correlation with the log of partition coefficients from water to the phospholipid membrane, air/water interface, and soil organic carbon. The results indicate the potential of C18 retention factors as predictive descriptors for anionic PFAS partition coefficients and the possibility of developing a more comprehensive multiparameter model for the partitioning of anionic substances in general.
Collapse
Affiliation(s)
- Satoshi Endo
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Sadao Matsuzawa
- Health and Environmental Risk Division, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Kwak E, Kim JH, Choi NC, Seo E, Lee S. Longevity prediction of reactive media in permeable reactive barriers considering the contamination level and groundwater velocity at the planning site, with a focus on cadmium removal by zeolite. CHEMOSPHERE 2024; 353:141532. [PMID: 38403119 DOI: 10.1016/j.chemosphere.2024.141532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Zeolite is a versatile and effective reactive material used in permeable reactive barriers (PRBs) for remediating groundwater contaminated with heavy metals. In this study, we evaluated the influence of subsurface environmental conditions, namely contamination level (C0) and groundwater velocity (v), on predicting the longevity of zeolite for cadmium (Cd) removal. Batch experiments were performed to investigate the effect of C0 on Cd removal, and column experiments were performed to examine how Cd transportation through zeolite varies at different C0 and v. Breakthrough curves (BTCs) were analyzed with an advection-dispersion equation (ADE) coupled with nonequilibrium sorption rate models. The reaction parameters indicating the performance metrics of zeolite were determined using an iterative fitting approach-retardation factor (R), partitioning coefficient (β), and mass transfer coefficient (ω). R exhibited dependence on C0, but was unrelated to v; its rapid increase at lower C0 was explained by Langmuir sorption isotherms. β and ω, integral to sorption dynamics and mass transfer, respectively, showcased functional relationships with v. β decreased gradually as v increased, described by the nonequilibrium sorption model, whereas ω increased steadily with v, guided by the Monod function. Using the relationship of these parameters, the fate and transport of Cd within zeolite was simulated under various subsurface environmental conditions to construct the longevity prediction function. Thus, this study introduces a method for predicting the longevity of reactive materials, which can be valuable for designing PRBs with high longevity in the future.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nag-Choul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Euiyoung Seo
- Korea Mine Rehabilitation and Mineral Resources Corporation, 199, Hyeoksin-ro, Wonju-si, Gangwon-do, 26464, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Rong H, He L, Tong M. Transport and release behaviors of PFOA in saturated and unsaturated porous media with biochar amendment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123616. [PMID: 38382729 DOI: 10.1016/j.envpol.2024.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
The widespread usage of perfluorooctanoic acid (PFOA) in daily consumer products and its high mobility in porous media have resulted in ubiquitous contamination of PFOA in the natural environment. Developing techniques to immobilize and inhibit the transport of PFOA thus is critical to reduce its potential risks. In present study, biochar, one type of environmental-friendly material produced from cellulose, was utilized in porous media to test its addition on inhibiting the transport and release of PFOA before and after aging process. We found that although PFOA had high mobility in saturated/unsaturated porous media, biochar addition could significantly inhibit PFOA transport in porous media with different saturations due to its high adsorption capacity towards PFOA. The inhibited transport of PFOA by biochar also held true in solution with copresence of natural organic matter and in actual river water. Moreover, we found that negligible PFOA was released from porous media with biochar amendment even after exposure to freeze-thaw/dry-wet treatment. PFOA adsorbed onto biochar could be completely desorbed and the biochar could be reused for subsequent cycles after desorption. Clearly, amendment of porous media with biochar would be a feasible and cost-effective method to immobilize PFOA in natural environment and reduce its environmental risks.
Collapse
Affiliation(s)
- Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
21
|
Smith J, Brusseau ML, Guo B. An integrated analytical modeling framework for determining site-specific soil screening levels for PFAS. WATER RESEARCH 2024; 252:121236. [PMID: 38330716 DOI: 10.1016/j.watres.2024.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Soils at many contaminated sites have accumulated a significant amount of per- and polyfluoroalkyl substances (PFAS) and may require remediation to mitigate leaching to groundwater. USEPA's current approaches for determining soil screening levels (SSLs) were developed for non-PFAS contaminants. Because many PFAS are interfacially-active with unique leaching behaviors in soils, the current non-PFAS-specific soil screening models may not be applicable. Following USEPA's general methodology, we develop a new modeling framework representing PFAS-specific transport processes for determining site-specific SSLs for PFAS-contaminated sites. We couple a process-based analytical model for PFAS leaching in the vadose zone and a dilution factor model for groundwater in an integrated framework. We apply the new modeling framework to two typical types of contaminated sites. Comparisons with the standard USEPA SSL approach suggest that accounting for the PFAS-specific transport processes may significantly increase the SSL for some PFAS. For the range of soil properties and groundwater recharge rates examined, while SSLs determined with the new model are less than a factor of 2 different from the standard-model values for less interfacially-active shorter-chain PFAS, they are up to two orders of magnitudes greater for more interfacially-active longer-chain PFAS. The new analytical modeling framework provides an effective tool for deriving more accurate site-specific SSLs and improving site characterization and remedial efforts at PFAS-contaminated sites.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America
| | - Mark L Brusseau
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America; Department of Environmental Science, University of Arizona, United States of America
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America.
| |
Collapse
|
22
|
Musegades LJ, Curtin OP, Cyran JD. Determining the Surface p Ka of Perfluorooctanoic Acid. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1946-1951. [PMID: 38352857 PMCID: PMC10860129 DOI: 10.1021/acs.jpcc.3c07235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally prevalent and persistent organic pollutant with toxic and bioaccumulative properties. Despite the known importance of perfluorinated pollutants in the global environment, molecular-level details of the physicochemical behavior of PFOA on aqueous interfaces remain poorly understood. Here, we utilized two surface-specific techniques, vibrational sum frequency generation spectroscopy (SFG) and surface tensiometry, to investigate the pH-induced structural changes of PFOA and octanoic acid (OA) and determined the apparent pKa at the air-water surface. The SFG spectra and surface activity model were investigated over a wide range of pHs. With the surface tension measurements, the surface pKa values for OA and PFOA are determined to be 3.8 ± 0.1 and 2.2 ± 0.2, respectively. These results could provide insights into improved remediation of PFOAs and may impact climate modeling of perfluorinated alkyl chain molecules.
Collapse
Affiliation(s)
| | - Owen P. Curtin
- Boise
State University, Boise, Idaho 83725, United States of America
| | - Jenée D. Cyran
- Boise
State University, Boise, Idaho 83725, United States of America
| |
Collapse
|
23
|
Ozbek M, Voorhies N, Howard L, Swanson R, Fox T. Delineation of a PFOA Plume and Assessment of Data Gaps in its Conceptual Model Using PlumeSeeker™. GROUND WATER 2024; 62:44-59. [PMID: 37930157 DOI: 10.1111/gwat.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
An accurate conceptual site model (CSM) and plume-delineation at contamination sites are pre-requisites for successful remediation and for satisfying regulators and stakeholders. PlumeSeeker™ is well-suited for assessing data gaps in CSMs by using available site data and for identifying the optimal number and locations of sampling locations to delineate contaminant plumes. It is an enhancement of a university research code for plume delineation using geostatistical and stochastic modeling integrated with the groundwater modeling software MODFLOW-SURFACT™. PlumeSeeker™ increases the overall confidence in the location of the plume boundary through a variance-reduction approach that selects existing- or new monitoring wells for sampling based on minimizing the uncertainty in plume boundary and on new field information. Applicable at sites with or without existing monitoring wells, PlumeSeeker™ is particularly powerful for optimally allocating project resources (labor, well installation, and laboratory costs) between existing wells and sampling at new locations. An application of PlumeSeeker™ at Lakehurst, the naval component of Joint Base McGuire-Dix-Lakehurst in New Jersey, demonstrates how the cost of delineating the migration pathway of a perfluorooctanoic acid (PFOA) plume can be minimized by requiring only 9 new sampling locations in addition to samples from 2 existing wells for achieving a 70% reduction in plume uncertainty. In addition, the use of available site data in three different scenarios identified CSM data-gaps in the source area and in the interaction between Manapaqua Branch and groundwater, where the observed high concentration in this area could have resulted from a combination of groundwater migration and induced infiltration.
Collapse
Affiliation(s)
- Metin Ozbek
- HydroGeoLogic Inc., Reston, Virginia, 20190, USA
| | | | - Lucas Howard
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Ryan Swanson
- HydroGeoLogic Inc., Lakewood, Colorado, 80228, USA
| | - Tad Fox
- HydroGeoLogic Inc., Reston, Virginia, 20190, USA
| |
Collapse
|
24
|
Steffens SD, Sedlak DL, Alvarez-Cohen L. Enhanced aggregation and interfacial adsorption of an aqueous film forming foam (AFFF) in high salinity matrices. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2181-2188. [PMID: 37990920 DOI: 10.1039/d3em00247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exist in contaminated groundwater, surface water, soil, and sediments from use of aqueous film forming foams (AFFFs). Under these conditions PFAS exhibit unusual behavior due to their surfactant properties, namely, aggregation and surface activity. Environmental factors such as salinity can affect these properties, and complicate efforts to monitor PFAS. The effect of high salinity matrices on the critical micelle concentration (CMC) of a AFFF formulation manufactured by 3M and the surface accumulation of PFAS was assessed with surface tension isotherm measurements and bench-scale experiments quantifying PFAS at the air-water interface. Conditions typical of brackish and saline waters substantially depressed the CMC of the AFFF by over 50% and increased the interfacial mass accumulation of PFAS in the AFFF mixture by up to a factor of 3, relative to values measured in ultrapure water. These results indicate that high salinity matrices increase the aggregation and surface activity of PFAS in mixtures, which are key properties affecting their transport.
Collapse
Affiliation(s)
- Sophia D Steffens
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA.
| |
Collapse
|
25
|
Bierbaum T, Hansen SK, Poudel B, Haslauer C. Investigating rate-limited sorption, sorption to air-water interfaces, and colloid-facilitated transport during PFAS leaching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121529-121547. [PMID: 37957494 PMCID: PMC10724089 DOI: 10.1007/s11356-023-30811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Various sorption processes affect leaching of per- and polyfluoroalkyl substances (PFAS) such as PFOA and PFOS. The objectives of this study are to (1) compare rate-limited leaching in column and lysimeter experiments, (2) investigate the relevance of sorption to air-water interfaces (AWI), and (3) examine colloid-facilitated transport as a process explaining early experimental breakthrough. A continuum model (CM) with two-domain sorption is used to simulate equilibrium and rate-limited sorption. A random walk particle tracking (PT) model was developed and applied to analyze complex leaching characteristics. Results show that sorption parameters derived from column experiments underestimate long-term PFOA leaching in lysimeter experiments due to early depletion, suggesting that transformation of precursors contributes to the observed long-term leaching in the lysimeters (approximately 0.003 µg/kg/d PFOA). Both models demonstrate that sorption to AWI is the dominant retention mechanism for PFOS in lysimeter experiments, with retardation due to AWI being 3 (CM) to 3.7 (PT) times higher than retardation due to solid phase sorption. Notably, despite a simplified conception of AWI sorption, the PT results are closer to the observations. The PT simulations demonstrate possible colloid-facilitated transport at early time; however, results using substance-specific varying transport parameters align better with the observations, which should be equal if colloid-facilitated transport without additional kinetics is the sole mechanism affecting early breakthrough. Possibly, rate-limited sorption to AWI is relevant during the early stages of the lysimeter experiment. Our findings demonstrate that rate-limited sorption is less relevant for long-term leaching under field conditions compared to transformation of precursors and that sorption to AWI can be the dominant retention mechanism on contaminated sites. Moreover, they highlight the potential of random walk particle tracking as a practical alternative to continuum models for estimating the relative contributions of various retention mechanisms.
Collapse
Affiliation(s)
- Thomas Bierbaum
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany.
| | - Scott K Hansen
- Ben-Gurion University of the Negev, Zuckerberg Institute for Water Research, 8499000, Midreshet Ben-Gurion, Israel
| | - Bikash Poudel
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany
| | - Claus Haslauer
- Research Facility for Subsurface Remediation (VEGAS), University of Stuttgart, Institute for Modelling Environmental Systems (IWS), Pfaffenwaldring 61, 70569, Stuttgart, Germany
| |
Collapse
|
26
|
Röhler K, Susset B, Grathwohl P. Production of perfluoroalkyl acids (PFAAs) from precursors in contaminated agricultural soils: Batch and leaching experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166555. [PMID: 37633401 DOI: 10.1016/j.scitotenv.2023.166555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Contamination of soils with per- and polyfluoroalkyl substances (PFAS) (e.g., aqueous film forming foams (AFFFs) or PFAS containing biosolids applied to agricultural soils) can lead to large scale groundwater pollution. For site management, knowledge about the extent and time scales of PFAS contamination is crucial. At such sites, often persistent perfluoroalkyl acids (PFAAs) and so-called precursors, which can be transformed into PFAAs, co-occur. In this study, the release of PFAAs from 14 soil samples from an agricultural site in southwest Germany contaminated via compost/paper sludge was investigated. Rapid leaching of C4-C8 perfluoroalkyl carboxylic acids (PFCA) was observed in saturated column tests, while slowing down with increasing chain-length (≥ C9 PFCAs). Two selected samples were further incubated in batch-tests after removal of existing C4-C8 PFCAs in extensive column leaching tests until a liquid-solid ratio of 10 l/kg. During 60 days of incubation, aqueous concentrations of C4-C8 PFCAs increased linearly by a factor of 29-222, indicating continuous production by transformation of precursors. The potential PFAA-precursor reservoir was estimated by the direct total oxidizable precursor (dTOP) assay. PFCA concentrations after the dTOP increased up to two orders of magnitude. Production rates determined in batch-tests combined with the results of dTOP assay were used to estimate time scales for the duration of C4-C8 PFCAs emission from the contaminated agricultural soils which likely will last for several decades.
Collapse
Affiliation(s)
- Klaus Röhler
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Bernd Susset
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
27
|
Kim JH, Kwak E, Lee S. Performance expectation of coal waste in permeable reactive barrier for removal of cadmium considering contamination level and pore water velocity. CHEMOSPHERE 2023; 345:140387. [PMID: 37832884 DOI: 10.1016/j.chemosphere.2023.140387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The effectiveness and longevity of permeable reactive barriers (PRBs) depend on the performance of the reactive materials and the subsurface environment. The relationship of the groundwater velocity on performance of coal waste for the heavy metal removal was reported in our previous study. In this study, we investigated the performance and longevity of coal waste as a PRB material for the removal of Cd considering subsurface environmental conditions such as contamination level and groundwater velocity. The artificial groundwater contaminated by Cd were prepared with various concentrations ranging from 10 to 100 mg L-1. Lab-scale column experiments were conducted using coal waste filled columns by injecting the artificial groundwater. The breakthrough curves were analyzed advection dispersion equation coupled with equilibrium sorption model to determine the retardation factor. The Cd breakthrough curves exhibited different retardation with respect to the contamination levels. The Cd transport was more retarded as the contamination level lowered. The relationship between the retardation factor and the contamination levels could be explained with empirical equations based on non-linear sorption isotherms. By adopting the velocity dependency of sorbent performance in our previous study, transport of Cd within coal waste was simulated under various subsurface environmental conditions to construct the longevity function. The function could be used for the longevity prediction of coal waste as a PRB material considering groundwater velocity and contamination level in subsurface environment.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
28
|
Gao Y, Le ST, Kibbey TCG, Glamore W, O'Carroll DM. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1830-1838. [PMID: 36987664 DOI: 10.1039/d2em00466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants that have been used extensively as firefighting agents and in a wide range of commercial applications around the world. As many of the most-common PFAS components are surfactants, they readily accumulate at interfaces, a process that can govern their environmental fate. There are thousands of PFAS compounds, and they have nearly always been used as mixtures, so it is common to find many different PFAS components present together in the environment. Furthermore, the interfacial behavior of ionic PFAS can be strongly influenced by the presence of salts, with adsorption dependent on both the composition and concentration of salts present. Any predictions of PFAS interfacial behavior made without considering both the mixed nature of PFAS present, as well as the composition of the salts present, have the potential to be off by orders of magnitude. To date, models capable of making predictions of PFAS interfacial adsorption when both mixed PFAS and mixed salts are present have not been presented. The work described here addresses this need by extending a mass-action model developed previously by the authors to allow predictions in cases where complex combinations of mixed PFAS and mixed salts are present. Predictions of PFAS interfacial affinity for a range of PFAS mixture conditions and ionic strengths are verified using experimentally-measured surface tension data. The new model provides physically-realistic prediction of interfacial adsorption of a wide range of PFAS mixtures over a wide range of salt concentrations and compositions. The model is capable of predicting interfacial adsorption of ionic/nonionic PFAS mixtures in the presence of salts, and can also make predictions when there is competitive adsorption between different PFAS components, a common case in PFAS source zones where high concentrations of multiple components are present and in foam fractionation reactors.
Collapse
Affiliation(s)
- Yi Gao
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Song-Thao Le
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tohren C G Kibbey
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019, USA
| | - William Glamore
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Brusseau ML, Guo B. Revising the EPA Dilution-Attenuation Soil Screening Model for PFAS. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2023; 4:100077. [PMID: 37990738 PMCID: PMC10662647 DOI: 10.1016/j.hazl.2023.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) have been shown to be ubiquitous in the environment, and one issue of critical concern is the leaching of PFAS from soil to groundwater. The risk posed by contaminants present in soil is often assessed in terms of the anticipated impact to groundwater through the determination of soil screening levels (SSLs). The U.S. Environmental Protection Agency (EPA) established a soil screening model for determining SSLs. However, the model does not consider the unique retention properties of PFAS and, consequently, the SSLs established with the model may not represent the actual levels that are protective of groundwater quality. The objective of this work is to revise the standard EPA SSL model to reflect the unique properties and associated retention behavior of PFAS. Specifically, the distribution parameter used to convert soil porewater concentrations to soil concentrations is revised to account for adsorption at the air-water interface. Example calculations conducted for PFOS and PFOA illustrate the contrasting SSLs obtained with the revised and standard models. A comparison of distribution parameters calculated for a series of PFAS of different chain length shows that the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. Therefore, the difference between SSLs calculated with the revised versus standard models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS. It is anticipated that this revised model will be useful for developing improved SSLs that can be used to enhance site investigations and management for PFAS-impacted sites.
Collapse
Affiliation(s)
- Mark L. Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ 85721
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ 85721
| | - Bo Guo
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
30
|
Brusseau ML. Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163730. [PMID: 37120024 PMCID: PMC10330266 DOI: 10.1016/j.scitotenv.2023.163730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The objective of this work was to determine the methods that produce the most representative measurements and estimations of air-water interfacial area specifically for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media. Published data sets of air-water interfacial areas obtained with multiple measurement and prediction methods were compared for paired sets of porous media comprising similar median grain diameters, but one with solid-surface roughness (sand) and one without roughness (glass beads). All interfacial areas produced with the multiple diverse methods were coincident for the glass beads, providing validation of the aqueous interfacial tracer-test methods. The results of this and other benchmarking analyses demonstrated that the differences in interfacial areas measured for sands and soil by different methods are not due to errors or artifacts in the methods but rather the result of method-dependent differential contributions of solid-surface roughness. The contributions of roughness to interfacial areas measured by interfacial tracer-test methods were quantified and shown to be consistent with prior theoretical and experiment-based investigations of air-water interface configurations on rough solid surfaces. Three new methods for estimating air-water interfacial areas were developed, one based on the scaling of thermodynamic-determined values and the other two comprising empirical correlations incorporating grain diameter or NBET solid surface area. All three were developed based on measured aqueous interfacial tracer-test data. The three new and three existing estimation methods was tested using independent data sets of PFAS retention and transport. The results showed that the method based on treating air-water interfaces as smooth surfaces as well as the standard thermodynamic method produced inaccurate air-water interfacial areas that failed to reproduce the multiple measured PFAS retention and transport data sets. In contrast, the new estimation methods produced interfacial areas that accurately represented air-water interfacial adsorption of PFAS and associated retention and transport. The measurement and estimation of air-water interfacial areas for field-scale applications is discussed in light of these results.
Collapse
Affiliation(s)
- Mark L Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
31
|
Carpenter AP, White JN, Hasbrook A, Reierson M, Baio JE. Comparative Thermodynamic and Structural Analysis of Polyfluorinated Dodecylphosphonic Acid Adsorption to Distilled and River Water Interfaces. J Phys Chem A 2023. [PMID: 37450685 DOI: 10.1021/acs.jpca.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As concerns rise about the health risks posed by per- and polyfluoroalkyl substances (PFAS) in the environment, there is a need to understand how these pollutants accumulate at environmental interfaces. Untangling the details of molecular adsorption, particularly when there are potential interactions with other molecules in environmental systems, can obscure the ability to focus on a particular contaminant with molecular specificity. Often adsorption studies of environmental interfaces require a reductionist approach, where laboratory experiments may not be fully tractable to environmental systems. In this work, we study polyfluorinated dodecylphosphonic acid (F21-DDPA) at the aqueous surfaces of distilled water (the most reduced "environmental" surface) and river water to explore the use of vibrational sum-frequency (VSF) spectroscopy as an experimental probe of fluorinated contaminants at natural environmental surfaces. We demonstrate how VSF spectroscopy offers advantages over nonspecific surface tension measurements when measuring PFAS adsorption isotherms at river water surfaces. VSF spectra of the C-F stretching region selectively probe the presence of F21-DDPA and can be used to extract meaningful structural insights and calculate surface concentrations, even at the complex river water surface. This study highlights the potential for VSF spectroscopy to be developed as a probe of fluorinated contaminants at natural environmental interfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jade N White
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Annemarie Hasbrook
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Makenna Reierson
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
32
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
33
|
Bierbaum T, Klaas N, Braun J, Nürenberg G, Lange FT, Haslauer C. Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162588. [PMID: 36871732 DOI: 10.1016/j.scitotenv.2023.162588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The evaluation of PFAS immobilization performance in laboratory experiments, especially the long-term stability, is a challenge. To contribute to the development of adequate experimental procedures, the impact of experimental conditions on the leaching behavior was studied. Three experiments on different scales were compared: batch, saturated column, and variably saturated laboratory lysimeter experiments. The Infinite Sink (IS) test - a batch test with repeated sampling - was applied for PFAS for the first time. Soil from an agricultural field amended with paper-fiber biosolids polluted with various perfluoroalkyl acids (PFAAs; 655 μg/kg ∑18PFAAs) and polyfluorinated precursors (1.4 mg/kg ∑18precursors) was used as the primary material (N-1). Two types of PFAS immobilization agents were tested: treatment with activated carbon-based additives (soil mixtures: R-1 and R-2), and solidification with cement and bentonite (R-3). In all experiments, a chain-length dependent immobilization efficacy is observed. In R-3, the leaching of short-chain PFAAs was enhanced relative to N-1. In column and lysimeter experiments with R-1 and R-2, delayed breakthrough of short-chain PFAAs (C4) occurred (> 90 days; in column experiments at liquid-to-solid ratio (LS) > 30 L/kg) with similar temporal leaching rates suggesting that leaching in these cases was a kinetically controlled process. Observed differences between column and lysimeter experiments may be attributed to varying saturation conditions. In IS experiments, PFAS desorption from N-1, R-1, and R-2 is higher than in the column experiments (N-1: +44 %; R-1: +280 %; R-2: +162 %), desorption of short-chain PFAS occurred predominantly in the initial phase (< 14 days). Our findings demonstrate that sufficient operating times are essential in percolation experiments, e.g., in column experiments >100 days and LS > 30 L/kg. IS experiments may provide a faster estimate for nonpermanent immobilization. The comparison of experimental data from various experiments is beneficial to evaluate PFAS immobilization and to interpret leaching characteristics.
Collapse
Affiliation(s)
- Thomas Bierbaum
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany.
| | - Norbert Klaas
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Jürgen Braun
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| | - Gudrun Nürenberg
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Frank Thomas Lange
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Claus Haslauer
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems (IWS), Research Facility for Subsurface Remediation (VEGAS), Pfaffenwaldring 61, 70597 Stuttgart, Germany
| |
Collapse
|
34
|
Guo B, Saleem H, Brusseau ML. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8044-8052. [PMID: 37204869 DOI: 10.1021/acs.est.2c08601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many per- and polyfluoroalkyl substances (PFAS) are surface-active and adsorb at fluid-fluid interfaces. The interfacial adsorption controls PFAS transport in multiple environmental systems, including leaching through soils, accumulation in aerosols, and treatment methods such as foam fractionation. Most PFAS contamination sites comprise mixtures of PFAS as well as hydrocarbon surfactants, which complicates their adsorption behaviors. We present a mathematical model for predicting interfacial tension and adsorption at fluid-fluid interfaces for multicomponent PFAS and hydrocarbon surfactants. The model is derived from simplifying a prior advanced thermodynamic-based model and applies to nonionic and ionic mixtures of the same charge sign with swamping electrolytes. The only required model inputs are the single-component Szyszkowski parameters obtained for the individual components. We validate the model using literature interfacial tension data of air-water and NAPL (non-aqueous phase liquid)-water interfaces covering a wide range of multicomponent PFAS and hydrocarbon surfactants. Application of the model to representative porewater PFAS concentrations in the vadose zone suggests competitive adsorption can significantly reduce PFAS retention (up to 7 times) at some highly contaminated sites. The multicomponent model can be readily incorporated into transport models to simulate the migration of mixtures of PFAS and/or hydrocarbon surfactants in the environment.
Collapse
Affiliation(s)
- Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Hassan Saleem
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark L Brusseau
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Environmental Science, University of Arizona, Tucson, Arizona 85719, United States
| |
Collapse
|
35
|
Rafiei V, Nejadhashemi AP. Watershed scale PFAS fate and transport model for source identification and management implications. WATER RESEARCH 2023; 240:120073. [PMID: 37235893 DOI: 10.1016/j.watres.2023.120073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Developing strategic plans for the remediation and mitigation of pre- and polyfluoroalkyl substances (PFAS) in soil, groundwater, and surface water requires an understanding of the fate and transport of these chemicals on a regional scale. To fill this knowledge gap, we developed a distributed hydrogeochemical model and applied it to a large-scale watershed with various point and non-point sources of a long-chain, highly persistent PFAS compound known as perfluorooctane sulfonic acid (PFOS). The results showed that the developed model could reproduce the spatiotemporal concentration of PFOS across a large and diverse watershed. Herein, our first objective was to quantify the PFOS transport from the unsaturated zone to the groundwater and surface water via leaching, surface runoff, lateral flow, and sediment transport. The second objective was to identify factors influencing PFOS release from confirmed and suspected PFAS sites and urban and agricultural areas. The modeling results show that surface runoff played a significant role in PFOS transport, with urban areas and industrial sites being major contributors. In addition, sediment transport was found to be a notable pathway for PFOS release, particularly from sites with biosolids application. Further analysis revealed the relative importance of topography, soil water retention, and water-solid adsorption factors in determining PFOS transport dynamics at the watershed scale for better source identification and targeted management.
Collapse
Affiliation(s)
- Vahid Rafiei
- Department of Biosystems and Agricultural Engineering, Michigan State University (MSU), USA
| | - A Pouyan Nejadhashemi
- Department of Biosystems and Agricultural Engineering, Michigan State University (MSU), USA.
| |
Collapse
|
36
|
Mohona TM, Ye Z, Dai N, Nalam PC. Adsorption behavior of long-chain perfluoroalkyl substances on hydrophobic surface: A combined molecular characterization and simulation study. WATER RESEARCH 2023; 239:120074. [PMID: 37207455 DOI: 10.1016/j.watres.2023.120074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Hydrophobic interaction is a prevalent sorption mechanism of poly- and perfluoroalkyl substances (PFAS) in natural and engineered environments. In this study, we combined quartz crystal microbalance with dissipation (QCM-D), atomic force microscope (AFM) with force mapping, and molecular dynamics (MD) simulation to probe the molecular behavior of PFAS at the hydrophobic interface. On a CH3-terminated self-assembled monolayer (SAM), perfluorononanoic acid (PFNA) showed ∼2-fold higher adsorption than perfluorooctane sulfonate (PFOS) that has the same fluorocarbon tail length but a different head group. Kinetic modeling using the linearized Avrami model suggests that the PFNA/PFOS-surface interaction mechanisms can evolve over time. This is confirmed by AFM force-distance measurements, which shows that while the adsorbed PFNA/PFOS molecules mostly lay flat, a portion of them formed aggregates/hierarchical structures of 1-10 nm in size after lateral diffusion on surface. PFOS showed a higher affinity to aggregate than PFNA. Association with air nanobubbles is observed for PFOS but not PFNA. MD simulations further showed that PFNA has a greater tendency than PFOS to have its tail inserted into the hydrophobic SAM, which can enhance adsorption but limit lateral diffusion, consistent with the relative behavior of PFNA/PFOS in QCM and AFM experiments. This integrative QCM-AFM-MD study reveals that the interfacial behavior of PFAS molecules can be heterogeneous even on a relatively homogeneous surface.
Collapse
Affiliation(s)
- Tashfia M Mohona
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA; Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, USA
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH, USA
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
37
|
Jahn KL, Lincoln SA, Freeman KH, Saffer DM. Preferential Retention and Transport of Perfluorooctanesulfonic Acid in a Dolomite Aquifer. GROUND WATER 2023; 61:318-329. [PMID: 36103019 DOI: 10.1111/gwat.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can represent a significant human health risk if present in aquifers used as a drinking water source. Accurate assessment of PFAS exposure risks requires an improved understanding of field-scale PFAS transport in groundwater. Activities at a former firefighter training site in University Park, Pennsylvania introduced perfluorooctanesulfonic acid (PFOS) to the underlying dolomite aquifer. Groundwater sampling from 2015 to 2018 delineated a PFOS plume with two concentration maxima located approximately 20 and approximately 220 m downgradient of the training site, separated by a zone of lower concentrations. We use a combination of analytical and numerical models, informed by independent measurements of aquifer porosity, hydraulic conductivity, and organic carbon content, to interpret the field observations. Our analysis demonstrates that preferential retention and transport resulting from simple heterogeneity in bedrock sorption, as caused by organic carbon (OC) content variability, provides a plausible explanation for plume separation. Dissolved PFOS partitions strongly to organic solids (high Koc ), so even a small OC (<1 wt%) significantly retards PFOS transport, whereas zones with little to no OC allow for transport rates that approximate those of a conservative solute. Our work highlights an important consideration for modeling the groundwater transport of PFOS, and other compounds with high Koc . In aquifers with discrete layers of varying OC, models using a uniform site-average OC will underestimate transport distances, thereby misrepresenting exposure risks for downgradient communities.
Collapse
Affiliation(s)
- Kalle L Jahn
- USGS New York Water Science Center, Troy, NY, USA
| | - Sara A Lincoln
- Department of Geosciences, The Pennsylvania State University, University Park, PA
- Akima Systems Engineering, Herndon, VA
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA
| | - Demian M Saffer
- Institute for Geophysics, Department of Geological Sciences, University of Texas at Austin, Austin, TX
| |
Collapse
|
38
|
Eeso K, Gallan R, Goukeh MN, Tate K, Raja RKB, Popovic Z, Abichou T, Chen H, Locke BR, Tang Y. Degradation of per- and polyfluoroalkyl substances in landfill leachate by a thin-water-film nonthermal plasma reactor. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:104-115. [PMID: 36878039 DOI: 10.1016/j.wasman.2023.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are present in landfill leachate, posing potential challenges to leachate disposal and treatment. This work represents the first study of a thin-water-film nonthermal plasma reactor for PFAS degradation in landfill leachate. Of the 30 PFAS measured in three raw leachates, 21 were above the detection limits. The removal percentage depended on the category of PFAS. For example, perfluorooctanoic acid PFOA (C8) had the highest removal percentage (77% as an average of the three leachates) of the perfluoroalkyl carboxylic acids (PFCAs) category. The removal percentage decreased when the carbon number increased from 8 to 11 and decreased from 8 to 4. The effects of various landfill leachate components, including sodium chloride, acetate, humic acids, pH, and surfactants, had no or minor impacts (<30%) on PFOA mineralization in synthetic samples. This might be explained by the plasma-generation and PFAS-degradation mainly occurring at the gas/liquid interface. Shorter-chain PFCAs were produced as intermediates of PFOA degradation, and shorter-chain PFCAs and perfluorosulfonic acids (PFSAs) were produced as intermediates of perfluorooctanesulfonic acid (PFOS). The concentrations of the intermediates decreased with decreasing carbon number, suggesting a stepwise removal of difluoromethylene (CF2) in the degradation pathway. Potential PFAS species in the raw and treated leachates were identified at the molecular level through non-targeted Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The intermediates did not show accurate toxicity per Microtox bioassay.
Collapse
Affiliation(s)
- Karam Eeso
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Rachel Gallan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Mojtaba Nouri Goukeh
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Kerry Tate
- Chemistry Program, Florida Department of Environmental Protection, 2600 N Blair Stone Road, Tallahassee, FL 32399, United States
| | - Radha Krishna Bulusu Raja
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Zeljka Popovic
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Tarek Abichou
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Bruce R Locke
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States.
| |
Collapse
|
39
|
Stults JF, Choi YJ, Rockwell C, Schaefer CE, Nguyen DD, Knappe DRU, Illangasekare TH, Higgins CP. Predicting Concentration- and Ionic-Strength-Dependent Air-Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure-Property Relationships (QSPRs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5203-5215. [PMID: 36962006 DOI: 10.1021/acs.est.2c07316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Air-water interfacial retention of poly- and perfluoroalkyl substances (PFASs) is increasingly recognized as an important environmental process. Herein, column transport experiments were used to measure air-water interfacial partitioning values for several perfluoroalkyl ethers and for PFASs derived from aqueous film-forming foam, while batch experiments were used to determine equilibrium Kia data for compounds exhibiting evidence of rate-limited partitioning. Experimental results suggest a Freundlich isotherm best describes PFAS air-water partitioning at environmentally relevant concentrations (101-106 ng/L). A multiparameter regression analysis for Kia prediction was performed for the 15 PFASs for which equilibrium Kia values were determined, assessing 246 possible combinations of 8 physicochemical and system properties. Quantitative structure-property relationships (QSPRs) based on three to four parameters provided predictions of high accuracy without model overparameterization. Two QSPRs (R2 values of 0.92 and 0.83) were developed using an assumed average Freundlich n value of 0.65 and validated across a range of relevant concentrations for perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and hexafluoropropylene oxide-dimer acid (i.e., GenX). A mass action model was further modified to account for the changing ionic strength on PFAS air-water interfacial sorption. The final result was two distinct QSPRs for estimating PFAS air-water interfacial partitioning across a range of aqueous concentrations and ionic strengths.
Collapse
Affiliation(s)
- John F Stults
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, Washington 98007, United States
| | - Youn Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Cooper Rockwell
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6th Floor, Edison, Edison, New Jersey 08837, United States
| | - Dung D Nguyen
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, Washington 98007, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tissa H Illangasekare
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
40
|
Sahu O. Remediation of perfluorooctanoic acid (PFOA) with nano ceramic clay: Synthesis, characterization, scale-up and regenerations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121241. [PMID: 36764378 DOI: 10.1016/j.envpol.2023.121241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) in the ecosystem, resulting from industrial effluent and water bodies, has attracted greater concern. An economical treatment is in demand to optimize the current issue. In this research work, Perfluorooctanoic Acid was treated from drinking water sources with nano-ceramic clay. The ceramic clay was synthesized and characterized with Fourier infrared transformation, scanning electron micrograph, transmission electron micrograph, x-ray diffraction, and thermal analysis. An adsorption process was performed in batch and continuous modes for the effective conditions for maximum removal. In batch mode 82 ± 12 nm ceramic clay particle size; 3.0 initial pH; 210 rpm agitation 1.2 mg/L PFOA concentration; 100 mg/L clay dosage; 27 °C temperature, and 20hrs experimental time shows maximum 99.15% adsorption. The experimental data is well fitted with kinetics, isotherms, and thermodynamics calculated data. In fixed bed, continuous column study 10 h treatment time, 10 cm of bed height, and 2 ml/min were adsorbed 99.99% of PFOA. The experimental data from the fixed bed adsorption equipment was correlated using a number of different mathematical models, including the Thomas, Adams-Bohart, Yoon-Nelson, and Clark models. Overall nano ceramic clay was found to potential adsorbent for Perfluorooctanoic acid removal.
Collapse
Affiliation(s)
- Omprakash Sahu
- Department of Chemical Engineering, UIE, Chandigarh University, Mohali, India.
| |
Collapse
|
41
|
Nickerson A, Maizel AC, Schaefer CE, Ranville JF, Higgins CP. Effect of geochemical conditions on PFAS release from AFFF-impacted saturated soil columns. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:405-414. [PMID: 36629138 DOI: 10.1039/d2em00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.
Collapse
Affiliation(s)
- Anastasia Nickerson
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| |
Collapse
|
42
|
Pepper I, Kelley C, Brusseau M. Is PFAS from land applied municipal biosolids a significant source of human exposure via groundwater? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161154. [PMID: 36572291 DOI: 10.1016/j.scitotenv.2022.161154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Per and polyfluoroakyl substances (PFAS) are emerging contaminants of critical concern commonly found in the bloodstream of most humans in the U.S. They are present in both Class A and B municipal biosolids. The potential for contamination of groundwater following land application of biosolids and subsequent leaching of PFAS through soil is one of several potential impacts that have generated discussions of possible bans on land application. In this commentary, we discuss the many factors that need to be considered to address the question: "Is PFAS from land applied biosolids a significant source of human exposure via groundwater?" The occurrence of PFAS in biosolids and biosolids-amended soils is discussed, as are the many factors that affect the potential for subsequent groundwater contamination. Additional critical factors are also noted.
Collapse
Affiliation(s)
- Ian Pepper
- University of Arizona WEST Center, 2959 W Calle Agua Nueva, Tucson, AZ 85745, and Environmental Science Department, University of Arizona, United States of America.
| | - Cass Kelley
- University of Arizona WEST Center, 2959 W Calle Agua Nueva, Tucson, AZ 85745, and Environmental Science Department, University of Arizona, United States of America
| | - Mark Brusseau
- University of Arizona WEST Center, 2959 W Calle Agua Nueva, Tucson, AZ 85745, and Environmental Science Department, University of Arizona, United States of America
| |
Collapse
|
43
|
Grimison C, Knight ER, Nguyen TMH, Nagle N, Kabiri S, Bräunig J, Navarro DA, Kookana RS, Higgins CP, McLaughlin MJ, Mueller JF. The efficacy of soil washing for the remediation of per- and poly-fluoroalkyl substances (PFASs) in the field. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130441. [PMID: 36462244 DOI: 10.1016/j.jhazmat.2022.130441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.
Collapse
Affiliation(s)
- Charles Grimison
- Ventia Services Pty Limited, Level 8, 80 Pacific Highway, North Sydney, New South Wales, Australia.
| | - Emma R Knight
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia.
| | - Thi Minh Hong Nguyen
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Nathan Nagle
- Ventia Services Pty Limited, Level 8, 80 Pacific Highway, North Sydney, New South Wales, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Divina A Navarro
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2 Land and Water, Waite Campus, South Australia, Australia
| | - Rai S Kookana
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2 Land and Water, Waite Campus, South Australia, Australia
| | - Christopher P Higgins
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, South Australia, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| |
Collapse
|
44
|
Zhao K, Shang J. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160415. [PMID: 36427725 DOI: 10.1016/j.scitotenv.2022.160415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Biochar colloids released from biochar materials are ubiquitous in the environment and undergo environmental transformation processes that may alter their properties. Natural subsurface environments are usually under unsaturated conditions, which could affect the transport of biochar colloids. This study investigated the transport of pristine and aged biochar colloids under unsaturated conditions by aggregation test, bubble column experiment, and sand column experiment. After aging, the biochar showed a more negative, hydrophilic, and rougher surface. Compared with pristine biochar colloids, aged biochar colloids in NaCl solution were not retained at the air-water interface (AWI) due to their more hydrophilic and rougher surface. In CaCl2 solution, more pristine and aged biochar colloids were retained at the AWI because Ca2+ weakened the electrostatic repulsion between biochar colloids and the AWI. With the decrease in saturation, the transport of pristine and aged biochar colloids decreased by 17 %‑67 % through the retention at AWI and air-water-solid (AWS) interface. The transport of biochar colloids in NaCl solution was increased by 10 %‑20 % after aging as the aged biochar was not retained at the AWI. The difference of transport between pristine and aged biochar colloids in CaCl2 solution (<8 %) was lower than that in NaCl solution due to the enhanced retention of aggregated biochar colloids at the AWI and AWS interfaces. These results highlight the importance of the surface structure of biochar on its behavior in the environment, which is essential for assessing the potential of biochar application for carbon sequestration and environmental protection.
Collapse
Affiliation(s)
- Kang Zhao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Beijing 100193, PR China.
| |
Collapse
|
45
|
Mao R, Lu Y, Zhang M, Wang C, Sun B, Shi Y, Song S, Wang P, Yuan J, Zhao J. Distribution of legacy and novel per- and polyfluoroalkyl substances in surface and groundwater affected by irrigation in an arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159693. [PMID: 36302407 DOI: 10.1016/j.scitotenv.2022.159693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Frequent exchange of surface water and groundwater occurs in arid/semi-arid areas due to high evaporation and intensive irrigation activities, affecting the migration and transformation of per- and polyfluoroalkyl substances (PFASs) and threatening drinking water safety. This study analyzed legacy PFASs and potential precursors in surface water, groundwater, soil, and aquifer solid samples collected from a typical arid area, the Hetao Irrigation District of Northern China, to explore PFASs distribution and transformation between surface and ground. Total PFASs (ΣPFASs) in surface water was 29-232 ng/L, higher than 2-77 ng/L in groundwater. ΣPFASs in soil were 0.29-0.59 ng/g, higher than 0.09-0.27 in the aquifer solids. Regarding horizontal distribution, the concentration of PFASs in groundwater increased in downtowns and the areas recharged with lake water. In terms of vertical distribution, ΣPFASs decreased with the increase of depth, and more PFASs adsorbed on clay particles in the aquifer. The total oxidable precursor analysis showed that 8:2 FT and 4:2 FT were the dominant precursors of PFASs, resulting in an increment of 0.1-4 ng/L PFASs. Hydrogen and oxygen stable isotope compositions suggest similar sources between surface water and groundwater in the study area, while principal component analysis and Bayesian inference also indicate that surface water is an important source of groundwater PFASs. The annual infiltration PFASs to groundwater from Ulansuhai was estimated by the water balance approach to be 9.39 kg. Results highlight the influence of agricultural irrigation activities and lake infiltration on groundwater PFASs in the arid region.
Collapse
Affiliation(s)
- Ruoyu Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jingjing Yuan
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jixin Zhao
- Bayannur Institute of Environmental Science, Bayannur 015000, China
| |
Collapse
|
46
|
Gnesda WR, Draxler EF, Tinjum J, Zahasky C. Adsorption of PFAAs in the Vadose Zone and Implications for Long-Term Groundwater Contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16748-16758. [PMID: 36395358 DOI: 10.1021/acs.est.2c03962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent environmental contaminants that sorb to air-water and solid interfaces throughout the vadose zone. These sorption processes lead to decadal leaching of PFAS from the source zones to groundwater systems. While these processes are increasingly well understood, critical gaps exist in describing the vertically variable adsorption in the presence of vadose zone heterogeneity and methods for efficiently upscaling the laboratory observations to predict field-scale PFAA transport and retardation. In this work, we build upon fundamental theories and scalable relationships to define a semi-analytical framework for synthesizing and upscaling PFAA adsorption in heterogeneous vadose zone systems. Solid-phase and air-water interfacial adsorption are quantified mechanistically for several PFAAs and then applied to a contaminated site in Northern Wisconsin. The results highlight the dominance of air-water and organic carbon solid-phase adsorption processes in the vadose zone. Strong sorption heterogeneity─driven by depth-dependent adsorption mechanisms─produces complex spatially variable retardation profiles. We develop vadose zone retardation potentials to quantify this field-scale heterogeneity and propose vertical integration methods to upscale spatially resolved information for transport modeling. This work highlights the importance of accounting for multiscale and multiprocess heterogeneity for accurately describing and predicting the long-term fate and transport of PFAAs in the subsurface.
Collapse
Affiliation(s)
- William R Gnesda
- Department of Geoscience, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - Elliot F Draxler
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - James Tinjum
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| | - Christopher Zahasky
- Department of Geoscience, University of Wisconsin─Madison, Madison, Wisconsin53715, United States
| |
Collapse
|
47
|
Arp HPH, Hale SE. Assessing the Persistence and Mobility of Organic Substances to Protect Freshwater Resources. ACS ENVIRONMENTAL AU 2022; 2:482-509. [PMID: 36411866 PMCID: PMC9673533 DOI: 10.1021/acsenvironau.2c00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 04/28/2023]
Abstract
Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon-water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24-30% were PMT/vPvM substances.
Collapse
Affiliation(s)
- Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
- . Tel: +47 950 20 667
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box
3930, Ullevål Stadion, NO-0806 Oslo, Norway
| |
Collapse
|
48
|
Abraham JEF, Mumford KG, Patch DJ, Weber KP. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15489-15498. [PMID: 36279175 DOI: 10.1021/acs.est.2c00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transport of per- and polyfluoroalkyl substances (PFAS) in soil and groundwater is important for site investigation, risk characterization, and remediation planning. The adsorption of PFAS at air-water interfaces has been shown to significantly contribute to PFAS retention, with subsequent effects on concentrations and the time scales of transport. In this study, column experiments were conducted to investigate the transport of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 6:2 fluorotelomer sulfonate (6:2 FTS) individually and in binary mixtures in the presence of a trapped gas phase, using clean sands to isolate adsorption to air-water interfaces. Consistent with previous studies, the transport of PFOS, PFOA, and 6:2 FTS was retarded by adsorption at the air-water interface, with greater retention of PFOS due to its higher affinity for the air-water interface. Chromatographic separation occurred in the experiments using binary mixtures of PFOS and PFOA, with greater retention at lower influent concentrations. The mixture experiments also showed enhanced breakthrough of PFOA in the presence of PFOS, where effluent concentrations of PFOA were temporarily greater than the influent concentration prior to the breakthrough of PFOS. This enhanced breakthrough was attributed to competition between PFOS and PFOA for adsorption to the air-water interface.
Collapse
Affiliation(s)
- Justine E F Abraham
- Department of Civil Engineering, Queen's University, Kingston, OntarioCanada, K7L 3N6
| | - Kevin G Mumford
- Department of Civil Engineering, Queen's University, Kingston, OntarioCanada, K7L 3N6
| | - David J Patch
- Environmental Sciences Group, Royal Military College of Canada, Kingston, OntarioCanada, 7K7 7B4
| | - Kela P Weber
- Environmental Sciences Group, Royal Military College of Canada, Kingston, OntarioCanada, 7K7 7B4
| |
Collapse
|
49
|
He B, He J, Bi E, Zou H, Liu T, Liu Z. Transport and retention of nano emulsified vegetable oil in porous media: Effect of pore straining, roughness wedging, and interfacial effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115912. [PMID: 35944327 DOI: 10.1016/j.jenvman.2022.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Emulsified vegetable oil (EVO), as one of the novel green substrates, has been widely used in subsurface remediation. In these applications, the retention behavior of EVO presents a challenge to remediation efficiency as mechanism insights into the retention of EVO is limited. Herein, Brinell funnels experiments with X-ray microtomography (XMT) were conducted to examine the drainage and retention of nanoscale EVO in porous media, with a specific focus on investigating the impact of pore straining, grain surface roughness, and interfacial effects on Nano-EVO (NEVO) retention. This study demonstrated that the retention of NEVO in porous media is the synergistic result of pore straining, roughness wedging, and interface attachment. With the action of these effects, three residual states of NEVO, incorporating retention at porous ganglia, grain-grain contacts, and grain surface, were identified by XMT in porous media. After multiple periods of drainage and imbibition, the NEVO arrived at stable retention proportions of 46.3%, 72.2%, and 85.9% in three independent systems with coarse, medium, and fine sand as porous media, respectively. The interfacial effects, including the attachment of solid-phase and air-liquid interface, are confirmed as the dominant factors for the retention of NEVO in porous media, which contributed 35.63-47.33% of total retention for the conditions employed. Correspondingly, the contributions of pore straining and roughness wedging only ranged 3.78-24.06% and 3.87-9.94%, respectively. The consistency of the contributions between the actual measurement of XMT and computational evaluation further confirmed the rationality and reliability of the results. In such the dominant factor, interfacial tension, contact angle, and capillary radius play an essential role in NEVO retention, which could be reflected by capillary rise height. These findings advance our understanding on NEVO retention caused by substrate-media interaction and also offer a promising direction for subsurface remediation.
Collapse
Affiliation(s)
- Baonan He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China.
| | - Jiangtao He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China.
| | - Erping Bi
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing, 100083, PR China
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tao Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Zirong Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
50
|
Wallis I, Hutson J, Davis G, Kookana R, Rayner J, Prommer H. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. WATER RESEARCH 2022; 225:119096. [PMID: 36162294 DOI: 10.1016/j.watres.2022.119096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Contamination through per-and poly-fluoroalkyl substances (PFAS) have occurred globally in soil and groundwater systems at military, airport and industrial sites due to the often decades-long periodic application of firefighting foams. At PFAS contaminated sites, the unsaturated soil horizon often serves as a long-term source for sustained PFAS contamination for both groundwater and surface water runoff. An understanding of the processes controlling future mass loading rates to the saturated zone from these source zones is imperative to design efficient remediation measures. In the present study, hydrochemical data from a site where PFAS transport was observed as a result of the decades-long application of AFFF were used to develop and evaluate conceptual and numerical models that determine PFAS mobility across the vadose zone under realistic field-scale conditions. The simulation results demonstrate that the climate-driven physical flow processes within the vadose zone exert a dominating control on the retention of PFAS. Prolonged periods of evapotranspiration exceeding rainfall under the semi-arid conditions trigger periods of upward flux and evapoconcentration, leading to the observed persistence of PFAS compounds in the upper ca. 2 metres of the vadose zone, despite cessation of AFFF application to soils since more than a decade. Physico-chemical retention mechanisms, namely sorption to the air-water interface (AWI) and sediment surfaces, contribute further to PFAS retention. The simulations demonstrate how PFAS downward transport is effectively confined to short periods following discrete rain events when soils display a high degree of saturation. During these periods, AWI sorption is at a minimum. In addition, high PFAS concentrations measured and simulated below the source zone reduce the effect of the AWI further due to a decrease in surface tension associated with elevated PFAS concentrations. Consequently, time-integrated PFAS migration and retardation illuminates that the field-relevant PFAS transport rates are predominantly controlled by the physical flow processes with a lower relative importance of AWI and sediment sorption adding to PFAS retention.
Collapse
Affiliation(s)
- Ilka Wallis
- Flinders University, College of Science and Engineering, P.O. Box 2100, Adelaide, South Australia 5001, Australia.
| | - John Hutson
- Flinders University, College of Science and Engineering, P.O. Box 2100, Adelaide, South Australia 5001, Australia
| | - Greg Davis
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia
| | - Rai Kookana
- CSIRO Land and Water, Glen Osmond, South Australia 5064, Australia
| | - John Rayner
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia
| | - Henning Prommer
- CSIRO Land and Water, Wembley, Western Australia 6014, Australia; School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6913, Australia
| |
Collapse
|