1
|
Rooney LM, Bottura B, Baxter K, Amos WB, Hoskisson PA, McConnell G. Addressing multiscale microbial challenges using the Mesolens. J Microsc 2024; 296:139-144. [PMID: 36692253 DOI: 10.1111/jmi.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
We provide a brief review of the development and application of the Mesolens and its impact on microbiology. Microbial specimens such as infected tissue samples, colonies surfaces, and biofilms are routinely collected at the mesoscale. This means that they are relatively large multimillimetre-sized samples which contain microscopic detail that must be observed to answer important questions across various sectors. The Mesolens presents the ideal imaging method to study these specimens as no other optical microscope can thanks to its unique combination of low magnification and high numerical aperture providing large field-of-view, high-resolution imaging. We demonstrate the current applications of the Mesolens to microbial imaging and go on to outline the huge potential of the Mesolens to impact other key areas of microbiology.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Beatrice Bottura
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Katherine Baxter
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - William B Amos
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul A Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Löffler M, Schwab L, Dethlefsen F, Lagmöller L, Vogt C, Richnow HH. Anaerobic dihydrogen consumption of nutrient-limited aquifer sediment microbial communities examined by stable isotope analysis. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:103-121. [PMID: 38344763 DOI: 10.1080/10256016.2024.2306146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/21/2023] [Indexed: 03/20/2024]
Abstract
The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.
Collapse
Affiliation(s)
- Michaela Löffler
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Schwab
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Frank Dethlefsen
- Department of Applied Geosciences - Aquatic Geochemistry and Hydrogeology, Institute for Geosciences, Competence Centre for Geoenergy (KGE), University of Kiel, Kiel, Germany
| | - Louisa Lagmöller
- Department of Applied Geosciences - Aquatic Geochemistry and Hydrogeology, Institute for Geosciences, Competence Centre for Geoenergy (KGE), University of Kiel, Kiel, Germany
| | - Carsten Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Isodetect GmbH, Leipzig, Germany
| |
Collapse
|
3
|
Blanche J, Mitchell D, Shang J, Flynn D, Pavuluri S, Desmulliez M. Dynamic analysis of geomaterials using microwave sensing. Sci Rep 2024; 14:7112. [PMID: 38532052 DOI: 10.1038/s41598-024-57653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Precise characterization of geomaterials improves subsurface energy extraction and storage. Understanding geomaterial property, and the complexities between petrophysics and geomechanics, plays a key role in maintaining energy security and the transition to a net zero global carbon economy. Multiple sectors demand accurate and rapid characterization of geomaterial conditions, requiring the extraction of core plugs in the field for full-field characterization and analysis in the laboratory. We present a novel technique for the non-invasive characterization of geomaterials by using Frequency Modulated Continuous Wave (FMCW) radar in the K-band, representing a new application of microwave radar. We collect data through the delivery of FMCW wave interactions with geomaterials under static and dynamic conditions and show that FMCW can detect fluid presence, differentiate fluid type, indicate the presence of metallic inclusions and detect imminent failure in loaded sandstones by up to 15 s, allowing for greater control in loading up to a failure event. Such precursors have the potential to significantly enhance our understanding of, and ability to model, geomaterial dynamics. This low-cost sensing method is easily deployable, provides quicker and more accessible data than many state-of-the-art systems, and new insights into geomaterial behavior under dynamic conditions.
Collapse
Affiliation(s)
- Jamie Blanche
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| | - Daniel Mitchell
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Junlong Shang
- Department of Mechanical, Aerospace & Civil Engineering, University of Manchester, Manchester, UK
| | - David Flynn
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sumanth Pavuluri
- Smart Systems Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Marc Desmulliez
- Smart Systems Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
4
|
Kuang X, Liu J, Scanlon BR, Jiao JJ, Jasechko S, Lancia M, Biskaborn BK, Wada Y, Li H, Zeng Z, Guo Z, Yao Y, Gleeson T, Nicot JP, Luo X, Zou Y, Zheng C. The changing nature of groundwater in the global water cycle. Science 2024; 383:eadf0630. [PMID: 38422130 DOI: 10.1126/science.adf0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
In recent decades, climate change and other anthropogenic activities have substantially affected groundwater systems worldwide. These impacts include changes in groundwater recharge, discharge, flow, storage, and distribution. Climate-induced shifts are evident in altered recharge rates, greater groundwater contribution to streamflow in glacierized catchments, and enhanced groundwater flow in permafrost areas. Direct anthropogenic changes include groundwater withdrawal and injection, regional flow regime modification, water table and storage alterations, and redistribution of embedded groundwater in foods globally. Notably, groundwater extraction contributes to sea level rise, increasing the risk of groundwater inundation in coastal areas. The role of groundwater in the global water cycle is becoming more dynamic and complex. Quantifying these changes is essential to ensure sustainable supply of fresh groundwater resources for people and ecosystems.
Collapse
Affiliation(s)
- Xingxing Kuang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Junguo Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Henan Provincial Key Lab of Hydrosphere and Watershed Water Security, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Bridget R Scanlon
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78758, USA
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Scott Jasechko
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Michele Lancia
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Boris K Biskaborn
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam Germany
| | - Yoshihide Wada
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenzhong Zeng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhilin Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yingying Yao
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Tom Gleeson
- Department of Civil Engineering and School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jean-Philippe Nicot
- Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78758, USA
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yiguang Zou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| |
Collapse
|
5
|
Tao Z, Liu C, He Q, Chang H, Ma J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153887. [PMID: 35181355 DOI: 10.1016/j.scitotenv.2022.153887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
6
|
Jellicoe K, McIntosh JC, Ferguson G. Changes in Deep Groundwater Flow Patterns Related to Oil and Gas Activities. GROUND WATER 2022; 60:47-63. [PMID: 34519028 DOI: 10.1111/gwat.13136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Large volumes of saline formation water are both produced from and injected into sedimentary basins as a by-product of oil and gas production. Despite this, the location of production and injection wells has not been studied in detail at the regional scale and the effects on deep groundwater flow patterns (i.e., below the base of groundwater protection) possibly driving fluid flow toward shallow aquifers remain uncertain. Even where injection and production volumes are equal at the basin scale, local changes in hydraulic head can occur due to the distribution of production and injection wells. In the Canadian portion of the Williston Basin, over 4.6 × 109 m3 of water has been co-produced with 5.4 × 108 m3 of oil, and over 5.5 × 109 m3 of water has been injected into the subsurface for salt water disposal or enhanced oil recovery. Despite approximately equal values of produced and injected fluids at the sedimentary basin scale over the history of development, cumulative fluid deficits and surpluses per unit area in excess of a few 100 mm are present at scales of a few 100 km2 . Fluid fluxes associated with oil and gas activities since 1950 likely exceed background groundwater fluxes in these areas. Modeled pressures capable of creating upward hydraulic gradients are predicted for the Midale Member and Mannville Group, two of the strata with the highest amounts of injection in the study area. This could lead to upward leakage of fluids if permeable pathways, such as leaky wells, are present.
Collapse
Affiliation(s)
- Keegan Jellicoe
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer C McIntosh
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Grant Ferguson
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Whyte CJ, Vengosh A, Warner NR, Jackson RB, Muehlenbachs K, Schwartz FW, Darrah TH. Geochemical evidence for fugitive gas contamination and associated water quality changes in drinking-water wells from Parker County, Texas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146555. [PMID: 34030322 DOI: 10.1016/j.scitotenv.2021.146555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Extensive development of horizontal drilling and hydraulic fracturing enhanced energy production but raised concerns about drinking-water quality in areas of shale-gas development. One particularly controversial case that has received significant public and scientific attention involves possible contamination of groundwater in the Trinity Aquifer in Parker County, Texas. Despite extensive work, the origin of natural gas in the Trinity Aquifer within this study area is an ongoing debate. Here, we present a comprehensive geochemical dataset collected across three sampling campaigns along with integration of previously published data. Data include major and trace ions, molecular gas compositions, compound-specific stable isotopes of hydrocarbons (δ13C-CH4, δ13C-C2H6, δ2H-CH4), dissolved inorganic carbon (δ13C-DIC), nitrogen (δ15N-N2), water (δ18O, δ2H, 3H), and noble gases (He, Ne, Ar), boron (δ11B) and strontium (87Sr/86Sr) isotopic compositions of water samples from 20 drinking-water wells from the Trinity Aquifer. The compendium of data confirms mixing between a deep, naturally occurring salt- (Cl >250 mg/L) and hydrocarbon-rich groundwater with a low-salinity, shallower, and younger groundwater. Hydrocarbon gases display strong evidence for sulfate reduction-paired oxidation, in some cases followed by secondary methanogenesis. A subset of drinking-water wells contains elevated levels of hydrocarbons and depleted atmospherically-derived gas tracers, which is consistent with the introduction of fugitive thermogenic gas. We suggest that gas originating from the intermediate-depth Strawn Group ("Strawn") is flowing along the annulus of a Barnett Shale gas well, and is subsequently entering the shallow aquifer system. This interpretation is supported by the expansion in the number of affected drinking-water wells during our study period and the persistence of hydrocarbon levels over time. Our data suggest post-genetic secondary water quality changes occur following fugitive gas contamination, including sulfate reduction paired with hydrocarbon oxidation and secondary methanogenesis. Importantly, no evidence for upward migration of brine or natural gas associated with the Barnett Shale was identified.
Collapse
Affiliation(s)
- Colin J Whyte
- Divisions of Solid Earth Dynamics and Water, Climate and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA; Global Water Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Avner Vengosh
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Nathaniel R Warner
- Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert B Jackson
- Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305, USA
| | - Karlis Muehlenbachs
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G2E3, Canada
| | - Franklin W Schwartz
- Divisions of Solid Earth Dynamics and Water, Climate and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA; Global Water Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas H Darrah
- Divisions of Solid Earth Dynamics and Water, Climate and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA; Global Water Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Molofsky LJ, Connor JA, Van De Ven CJC, Hemingway MP, Richardson SD, Strasert BA, McGuire TM, Paquette SM. A review of physical, chemical, and hydrogeologic characteristics of stray gas migration: Implications for investigation and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146234. [PMID: 34030233 DOI: 10.1016/j.scitotenv.2021.146234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Releases of natural gas into groundwater from oil and gas exploration, production, or storage (i.e., "stray gas") can pose a risk to groundwater users and landowners in the form of a fire or explosive hazard. The acute nature of stray gas risk differs from the long-term health risks posed by the ingestion or inhalation of other petroleum hydrocarbons (e.g., benzene). Stray gas also exhibits different fate and transport behaviors in the environment from other hydrocarbon contaminants, including the potential for rapid and extensive transport of free-phase gas through preferential pathways, and the resulting variable and discontinuous spatial distribution of free and dissolved gas phases. While there is extensive guidance on response actions for releases of other hydrocarbons such as benzene, there are relatively few examples available in the technical literature that discuss appropriate response measures for the investigation and remediation of stray gas impacts. This paper describes key considerations in the physical, chemical, and hydrogeological characteristics of stray gas releases and implications for the improved investigation and mitigation of associated risks.
Collapse
Affiliation(s)
- L J Molofsky
- GSI Environmental Inc., 2211 Norfolk St., Suite 1000, Houston, TX 77098, United States of America; University of Texas El Paso, Department of Geological Sciences, 591 W. University Ave., El Paso, TX 79902, United States of America.
| | - John A Connor
- GSI Environmental Inc., 2211 Norfolk St., Suite 1000, Houston, TX 77098, United States of America.
| | - Cole J C Van De Ven
- University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, 2207 Main Mall #2020, Vancouver, British Columbia V6T1Z4, Canada.
| | - Mark P Hemingway
- GSI Environmental Inc., 9600 Great Hills Trail, #350E, Austin, TX 78759, United States of America.
| | - Stephen D Richardson
- GSI Environmental Inc., 9600 Great Hills Trail, #350E, Austin, TX 78759, United States of America.
| | - Brian A Strasert
- GSI Environmental Inc., 2211 Norfolk St., Suite 1000, Houston, TX 77098, United States of America.
| | - Travis M McGuire
- GSI Environmental Inc., 2211 Norfolk St., Suite 1000, Houston, TX 77098, United States of America.
| | - Shawn M Paquette
- GSI Environmental Inc., 2211 Norfolk St., Suite 1000, Houston, TX 77098, United States of America.
| |
Collapse
|
9
|
Bondu R, Kloppmann W, Naumenko-Dèzes MO, Humez P, Mayer B. Potential Impacts of Shale Gas Development on Inorganic Groundwater Chemistry: Implications for Environmental Baseline Assessment in Shallow Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9657-9671. [PMID: 34251200 DOI: 10.1021/acs.est.1c01172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The potential contamination of shallow groundwater with inorganic constituents is a major environmental concern associated with shale gas extraction through hydraulic fracturing. However, the impact of shale gas development on groundwater quality is a highly controversial issue. The only way to reliably assess whether groundwater quality has been impacted by shale gas development is to collect pre-development baseline data against which subsequent changes in groundwater quality can be compared. The objective of this paper is to provide a conceptual and methodological framework for establishing a baseline of inorganic groundwater quality in shale gas areas, which is becoming standard practice as a prerequisite for evaluating shale gas development impacts on shallow aquifers. For this purpose, this paper first reviews the potential sources of inorganic contaminants in shallow groundwater from shale gas areas. Then, it reviews the previous baseline studies of groundwater geochemistry in shale gas areas, showing that a comprehensive baseline assessment includes documenting the natural sources of salinity, potential geogenic contamination, and potential anthropogenic influences from legacy contamination and surface land use activities that are not related to shale gas development. Based on this knowledge, best practices are identified in terms of baseline sampling, selection of inorganic baseline parameters, and definition of threshold levels.
Collapse
Affiliation(s)
- Raphaël Bondu
- BRGM (French Geological Survey), 3 Avenue Claude-Guillemin, 45060 Orléans, France
| | - Wolfram Kloppmann
- BRGM (French Geological Survey), 3 Avenue Claude-Guillemin, 45060 Orléans, France
| | | | - Pauline Humez
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Tamisier M, Schmidt M, Vogt C, Kümmel S, Stryhanyuk H, Musat N, Richnow HH, Musat F. Iron corrosion by methanogenic archaea characterized by stable isotope effects and crust mineralogy. Environ Microbiol 2021; 24:583-595. [PMID: 34190386 DOI: 10.1111/1462-2920.15658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Carbon and hydrogen stable isotope effects associated with methane formation by the corrosive archaeon Methanobacterium strain IM1 were determined during growth with hydrogen and iron. Isotope analyses were complemented by structural, elemental and molecular composition analyses of corrosion crusts. During growth with H2 , strain IM1 formed methane with average δ13 C of -43.5‰ and δ2 H of -370‰. Corrosive growth led to methane more depleted in 13 C, with average δ13 C ranging from -56‰ to -64‰ during the early and the late growth phase respectively. The corresponding δ2 H were less impacted by the growth phase, with average values ranging from -316 to -329‰. The stable isotope fractionation factors, α 13 C CO 2 / CH 4 , were 1.026 and 1.042 for hydrogenotrophic and corrosive growth respectively. Corrosion crusts formed by strain IM1 have a domed structure, appeared electrically conductive and were composed of siderite, calcite and iron sulfide, the latter formed by precipitation of sulfide (from culture medium) with ferrous iron generated during corrosion. Strain IM1 cells were found attached to crust surfaces and encrusted deep inside crust domes. Our results may assist to diagnose methanogens-induced corrosion in the field and suggest that intrusion of sulfide in anoxic settings may stimulate corrosion by methanogenic archaea via formation of semiconductive crusts.
Collapse
Affiliation(s)
- Marc Tamisier
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
11
|
Han LF, Wassenaar LI. Principles and uncertainties of 14C age estimations for groundwater transport and resource evaluation. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:111-141. [PMID: 33350358 DOI: 10.1080/10256016.2020.1857378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Radiocarbon (14C) is useful for estimating groundwater ages for transport and water resource exploitation assessment. If the 14C content of dissolved inorganic carbon (14CDIC) is known, the age of groundwater can be estimated by applying a radiocarbon decay equation combined with an appropriate geochemical correction model. However, age determinations are subject to uncertainties caused by parameters which need to be estimated or assumed. Here, we discuss the principles of 14C-based groundwater age estimations and the corrections and errors that affect age determinations differently. Generally, the two factors that impact the results of 14C groundwater age are Type-1 and Type-2 errors. Type-1 errors are pulse-type changes on derived groundwater ages that are independent of the water age. Type-2 errors cause gradual changes on derived groundwater 14C ages that depend on the water age. The cumulative impact of these errors substantively reduces the accuracy and confidence of 14C age determinations and corrections. When using 14C for groundwater age, consideration of both error types along with the use of samples having a range of 14CDIC contents helps practitioners recognize and minimize 14C age uncertainty, especially for groundwater ages of <1000 and >30,000 years B.P.
Collapse
Affiliation(s)
- Liang-Feng Han
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna International Centre, Vienna, Austria
| | - Leonard I Wassenaar
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna International Centre, Vienna, Austria
| |
Collapse
|
12
|
Labrecque SP, Blanford WJ. Fate and transport of bromide and mononuclear aromatic hydrocarbons in aqueous solutions through Berea Sandstone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:141714. [PMID: 33172637 DOI: 10.1016/j.scitotenv.2020.141714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
A series of miscible displacement tests were performed on a 51 mm wide by 76 mm long well-laminated core of Berea Sandstone to determine the transport parameters of the anion bromide and a homologous series of seventeen mononuclear aromatic hydrocarbons (MAHs). In each test, a continuous input pulse of a single tracer was passed through the cylindrical core housed in a hydrostatic core holder at a confining pressure of 200 bar. The effluent concentration, as measured by in-line UV absorbance, versus time resulted in smooth high-resolution sinusoidal breakthrough curves (BTCs). In comparison to the near Gaussian BTCs of bromide, the transport of the MAHs was differentially retarded with minimal levels of delayed transport along the more rapid flow lines, but with progressively more along the slower flow paths. These results show that despite a lack of significant hydraulic heterogeneity, there is a high degree of heterogeneity among the sorption sites. The BTCs were aptly modeled with a one-dimensional flow model consisting of a mixture of instantaneous equilibrium and rate-limited reversible sorption sites. The relative fraction of instantaneous sites increased proportionately with the rate the subject MAH passed through the core. Potential quantitative structure-retention relationships (QSRR) between common chemical parameters of the MAHs and their overall retardation factors, sorption coefficients and the fraction of instantaneous equilibrium were evaluated. Among the compounds examined, relatively strong correlations were found with molecular weight, aqueous solubility, and octanol-water partitioning coefficient with which relative MAH transport retardation, the linear phase distribution coefficient, and the dimensionless partitioning coefficient between sorption sites.
Collapse
Affiliation(s)
- Steven P Labrecque
- School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA
| | - William J Blanford
- School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA; Earth and Environmental Sciences, The Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
13
|
Cao C, Li L, DU L, Wang Y, He J. The Use of Noble Gas Isotopes in Detecting Methane Contamination of Groundwater in Shale Gas Development Areas: An Overview of Technology and Methods. ANAL SCI 2020; 36:521-530. [PMID: 32173675 DOI: 10.2116/analsci.19sbr01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Groundwater contamination by stray gas (mainly methane) in areas of shale-gas development has captured publics, political and scientific attention. However, the sources and potential mechanisms of groundwater contamination are still debated. Noble gases can provide useful information on fluid migration for discerning the scale, conditions, and physical mechanisms. In this study, details about analytical technology and theoretical approach of noble gases in tracing groundwater contaminations are presented. In addition, applications of noble-gases isotopes for determining contamination sources and potential pathways are explored and reviewed. Recent developments are discussed and highlighted with focusing on new utilities of noble-gas isotope parameters in evaluating groundwater contamination. Some usages of indicators (4He/20Ne, CH4/36Ar, 4He/CH4, etc.) are discussed through specific research articles. And it is a new trend to make comprehensive use of multiple geochemical parameters to determine the occurrence, source, and process of methane pollution in groundwater.
Collapse
Affiliation(s)
- Chunhui Cao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.,Key Lab of Petroleum Resources, Gansu Province/Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, CAS
| | - Liwu Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.,Key Lab of Petroleum Resources, Gansu Province/Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, CAS
| | - Li DU
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.,Key Lab of Petroleum Resources, Gansu Province/Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, CAS
| | - Yuhui Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.,Key Lab of Petroleum Resources, Gansu Province/Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, CAS.,College of Earth Science, University of the Chinese Academy of Sciences
| | - Jian He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.,Key Lab of Petroleum Resources, Gansu Province/Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, CAS
| |
Collapse
|
14
|
Gupta PK, Yadav B. Leakage of CO 2 from geological storage and its impacts on fresh soil-water systems: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12995-13018. [PMID: 32128734 DOI: 10.1007/s11356-020-08203-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Leakage of CO2 from the geological storage is a serious issue for the sustainability of the receiving fresh soil-water systems. Subsurface water quality issues are no longer related to one type of pollution in many regions around the globe. Thus, an effort has been made to review studies performed to investigate supercritical CO2 (scCO2) and CO2 enrich brine migration and it's leakage from geological storage formations. Further, the study also reviewed it's impacts on fresh soil-water systems, soil microbes, and vegetation. The first part of the study discussed scCO2/CO2 enrich brine migration and its leakage from storage formations along with it's impact on pore dynamics of hydrological regimes. Later, a state-of-the-art literature survey has been performed to understand the role of CO2-brine leakage on groundwater dynamics and its quality along with soil microbes and plants. It is observed in the literature survey that most of the studies on CO2-brine migration in storage formations reported significant CO2-brine leakage due to over-pressurization through wells (injections and abandoned), fracture, and faults during CO2 injection. Thus, changes in the groundwater flow and water table dynamics can be the first impact of the CO2-brine leakage. Subsequently, three major alterations may also occur-(i) drop in pH of subsurface water, (ii) enhancement of organic compounds, and (iii) mobilization of metals and metalloids. Geochemical alteration depends on the amount of CO2 leaked and interactions with host rocks. Therefore, such alteration may significantly affect soil microbial dynamics and vegetation in and around CO2 leakage sites. In-depth analysis of the available literature fortifies that a proper subsurface characterization along with the bio-geochemical analysis is extremely important and should be mandatory to predict the more accurate risk of CO2 capture and storage activities on soil-water systems.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Basant Yadav
- Cranfield Water Science Institute, Cranfield University, Vincent Building, Cranfield, Bedford, MK43 0AL, UK
| |
Collapse
|
15
|
Wollin KM, Damm G, Foth H, Freyberger A, Gebel T, Mangerich A, Gundert-Remy U, Partosch F, Röhl C, Schupp T, Hengstler JG. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. Arch Toxicol 2020; 94:967-1016. [PMID: 32385535 PMCID: PMC7225182 DOI: 10.1007/s00204-020-02758-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/26/2020] [Indexed: 02/02/2023]
Abstract
The use of hydraulic fracturing (HF) to extract oil and natural gas has increased, along with intensive discussions on the associated risks to human health. Three technical processes should be differentiated when evaluating human health risks, namely (1) drilling of the borehole, (2) hydraulic stimulation, and (3) gas or oil production. During the drilling phase, emissions such as NOx, NMVOCs (non-methane volatile organic compounds) as precursors for tropospheric ozone formation, and SOx have been shown to be higher compared to the subsequent phases. In relation to hydraulic stimulation, the toxicity of frac fluids is of relevance. More than 1100 compounds have been identified as components. A trend is to use fewer, less hazardous and more biodegradable substances; however, the use of hydrocarbons, such as kerosene and diesel, is still allowed in the USA. Methane in drinking water is of low toxicological relevance but may indicate inadequate integrity of the gas well. There is a great concern regarding the contamination of ground- and surface water during the production phase. Water that flows to the surface from oil and gas wells, so-called 'produced water', represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water. Particularly critical is the use of produced water for watering of agricultural areas, where persistent compounds may accumulate. Air contamination can occur as a result of several HF-associated activities. In addition to BTEX, 20 HF-associated air contaminants are group 1A or 1B carcinogens according to the IARC. In the U.S., oil and gas production (including conventional production) represents the second largest source of anthropogenic methane emissions. High-quality epidemiological studies are required, especially in light of recent observations of an association between childhood leukemia and multiple myeloma in the neighborhood of oil and gas production sites. In conclusion, (1) strong evidence supports the conclusion that frac fluids can lead to local environmental contamination; (2) while changes in the chemical composition of soil, water and air are likely to occur, the increased levels are still often below threshold values for safety; (3) point source pollution due to poor maintenance of wells and pipelines can be monitored and remedied; (4) risk assessment should be based on both hazard and exposure evaluation; (5) while the concentrations of frac fluid chemicals are low, some are known carcinogens; therefore, thorough, well-designed studies are needed to assess the risk to human health with high certainty; (6) HF can represent a health risk via long-lasting contamination of soil and water, when strict safety measures are not rigorously applied.
Collapse
Affiliation(s)
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| | - A Freyberger
- Research and Development, Translational Sciences-Toxicology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Constance, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - F Partosch
- Institute for Occupational, Social and Environmental Medicine, University Medical Center, Göttingen, Germany
| | - C Röhl
- Department of Environmental Health Protection, Schleswig-Holstein State Agency for Social Services, Kiel, Germany
| | - T Schupp
- Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), University of Dortmund, Dortmund, Germany.
| |
Collapse
|
16
|
Lin B, Xu J, Yu C, Chen L, Lu M, Xie X. A multi-parameter in-situ water quality analyzer based on a portable document scanner and 3D printed self-sampling cells. Anal Chim Acta 2020; 1101:176-183. [PMID: 32029109 DOI: 10.1016/j.aca.2019.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 11/16/2022]
Abstract
This research introduced a new low-cost and multi-parameter analyzer for in-situ measurements of typical nutrients in water bodies. The analyzer consisted of color detection and chromogenic reaction modules. The self-sampling action of the 3D printed sampling/reaction cells was achieved with the cooperative application of rubber bands and dissolvable thread. The target analytes in the collected water sample reacted with the chromogenic reagents that were diffused from the pre-placed glass wool in the cell, producing color compounds. A portable document scanner was employed as a multi-parameter in-situ detector to record the image of the colored solutions in all five cells simultaneously. Based on the image, the corrected grayscale values were derived for target analyte quantitation. The relationships between grayscale values and concentrations of target analytes were established, and the temperature effects were studied. In addition, the practicability of the analyzer was demonstrated by in-situ experiments carried out in four different sites, including a creek, a river dock, a reservoir and a secondary settling tank in a wastewater treatment facility. The results indicated that the analyzer could be used for in-situ measuring of nutrients at μmol/L levels in the water. The nutrient concentrations obtained with the analyzer were comparable with those obtained with the standard methods. The presented analyzer provided new complementary ideas and methods for in-situ rapid measurement of nutrients and other target analytes in various water systems.
Collapse
Affiliation(s)
- Beichen Lin
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA; Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China
| | - Jin Xu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA
| | - Luodan Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Miao Lu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen, 361005, China.
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA.
| |
Collapse
|
17
|
Iverach CP, Cendón DI, Beckmann S, Hankin SI, Manefield M, Kelly BFJ. Constraining source attribution of methane in an alluvial aquifer with multiple recharge pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134927. [PMID: 31767334 DOI: 10.1016/j.scitotenv.2019.134927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Identifying the source of methane (CH4) in groundwater is often complicated due to various production, degradation and migration pathways, particularly in settings where there are multiple groundwater recharge pathways. This study demonstrates the ability to constrain the origin of CH4 within an alluvial aquifer that could be sourced from in situ microbiological production or underlying formations at depth. To characterise the hydrochemical and microbiological processes active within the alluvium, previously reported hydrochemical data (major ion chemistry and isotopic tracers (3H, 14C, 36Cl)) were interpreted in the context of CH4 and carbon dioxide (CO2) isotopic chemistry, and the microbial community composition in the groundwater. The rate of observed oxidation of CH4 within the aquifer was then characterised using a Rayleigh fractionation model. The stratification of the hydrochemical facies and microbiological community populations is interpreted to be a result of the gradational mixing of water from river leakage and floodwater recharge with water from basal artesian inflow. Within the aquifer there is a low abundance of methanogenic archaea indicating that there is limited biological potential for microbial CH4 production. Our results show that the resulting interconnection between hydrochemistry and microbial community composition affects the occurrence and oxidation of CH4 within the alluvial aquifer, constraining the source of CH4 in the groundwater to the geological formations beneath the alluvium.
Collapse
Affiliation(s)
- Charlotte P Iverach
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia; Connected Waters Initiative Research Centre, UNSW Sydney, NSW 2052, Australia; Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Dioni I Cendón
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia; Connected Waters Initiative Research Centre, UNSW Sydney, NSW 2052, Australia
| | - Sabrina Beckmann
- College of Earth, Ocean and Environment, University of Delaware, 700 Pilottown Road, 19958 Lewes, USA
| | - Stuart I Hankin
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Mike Manefield
- School of Civil and Environmental Engineering, School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Bryce F J Kelly
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia; Connected Waters Initiative Research Centre, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Kuloyo O, Ruff SE, Cahill A, Connors L, Zorz JK, Hrabe de Angelis I, Nightingale M, Mayer B, Strous M. Methane oxidation and methylotroph population dynamics in groundwater mesocosms. Environ Microbiol 2020; 22:1222-1237. [PMID: 32017377 PMCID: PMC7187433 DOI: 10.1111/1462-2920.14929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/25/2020] [Indexed: 01/21/2023]
Abstract
Extraction of natural gas from unconventional hydrocarbon reservoirs by hydraulic fracturing raises concerns about methane migration into groundwater. Microbial methane oxidation can be a significant methane sink. Here, we inoculated replicated, sand‐packed, continuous mesocosms with groundwater from a field methane release experiment. The mesocosms experienced thirty‐five weeks of dynamic methane, oxygen and nitrate concentrations. We determined concentrations and stable isotope signatures of methane, carbon dioxide and nitrate and monitored microbial community composition of suspended and attached biomass. Methane oxidation was strictly dependent on oxygen availability and led to enrichment of 13C in residual methane. Nitrate did not enhance methane oxidation under oxygen limitation. Methylotrophs persisted for weeks in the absence of methane, making them a powerful marker for active as well as past methane leaks. Thirty‐nine distinct populations of methylotrophic bacteria were observed. Methylotrophs mainly occurred attached to sediment particles. Abundances of methanotrophs and other methylotrophs were roughly similar across all samples, pointing at transfer of metabolites from the former to the latter. Two populations of Gracilibacteria (Candidate Phyla Radiation) displayed successive blooms, potentially triggered by a period of methane famine. This study will guide interpretation of future field studies and provides increased understanding of methylotroph ecophysiology.
Collapse
Affiliation(s)
- Olukayode Kuloyo
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.,Shell International Exploration and Production Inc, Westhollow Technology Center, Houston, TX, USA
| | - S Emil Ruff
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.,Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Aaron Cahill
- The Lyell Centre, Heriot Watt University, Edinburgh, United Kingdom
| | - Liam Connors
- Biomedical Sciences Department, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Isabella Hrabe de Angelis
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada.,Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Bernhard Mayer
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Humez P, Osselin F, Kloppmann W, Mayer B. A geochemical and multi-isotope modeling approach to determine sources and fate of methane in shallow groundwater above unconventional hydrocarbon reservoirs. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 226:103525. [PMID: 31445435 DOI: 10.1016/j.jconhyd.2019.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Due to increasing concerns over the potential impact of shale gas and coalbed methane (CBM) development on groundwater resources, it has become necessary to develop reliable tools to detect any potential pollution associated with hydrocarbon exploitation from unconventional reservoirs. One of the key concepts for such monitoring approaches is the establishment of a geochemical baseline of the considered groundwater systems. However, the detection of methane is not enough to assess potential impact from CBM and shale gas exploitation since methane in low concentrations has been found to be naturally ubiquitous in many groundwater systems. The objective of this study was to determine the methane sources, the extent of potential methane oxidation, and gas-water-rock-interactions in shallow aquifers by integrating chemical and isotopic monitoring data of dissolved gases and aqueous species into a geochemical PHREEQC model. Using data from a regional groundwater observation network in Alberta (Canada), the model was designed to describe the evolution of the concentrations of methane, sulfate and dissolved inorganic carbon (DIC) as well as their isotopic compositions (δ34SSO4, δ13CCH4 and δ13CDIC) in groundwater subjected to different scenarios of migration, oxidation and in situ generation of methane. Model results show that methane migration and subsequent methane oxidation in anaerobic environments can strongly affect its concentration and isotopic fingerprint and potentially compromise the accurate identification of the methane source. For example elevated δ13CCH4 values can be the result of oxidation of microbial methane and may be misinterpreted as methane of thermogenic origin. Hence, quantification of the extent of methane oxidation is essential for determining the origin of methane in groundwater. The application of this model to aquifers in Alberta shows that some cases of elevated δ13CCH4 values were due to methane oxidation resulting in pseudo-thermogenic isotopic fingerprints of methane. The model indicated no contamination of shallow aquifers by deep thermogenic methane from conventional and unconventional hydrocarbon reservoirs under baseline conditions. The developed geochemical and multi-isotopic model describing the sources and fate of methane in groundwater is a promising tool for groundwater assessment purposes in areas with shale gas and coalbed methane development.
Collapse
Affiliation(s)
- Pauline Humez
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Florian Osselin
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Earth Sciences Institute of Orléans (ISTO), University of Orléans, Orléans, France
| | | | - Bernhard Mayer
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
20
|
McIntosh JC, Ferguson G. Conventional Oil-The Forgotten Part of the Water-Energy Nexus. GROUND WATER 2019; 57:669-677. [PMID: 31183853 DOI: 10.1111/gwat.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The impacts of unconventional oil and gas production via high-volume hydraulic fracturing (HVHF) on water resources, such as water use, groundwater and surface water contamination, and disposal of produced waters, have received a great deal of attention over the past decade. Conventional oil and gas production (e.g., enhanced oil recovery [EOR]), which has been occurring for more than a century in some areas of North America, shares the same environmental concerns, but has received comparatively little attention. Here, we compare the amount of produced water versus saltwater disposal (SWD) and injection for EOR in several prolific hydrocarbon producing regions in the United States and Canada. The total volume of saline and fresh to brackish water injected into depleted oil fields and nonproductive formations is greater than the total volume of produced waters in most regions. The addition of fresh to brackish "makeup" water for EOR may account for the net gain of subsurface water. The total amount of water injected and produced for conventional oil and gas production is greater than that associated with HVHF and unconventional oil and gas production by well over a factor of 10. Reservoir pressure increases from EOR and SWD wells are low compared to injection of fluids for HVHF, however, the longer duration of injections could allow for greater solute transport distances and potential for contamination. Attention should be refocused from the subsurface environmental impacts of HVHF to the oil and gas industry as a whole.
Collapse
Affiliation(s)
| | - Grant Ferguson
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 College Drive, S7N 5A9, Saskatoon, Saskatchewan, Canada
| |
Collapse
|