1
|
Yang H, Lin X, Lu J, Zhao X, Wu D, Kim H, Su L, Cai L. Effect of shape on the transport and retention of nanoplastics in saturated quartz sand. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135766. [PMID: 39244984 DOI: 10.1016/j.jhazmat.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Nanoplastics (NPs) pose great challenges to soil-groundwater systems. This study investigated the transport and retention of self-synthesized 0.5-μm polystyrene NPs with different shapes using column experiments. The regular NPs were with spherical shapes, while the irregular NPs were with toroid-like shapes. The toroid-like shapes were the irregular shapes (with low aspect ratio) which have not been studied yet. The explorations were carried out in both 5-25 mM NaNO3 and 1-10 mM Ca(NO3)2 solutions. Both breakthrough curves (BTCs) and retained profiles (RPs) were monitored. Our findings uncovered a clear disparity in the transport of irregular and regular NPs, with irregular particles exhibiting lower transport ability compared to the regular ones. For example, the average breakthrough plateaus of the regular and irregular NPs were ∼0.9 and ∼0.5, respectively, in 10 mM NaNO3. In-depth theoretical analysis indicated that the lower XDLVO interaction energy barrier between the irregular NPs and quartz sand was one factor, and the greater margination of irregular NPs on quartz sand, as verified by the numerical simulation, was another factor leading to the decreased transport and increased retention of the irregular NPs. The obtained results highlighted the significance of considering particle shape in future modelling and predicting the fate of NPs in real environmental circumstances.
Collapse
Affiliation(s)
- Haiyan Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xunyang Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoning Zhao
- Beijing Institute of Metrology, Beijing 100029, China
| | - Dan Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Song X, Li Y, Zhang Z, Wen Y, Wang Y. Natural mineral colloids facilitated transport of EE2 in saturated porous media: Effects of humic acid and conjugate form. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104387. [PMID: 38896908 DOI: 10.1016/j.jconhyd.2024.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Steroid estrogens have posed significant ecological risks to aquatic organisms due to their potent endocrine-disrupting effects. The role of natural mineral colloids in facilitating the transport of hydrophobic organic pollutants in the environment has been confirmed, but the control mechanisms of colloids on 17α-Ethinylestradiol (EE2) migration in the subsurface environment are often still not well understood. This study combined the batch sorption equilibrium experiments and dynamic transport simulations to reveal the interface interactions and co-transport characteristics between illite colloids and EE2 at both macroscopic and microscopic levels. The existing form changes of EE2 and the influence of coexisting humic acid (HA) during transport in porous media were also specifically investigated. The batch experiments demonstrated that the primary mechanisms governing EE2 sorption onto illite colloids involved surface sorption and hydrogen bonding. The coexistence of HA could load onto the surface of illite colloids, thereby enhancing the colloidal sorption capacity for EE2. Transport experiments demonstrated that the migratory ability of EE2 in silty clay was limited, but illite colloids could significantly promote its penetration, with the peak penetration content (Ct/C0) increasing from 0.64 to 0.77. In the absence of HA, EE2 primarily transported in a dissolved form, accounting for 62.86% of the total concentrations. When HA concentrations were increased to 10 mg/L and 20 mg/L, the proportion of colloidal conjugate EE2 in the effluents reached 52.13% and 54.49%, respectively. The enhanced transport of EE2 by HA was primarily attributed to the improved migration ability of illite colloids and the increased proportion of illite-EE2 conjugate, resulting in a maximum Ct/C0 value of 0.94. The validity of these results was further confirmed by employing calculations based on the Derjaguin-Landau-Verwey-Overbeek and Colloidal Filtration Theory. This study provides new insights of understanding the transport of EE2 in subsurface environment.
Collapse
Affiliation(s)
- Xiaoming Song
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| | - Yingjun Li
- Qinghai 906 Engineering Survey and Design Institute Co. LTD, Xining 810001, China; Bureau of Qinghai Environmental Geological Prospecting, Xining 810001, China.
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Chengdu 610031, China
| | - Yujuan Wen
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China.
| | - Yunlong Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, China
| |
Collapse
|
3
|
Pradel A, Delouche N, Gigault J, Tabuteau H. Role of Ripening in the Deposition of Fragments: The Case of Micro- and Nanoplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8878-8888. [PMID: 38733558 DOI: 10.1021/acs.est.3c07656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Particulate contaminants, such as microplastics (1 μm to 5 mm) and nanoplastics (<1 μm), are disseminated in many terrestrial environments. However, it is still unclear how particles' properties drive their mobility through soils and aquifers due to (i) poor environmental relevance of the model particles that are studied (e.g., spherical and monodisperse) and (ii) the use of packed bed experiments which do not allow a direct observation of deposition dynamics. Using transparent 2D porous media, this study analyzes deposition dynamics of rough polystyrene fragments with irregular shapes and with a size continuum (≈10 nm to 5 μm). Using in situ and ex situ measurements, particle deposition as a function of size was monitored over time under repulsive conditions. In the absence of natural organic matter (NOM), micrometric particles rapidly deposit and promote the physical interception of smaller nanoparticles by creating local porous roughness or obstacles. In the presence of NOM, differences according to particle size were no longer observed, and all fragments were more prone to being re-entrained, thereby limiting the growth of deposits. This work demonstrates the importance of pore surface roughness and porosity of the pore surface for the deposition of colloidal particles, such as microplastics and nanoplastics, under repulsive conditions.
Collapse
Affiliation(s)
- Alice Pradel
- University of, CNRS, Géosciences Rennes, UMR 6118, Rennes 35042, France
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, Zurich 8092, Switzerland
| | - Nolwenn Delouche
- University of Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes F-35000, France
- Institute of Earth Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Julien Gigault
- University of, CNRS, Géosciences Rennes, UMR 6118, Rennes 35042, France
- TAKUVIK CNRS/ULaval, UMI 3376, Université Laval, Quebec City, Quebec G1 V 0A6, Canada
| | - Hervé Tabuteau
- University of Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes F-35000, France
| |
Collapse
|
4
|
Le V, Thompson S, Roden E, Zahasky C. In Situ Measurements of Dynamic Bacteria Transport and Attachment in Heterogeneous Sand-Packed Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15588-15597. [PMID: 37782746 DOI: 10.1021/acs.est.3c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Prevention, mitigation, and regulation of bacterial contaminants in groundwater require a fundamental understanding of the mechanisms of transport and attachment in complex geological materials. Discrepancies in bacterial transport behaviors observed between field studies and laboratory experiments indicate an incomplete understanding of dynamic bacterial transport and immobilization processes in realistic heterogeneous geologic systems. Here, we develop a new experimental approach for in situ quantification of dynamic bacterial transport and attachment distribution in geologic media that relies on radiolabelingEscherichia coliwith positron-emitting radioisotopes and quantifying transport with three-dimensional (3D) positron emission tomography (PET) imaging. Our results indicate that the highest bacterial attachment occurred at the interfaces between sand layers oriented orthogonal to the direction of flow. The predicted bacterial attachment from a 3D numerical model matched the experimental PET results, highlighting that the experimentally observed bacterial transport behavior can be accurately captured with a distribution of a first-order irreversible attachment model. This is the first demonstration of the direct measurement of attachment coefficient distributions from bacterial transport experiments in geologic media and provides a transformational approach to better understand bacterial transport mechanisms, improve model parametrization, and accurately predict how local geologic conditions can influence bacterial fate and transport in groundwater.
Collapse
Affiliation(s)
- Vy Le
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sophia Thompson
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christopher Zahasky
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Liang Y, Liu J, Dong P, Qin Y, Zhang R, Bradford SA. Retention and release of black phosphorus nanoparticles in porous media under various physicochemical conditions. CHEMOSPHERE 2023; 339:139604. [PMID: 37482317 DOI: 10.1016/j.chemosphere.2023.139604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Black phosphorus nanosheets/nanoparticles (BPNs) are widely applied in many fields. However, the transport of BPNs in the subsurface still has not yet been reported and there is increasing concern about potential adverse impacts on ecosystems. Roles of median grain size and surface roughness, BPN concentration, and solution chemistries (pH, ionic strength, and cation types) on the retention and release of BPNs in column experiments were therefore investigated. The mobility of BPNs significantly increased with increasing grain size and decreasing surface roughness due to their influence on the mass transfer rate, number of deposition sites and retention capacity, and straining processes. Transport of BPNs was enhanced with an increase in pH and a decrease in ionic strength because of surface deprotonation and stronger repulsion that tends to reduce aggregation. The BPN transport was significantly sensitive to ionic strength, compared with other engineered nanoparticles. Additionally, charge heterogeneity and cation-bridging played a critical role in the retention of BPNs in the presence of divalent cations. Higher input concentrations increased the retention of BPNs, probably because collisions, aggregation at pore throat locations, and hydrodynamic bridging were more pronounced. Small fractions of BPNs can be released under decreasing IS and increasing pH due to the expansion of the electrical double layer and increased repulsion at convex roughness locations. A mathematical model that includes provisions for advective dispersive transport and time-dependent retention with blocking or ripening terms well described the retention and release of BPNs. These findings provide fundamental information that helps to understand the transport of BPNs in the subsurface environments.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Jinxing Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Pengcheng Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yan Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Rupin Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
| | | |
Collapse
|
6
|
Patiño JE, Johnson WP, Morales VL. Relating mechanistic fate with spatial positioning for colloid transport in surface heterogeneous porous media. J Colloid Interface Sci 2023; 641:666-674. [PMID: 36963259 DOI: 10.1016/j.jcis.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
HYPOTHESES The transport behavior of colloids in subsurface porous media is altered by surface chemical and physical heterogeneities. Understanding the mechanisms involved and distribution outcomes is crucial to assess and control groundwater contamination. The multi-scale processes that broaden residence time distribution for particles in the medium are here succinctly described with an upscaling model. Experiments/model: The spatial distribution of silver particles along glass bead-packed columns obtained from X-ray micro-computed tomography and a mechanistic upscaling model were used to study colloid retention across interface-, collector-, pore-, and Darcy-scales. Simulated energy profiles considering variable colloid-grain interactions were used to determine collector efficiencies from particle trajectories via full force-torque balance. Rate coefficients were determined from collector efficiencies to parameterize the advective-dispersive-reactive model that reports breakthrough curves and depth profiles. FINDINGS Our results indicate that: (i) with surface heterogeneity, individual colloid-grain interactions are non-unique and span from repulsive to attractive extremes; (ii) experimentally observed spatial positioning of retention at grain-water interfaces and grain-to-grain contacts is governed respectively by mechanistic attachment to the grain surface and retention without contact at rear-flow stagnation zones, and (iii) experimentally observed non-monotonic retention profiles and heavy-tailed breakthrough curves can be modeled with explicit implementation of heterogeneity at smaller scales.
Collapse
Affiliation(s)
- Janis E Patiño
- Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave 2001, Davis 95616, CA, United States.
| | - William P Johnson
- Department of Geology & Geophysics, University of Utah, 201 Presidents' Cir, Salt Lake City, 84112, UT, United States.
| | - Verónica L Morales
- Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave 2001, Davis 95616, CA, United States.
| |
Collapse
|
7
|
Yun J, Liang Y, Muhammad Y, Liu F, Dong Y, Wang S. Influence of biochar incorporation on the collector surface properties and the transport of silver nanoparticles in porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116943. [PMID: 36516715 DOI: 10.1016/j.jenvman.2022.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Biochar is widely used as a soil amendment due to its environmental friendliness and convenient availability. It is believed that the presence of biochar in porous media can influence the transport of colloidal and solute contaminants. In this study, different mass ratios of biochar were added to packed sand with a rough or smooth surface to determine the significance of biochar on the retention and release of silver nanoparticles (AgNPs). The results showed that biochar reduced the transport of AgNPs in rough and smooth sands under different solution conditions. A small amount of biochar (0.1-1% in mass percentage) can significantly enhance the retention of AgNPs due to the alteration in collector surface roughness and chemical heterogeneity that potentially reduce the energy barrier for retention. Furthermore, the retention of AgNPs in rough sand was always higher than that in smooth sand under the same experimental conditions. The presence of biochar also produced nonmonotonic retention of AgNPs mainly due to the changes in collector surface roughness. Additionally, the AgNPs retention associated with biochar tended to be irreversible due to the charge heterogeneity, while the reversible retention could mainly occur on a rough sand surface via shallow primary minima. This work highlights the significance of collector surface roughness that needs to be considered in the process of biochar amendment for practical applications to effectively immobilize colloidal contaminants in soil or groundwater.
Collapse
Affiliation(s)
- Jinhu Yun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, 530007, China.
| | - Yaseen Muhammad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fei Liu
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Yawen Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, 530007, China; College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
8
|
Zhao K, Shang J. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160415. [PMID: 36427725 DOI: 10.1016/j.scitotenv.2022.160415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Biochar colloids released from biochar materials are ubiquitous in the environment and undergo environmental transformation processes that may alter their properties. Natural subsurface environments are usually under unsaturated conditions, which could affect the transport of biochar colloids. This study investigated the transport of pristine and aged biochar colloids under unsaturated conditions by aggregation test, bubble column experiment, and sand column experiment. After aging, the biochar showed a more negative, hydrophilic, and rougher surface. Compared with pristine biochar colloids, aged biochar colloids in NaCl solution were not retained at the air-water interface (AWI) due to their more hydrophilic and rougher surface. In CaCl2 solution, more pristine and aged biochar colloids were retained at the AWI because Ca2+ weakened the electrostatic repulsion between biochar colloids and the AWI. With the decrease in saturation, the transport of pristine and aged biochar colloids decreased by 17 %‑67 % through the retention at AWI and air-water-solid (AWS) interface. The transport of biochar colloids in NaCl solution was increased by 10 %‑20 % after aging as the aged biochar was not retained at the AWI. The difference of transport between pristine and aged biochar colloids in CaCl2 solution (<8 %) was lower than that in NaCl solution due to the enhanced retention of aggregated biochar colloids at the AWI and AWS interfaces. These results highlight the importance of the surface structure of biochar on its behavior in the environment, which is essential for assessing the potential of biochar application for carbon sequestration and environmental protection.
Collapse
Affiliation(s)
- Kang Zhao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Beijing 100193, PR China.
| |
Collapse
|
9
|
Borgman O, Be'er A, Weisbrod N. Direct visualization of colloid transport over natural heterogeneous and artificial smooth rock surfaces. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104067. [PMID: 36113262 DOI: 10.1016/j.jconhyd.2022.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/13/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Colloid transport in fractured rock formations is an important process impacting the fate of pollutants in the subsurface. Despite intensive and outstanding research on their transport phenomena, the impact of small-scale surface heterogeneity on colloid behavior at the fracture scale remains difficult to assess. In particular, there is relatively little direct experimental evidence on the impact of natural fracture surface heterogeneity on colloid transport. To investigate this, we developed an experimental setup allowing the direct visualization of fluorescent colloid transport in a flow cell containing a natural chalk rock sample while simultaneously monitoring effluent colloid concentrations. We used samples containing both a natural fracture surface and an artificially made smooth surface from the same chalk core. We characterized the roughness and chemical composition of both surface types and numerically calculated each surface's velocity field. From the experiments, we obtained direct images of colloid transport over the surfaces, from which we calculated their dispersion coefficients and quantified the residual deposition of colloids on the rock surface. We also measured the colloid breakthrough curves by collecting eluent samples from the flow cell outlet. The natural fracture surface exhibited larger physical and chemical heterogeneity than the smooth, artificially generated surface. The aperture variability across the natural surface led to preferential flow and colloid transport which was qualitatively apparent in the fluorescent images. The colloid transport patterns matched the calculated velocity fields well, directly linking the surface topography and aperture variation to colloid transport. Compared to the artificially made surface, the natural surface also showed higher dispersion coefficients, which corresponded to the colloids' earlier breakthrough from the flow cell. While we found differences between the elemental composition of the natural and artificially smooth surfaces, we could not observe their impact on the colloids' surface attachment and retention. The main novelty in this work is the coupling of direct colloid transport imaging, breakthrough curve measurements, and colloid surface deposition analyses, in a flow cell containing a natural carbonate rock sample. Our experimental setup can be used to further investigate the link between surface heterogeneity, both chemical and physical, and colloid transport and deposition in natural rock fractures.
Collapse
Affiliation(s)
- Oshri Borgman
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel; Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France.
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Noam Weisbrod
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
10
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
11
|
Fang J, Li W, Tian Y, Chen Z, Yu Y, Shan S, Rajput VD, Srivastava S, Lin D. Pyrolysis temperature affects the inhibitory mechanism of biochars on the mobility of extracellular antibiotic resistance genes in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129668. [PMID: 35907284 DOI: 10.1016/j.jhazmat.2022.129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The migration of extracellular antibiotic resistance genes (eARGs) in porous media is an important pathway for ARGs to spread to the subsoil and aquifer. Biochar (BC) has been widely used to reduce the mobility of soil contaminants, however, its effect on the mobility of eARGs in porous media and the mechanisms are largely unknown. Herein, the effects of BCs synthesized from wheat straw and corn straw at two pyrolysis temperatures (300 °C and 700 °C) on the transport of plasmids-carried eARGs in sand column were investigated. The BC amendments all significantly decreased the mobility of eARGs in the porous medium, but the mechanism varied with pyrolysis temperature. The higher temperature BCs had a stronger irreversible adsorption of plasmids and greatly enhanced the attachment and straining effects on plasmids during transport, thus more effectively inhibited the mobility of eARGs. The lower temperature BCs had weaker adsorption, attachment, and straining effects on plasmids, but induced generation of hydroxyl radicals in the porous medium and thereby fragmented the plasmids and hindered the amplification of eARGs. These findings are of fundamental significance for the potential application of BC in controlling the vertical spread of eARGs in soil and vadose zones.
Collapse
Affiliation(s)
- Jing Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Wenchao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yiyang Tian
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiwen Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou 310020, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | | | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Yang Y, Yuan W, Hou J, You Z. Review on physical and chemical factors affecting fines migration in porous media. WATER RESEARCH 2022; 214:118172. [PMID: 35196620 DOI: 10.1016/j.watres.2022.118172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Permeability reduction and formation damage in porous media caused by fines (defined as unconfined solid particles present in the pore spaces) migration is one of the major reasons for productivity decline. It is well accepted that particle detachment occurs under imbalanced torques arising from hydrodynamic and adhesive forces exerted on attached particles. This paper reviewed current understanding on primary factors influencing fines migration as well as mathematical formulations for quantification. We also introduced salinity-related experimental observations that contradict theoretical predictions based on torque balance criteria, such as delayed particle release and attachment-detachment hysteresis. The delay of particle release during low-salinity water injection was successfully explained and formulated by the Nernst-Planck diffusion of ions in a narrow contact area. In addition to the widely recognized explanation by surface heterogeneity and the presence of low-velocity regions, we proposed a hypothesis that accounts for the shifting of equilibrium positions, providing new insight into the interpretation of elusive attachment-detachment hysteresis both physically and mathematically. The review was finalized by discussing the quantification of anomalous salinity effect on adhesion force at low- and high-salinity conditions.
Collapse
Affiliation(s)
- Yulong Yang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China.
| | - Weifeng Yuan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China
| | - Jirui Hou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102200, China
| | - Zhenjiang You
- Center for Sustainable Energy and Resources, Edith Cowan University, Joondalup, WA 6027, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Natural Gas, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Li T, Shen C, Johnson WP, Ma H, Jin C, Zhang C, Chu X, Ma K, Xing B. Important Role of Concave Surfaces in Deposition of Colloids under Favorable Conditions as Revealed by Microscale Visualization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4121-4131. [PMID: 35312300 DOI: 10.1021/acs.est.1c07305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study conducted saturated column experiments to systematically investigate deposition of 1 μm positively charged polystyrene latex micro-colloids (representing microplastic particles) on negatively charged rough sand, glass beads, and soil with pore water velocities (PWV) from 4.9 × 10-5 to 8.8 × 10-4 m/s. A critical value of PWV was found below which colloidal attachment efficiency (AE) increased with increasing PWV. The increase in AE with PWV was attributed to enhanced delivery of the colloids and subsequent attachment at concave locations of rough collector surfaces. The AE decreased with further increasing PWV beyond the threshold because the convex sites became unavailable for colloid attachment. By simulating the rough surfaces using the Weierstrass-Mandelbrot equation, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy calculations and torque analysis revealed that the adhesive torques could be reduced to be comparable or smaller than hydrodynamic torques even under the favorable conditions. Interestingly, scanning electron microscopic experiments showed that blocking occurred at convex sites at all ionic strengths (ISs) (e.g., even when the colloid-colloid interaction was attractive), whereas at concave sites, blocking and ripening (i.e., attached colloids favor subsequent attachment) occurred at low and high ISs, respectively. To our knowledge, our work was the first to show coexistence of blocking and ripening at high ISs due to variation of the collector surface morphology.
Collapse
Affiliation(s)
- Tiantian Li
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - William P Johnson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Huilian Ma
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chenxi Zhang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Xianxian Chu
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ke Ma
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Zhang M, He L, Zhang X, Wang S, Zhang B, Hsieh L, Yang K, Tong M. Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment. WATER RESEARCH 2022; 211:118006. [PMID: 35032874 DOI: 10.1016/j.watres.2021.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Bacterial removal by sand filtration system is commonly inefficient due to the low bacterial adsorption capacity of sand. To improve the bacterial removal performance, biochar fabricated at different temperatures (400 °C, 550 °C and 700 °C) and arginine modified biochar were added into sand filtration columns as filter layers (0.5 and 1 wt%). Addition of biochar into sand columns could improve the removal efficiency for both Escherichia coli and Bacillus subtilis under both slow (4 m/day) and fast (240 m/day) filtration conditions. Bacterial removal efficiency in sand columns with the addition of biochar fabricated at 700 °C were higher than those fabricated at 400 °C and 550 °C due to its best bacterial adsorption capacity. Modification of biochar with arginine could further improve the bacterial removal performance. Specifically, complete bacterial removal (1.35 × 107 ± 10% cells/mL) could be achieved under both slow and fast filtration conditions in sand columns with 1 wt% arginine functionalized biochar amendment. The enhanced bacterial adsorption capacity mainly contributed to the increased bacterial capture performance in columns with addition of arginine-modified biochar. Bacteria more tightly bounded with arginine-modified biochar than bulk biochar. Moreover, complete bacterial removal with the copresence of 5 mg/L humic acid in suspensions was acquired in columns with addition of 1 wt% arginine-modified biochar. Efficient bacterial removal in actual river water, multiple filtration cycles as well as longtime injection duration (100 pore volumes injection) was also obtained. The results of this study demonstrated that arginine-modified biochar had great potential to treat water contaminated by pathogenic bacteria.
Collapse
Affiliation(s)
- Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
15
|
Spanik S, Rrokaj E, Mondal PK, Sleep BE. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103919. [PMID: 34763243 DOI: 10.1016/j.jconhyd.2021.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The transport of cationic amine-modified latex (AML) and anionic carboxylate-modified latex (CML) microspheres through a discrete sandstone fracture with mineralogical heterogeneity and roughness was studied. Two microsphere sizes (200 nm and 1000 nm), two ionic strengths (5 mM and 10 mM), and two specific discharges (0.35 mm.s-1 and 0.70 mm.s-1) were tested to observe the impact on transport under favorable and unfavorable conditions. The difference in retention between AML (net favorable) and CML (net unfavorable) microsphere attachment was 25% for the 200 nm microspheres and 13% for the 1000 nm microspheres. Less than 50% of the AML microspheres were retained in the fracture, postulated to be due to the effects of mineralogical heterogeneity and fracture surface roughness. The effect of an increase in ionic strength in increasing retention was significant for unfavorable attachment, but was not significant for favorable attachment conditions. The effect of specific discharge was minor for all but the 200 nm CML microspheres at 10 mM ionic strength. When flushing the fracture first with cationic microspheres, then with anionic microspheres, the recovery of anionic microspheres resembled favorable attachment presumably due to interaction with cationic microspheres that remained attached to the sandstone surface. Colloid breakthrough curves could be fit well with a two site attachment model, with reversible and irreversible sites.
Collapse
Affiliation(s)
- Sean Spanik
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Ertiana Rrokaj
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Pulin K Mondal
- Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Brent E Sleep
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada.
| |
Collapse
|
16
|
Rajupet S. DLVO Interactions between Particles and Rough Surfaces: An Extended Surface Element Integration Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13208-13217. [PMID: 34730964 DOI: 10.1021/acs.langmuir.1c01492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface element integration (SEI) method is a computationally facile technique for calculating DLVO interactions between particles and surfaces. This method yields the exact total DLVO interaction between a particle and a flat surface; however, all surfaces have some degree roughness that profoundly affects the interaction. Previously, an ad hoc approximate method has been used to extend the SEI method to interactions between particles and surfaces with arbitrary morphology. Here we derive a more rigorous approximate method based on the fundamental scaling of DLVO interactions, which approaches the exact solution as the separation distance decreases regardless of the particle or surface morphology. We verify this method by comparison to the exact van der Waals energy when roughness is present on the particle and surface. The accuracy of this method at small separations makes it well-suited for the contexts of particle adhesion and deposition in which the length scale of interaction is on the order of angstroms and nanometers, respectively.
Collapse
Affiliation(s)
- Siddharth Rajupet
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
17
|
Won J, Kim T, Kang M, Choe Y, Choi H. Kaolinite and illite colloid transport in saturated porous media. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Liang Y, Luo Y, Lu Z, Klumpp E, Shen C, Bradford SA. Evidence on enhanced transport and release of silver nanoparticles by colloids in soil due to modification of grain surface morphology and co-transport. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116661. [PMID: 33592438 DOI: 10.1016/j.envpol.2021.116661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Natural soils have frequently been considered to decrease the mobility of engineered nanoparticles (NPs) in comparison to quartz sand due to the presence of colloids that provide additional retention sites. In contrast, this study demonstrates that the transport and release of silver nanoparticles (AgNPs) in sandy clay loam and loamy sand soils were enhanced in the presence of soil colloids that altered soil grain surface roughness. In particular, we found that the retention of AgNPs in purified soils (colloid-free and acid-treated) was more pronounced than in raw (untreated) soils or soils treated to remove organic matter (H2O2 or 600 °C treated). Chemical analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy demonstrated that the grain surfaces of raw and organic matter-removed soils were abundant with metal oxides and colloids compared to purified soil. Column transport and release experimental results, SEM images, and interaction energy calculations revealed that a significant amount of concave locations on purified soils hindered AgNP release by diffusion or ionic strength (IS) reduction due to deep primary energy minima. Conversely, AgNPs that were retained in soils in the presence of soil colloids were more susceptible to release under IS reduction because the primary minimum was shallow on the tops of convex locations created by attached soil colloids. Additionally, a considerable fraction of retained AgNPs in raw soil was released after cation exchange followed by IS reduction, while no release occurred for purified soil under the same conditions. The AgNP release was highly associated with soil colloids and co-transport of AgNPs and soil colloids was observed. Our work is the first to show that the presence of soil colloids can inhibit deposition and facilitate the release and co-transport of NPs in soil by alteration of the soil grain surface morphology and shallow primary minimum interactions.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Yonglu Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiwei Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Erwin Klumpp
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
19
|
Zhang M, He L, Jin X, Bai F, Tong M, Ni J. Flagella and Their Properties Affect the Transport and Deposition Behaviors of Escherichia coli in Quartz Sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4964-4973. [PMID: 33770437 DOI: 10.1021/acs.est.0c08712] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of flagella and their properties on bacterial transport and deposition behaviors were examined by using four types of Escherichia coli (E. coli) with or without flagella, as well as with normal or sticky flagella. Packed column, quartz crystal microbalance with dissipation, visible parallel-plate flow chamber system, and visible flow chamber packed with porous media system were employed to investigate the deposition mechanisms of bacteria with different properties of flagella. We found that the presence of flagella favored E. coli deposition onto quartz sand/silica surfaces. Moreover, by changing the porous media porosity and directly observing the bacterial deposition process, local sites with high roughness, narrow flow channels, and grain-to-grain contacts were found to be the major sites for bacterial deposition. Particularly, flagella could help bacteria swim near and then deposit at these sites. In addition, we found that due to the stronger adhesive forces, sticky flagella could further enhance bacterial deposition onto quartz sand/silica surfaces. Elution experiments indicated that flagella could help bacteria attach onto sand surfaces more irreversibly. Clearly, flagella and their properties would have obvious impacts on the transport/deposition behaviors of bacteria in porous media.
Collapse
Affiliation(s)
- Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jinren Ni
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
20
|
Nishad S, Al-Raoush RI, Alazaiza MY. Release of colloids in saturated porous media under transient hydro-chemical conditions: A pore-scale study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Bradford SA, Sasidharan S, Kim H, Gomez-Flores A, Li T, Shen C. Colloid Interaction Energies for Surfaces with Steric Effects and Incompressible and/or Compressible Roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1501-1510. [PMID: 33470105 DOI: 10.1021/acs.langmuir.0c03029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloid aggregation and retention in the presence of macromolecular coatings (e.g., adsorbed polymers, surfactants, proteins, biological exudates, and humic materials) have previously been correlated with electric double layer interactions or repulsive steric interactions, but the underlying causes are not fully resolved. An interaction energy model that accounts for double layer, van der Waals, Born, and steric interactions as well as nanoscale roughness and charge heterogeneity on both surfaces was extended, and theoretical calculations were conducted to address this gap in knowledge. Macromolecular coatings may produce steric interactions in the model, but non-uniform or incomplete surface coverage may also create compressible nanoscale roughness with a charge that is different from the underlying surface. Model results reveal that compressible nanoscale roughness reduces the energy barrier height and the magnitude of the primary minimum at separation distances exterior to the adsorbed organic layer. The depth of the primary minimum initially alters (e.g., increases or decreases) at separation distances smaller than the adsorbed organic coating because of a decrease in the compressible roughness height and an increase in the roughness fraction. However, further decreases in the separation distance create strong steric repulsion that dominates the interaction energy profile and limits the colloid approach distance. Consequently, adsorbed organic coatings on colloids can create shallow primary minimum interactions adjacent to organic coatings that can explain enhanced stability and limited amounts of aggregation and retention that have commonly been observed. The approach outlined in this manuscript provides an improved tool that can be used to design adsorbed organic coatings for specific colloid applications or interpret experimental observations.
Collapse
Affiliation(s)
| | - Salini Sasidharan
- USDA, ARS, SAWS Unit, Davis, California 95616, United States
- Environmental Sciences Department, University of California, Riverside, California 92521, United States
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 664-14 Deokjin, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Allan Gomez-Flores
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 664-14 Deokjin, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Tiantian Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Chequer L, Carageorgos T, Naby M, Hussaini M, Lee W, Bedrikovetsky P. Colloidal detachment from solid surfaces: Phase diagrams to determine the detachment regime. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Kim C, Pennell KD, Fortner JD. Delineating the Relationship between Nanoparticle Attachment Efficiency and Fluid Flow Velocity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13992-13999. [PMID: 33052644 DOI: 10.1021/acs.est.0c02669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to fundamentally describe nanoparticle (NP) transport in the subsurface underpins environmental risk assessment and successful material applications, including advanced remediation and sensing technologies. Despite considerable progress, our understanding of NP deposition behavior remains incomplete as there are conflicting reports regarding the effect of fluid flow velocity on attachment efficiency. To directly address this and more accurately describe NP attachment behavior, we have developed a novel protocol using a quartz crystal microbalance with dissipation monitoring (QCM-D) to separate and individually observe deposition mechanisms (diffusion and sedimentation), providing in situ, real-time information about particle diffusion (from the bulk liquid to solid surface). Through this technique, we have verified that the approaching velocity of NPs via diffusion increases (0.8-6.7 μm/s) with increasing flow velocity (6.1-106.0 μm/s), leading to an increased NP kinetic energy, thus affecting deposition processes. Further, in the presence of a secondary energy minimum associated with organic surface coatings, secondary minimum deposition decreases and primary minimum deposition increases with the flow velocity. NPs deposited at the primary minimum are relatively more resistant to hydrodynamic energies (including detachment associated energies), resulting in an increase of observed attachment efficiencies. Taken together, this work not only describes a novel method to delineate and quantify physical processes underpinning particle behavior but also provides direct measurements regarding key factors defining the relationship(s) of flow velocity and particle attachment. Such insight is valuable for next-generation fate and transport model accuracy, especially under unfavorable attachment regimes, which is a current and critical need for subsurface material applications and implication paradigms.
Collapse
Affiliation(s)
- Changwoo Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt D Pennell
- Civil and Environmental Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Coupled influences of particle shape, surface property and flow hydrodynamics on rod-shaped colloid transport in porous media. J Colloid Interface Sci 2020; 577:471-480. [DOI: 10.1016/j.jcis.2020.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022]
|
25
|
Li T, Shen C, Wu S, Jin C, Bradford SA. Synergies of surface roughness and hydration on colloid detachment in saturated porous media: Column and atomic force microscopy studies. WATER RESEARCH 2020; 183:116068. [PMID: 32619803 DOI: 10.1016/j.watres.2020.116068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Saturated column experiments were conducted to systematically examine the influence of hydration on the detachment of nano- and micro-sized latex colloids (35 nm and 1 μm, respectively) from sand. The colloids were attached on the sand in primary minima (PM) using high ionic strength (IS) NaCl solutions. The PM were predicted to be shallower and located farther from sand surfaces with increasing IS due to the hydration force. Consequently, a greater amount of colloid detachment occurred in deionized water when the colloids were initially deposited at a higher IS. Atomic force microscopy (AFM) examinations showed that both nanoscale protruding asperities and large wedge-like valleys existed on the sand surface. The influence of these surface features on the interaction energies/forces was modeled by approximating the roughness as cosinoidal waves and two intersecting half planes, respectively. The PM were deep and attachment was irreversible at concave regions for all ISs, even if the hydration force was included. Conversely, colloids were weakly attached at protruding asperities due to a reduced PM depth, and thus were responsible for the detachment upon IS reduction. The AFM examinations confirmed that the adhesive forces were enhanced and reduced (or even completely eliminated) at concave and convex locations of sand surfaces, respectively. These results have important implications for surface cleaning and prediction of the transport and fate of hazardous colloids and colloid-associated contaminants in subsurface environments.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China.
| | - Sen Wu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Scott A Bradford
- USDA, ARS, U.S. Salinity Laboratory, Riverside, CA, 92507-4617, United States.
| |
Collapse
|
26
|
Johnson WP, Rasmuson A, Ron C, Erickson B, VanNess K, Bolster D, Peters B. Anionic nanoparticle and microplastic non-exponential distributions from source scale with grain size in environmental granular media. WATER RESEARCH 2020; 182:116012. [PMID: 32730996 DOI: 10.1016/j.watres.2020.116012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Nanoparticle and microplastic (colloid) transport behaviors impact strategies for groundwater protection and remediation. Complex colloid transport behaviors of anionic nano- and micro-sized colloids have been previously elucidated via independent experiments in chemically-cleaned and amended granular media with grain sizes in the range of fine to coarse sand (e.g., 200-1000 μm). Such experiments show that under conditions where a repulsive barrier was present in colloid-collector interactions (unfavorable conditions), the distribution of retained colloids down-gradient from their source deviates from the exponential decrease expected from compounded loss across a series of collectors (grains). Previous experiments have not examined the impact of colloid size or granular media grain size on colloid distribution down-gradient from their source, particularly in streambed-equilibrated granular media. To address this gap, a field transport experiment in constructed wetland stream beds to distances up to 20 m were conducted for colloids ranging in size from micro to nano (60 nm-7 μm) in streambed-equilibrated pea gravel and sand (4200 and 420 μm mean grain sizes, respectively). All colloid sizes showed non-exponential (hyper-exponential) distributions from source, over meter scales in pea gravel versus cm scales reported for fine sand. Colloids in the ca. 1 μm size range were most mobile, as expected from mass transfer to surfaces and interaction with nanoscale heterogeneity. The distance over which non-exponential colloid distribution occurred increased with media grain size, which carries implications for the potential mechanism driving non-exponential colloid distribution from source, and for strategies to predict transport.
Collapse
Affiliation(s)
- William P Johnson
- Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Anna Rasmuson
- Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Cesar Ron
- Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brock Erickson
- Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kurt VanNess
- Dept. of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Diogo Bolster
- Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brett Peters
- Dept. of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
27
|
Johnson WP. Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8032-8042. [PMID: 32459088 DOI: 10.1021/acs.est.0c01172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitative linkage of fundamental physicochemical characteristics to rate coefficients used in simulations of experimentally observed transport behaviors of nanoparticles and microplastics (colloids) in environmental granular media is an active area of research. Quantitative linkage is herein demonstrated for (i) colloids ranging from nano- to microscale; in two field-based granular media of contrasting grain size, (ii) natural fine sand at the column scale; and (ii) streambed-equilibrated commercial pea gravel at the field scale. Continuum-scale rate coefficients were linked to nanoscale interactions via mechanistic pore-scale colloid trajectory simulations that predicted and defined fast- and slow-attaching subpopulations, as well as nonattaching subpopulations that either remained in the near-surface pore water or re-entrained to bulk pore water. These subfractions of the classic collector efficiency were upscaled to continuum-scale rate coefficients that produced experimentally observed colloid breakthrough-elution concentration histories and nonexponential colloid distributions from the source. The simulations explained transition from hyperexponential to nonmonotonic colloid distributions from the source as driven accumulation of mobile near-surface colloids due to relatively strong secondary minimum interaction and weak diffusion for microscale colloids. The assumption of depletion of the fast-attaching colloid subpopulation by attachment to grain surfaces produced the experimentally observed contrasting distances across which nonexponential colloid distribution from the source occurred in the fine sand versus pea gravel. Rate coefficients were quantitatively calculated from physicochemical parameters and the following three fit parameters: (i) fractional coverage by nanoscale heterogeneity; (ii) efficiency of return to the near-surface domain; and (iii) in explicit simulations, characteristic velocity for scaling transfer to near-surface pore water.
Collapse
|
28
|
Zhao W, Zhao P, Tian Y, Shen C, Li Z, Peng P, Jin C. Investigation for Synergies of Ionic Strength and Flow Velocity on Colloidal-Sized Microplastic Transport and Deposition in Porous Media Using the Colloidal-AFM Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6292-6303. [PMID: 32423217 DOI: 10.1021/acs.langmuir.0c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies that explore the transport and retention behavior of colloidal-sized microplastic (MP) with focusing on the governing mechanisms for their attachment and detachment process using colloidal-atomic force microscopy (C-AFM) were still limited. In the present study, multiscale investigations ranging from pore-scale column test to microscale visualization and eventually to nanoscale interfacial and adhesive force measurement were conducted. Pore- and microscale tests were conducted at various flow velocity and over a broad range of IS values and found that IS and flow velocity could synergically impact the deposition of MPs during filtration, in particular under unfavorable condition at small flow velocity. The net difference between the highest and lowest deposition conditions became smaller while flow velocity was decreasing in porous media. However, the net difference between the high and low IS conditions in parallel plate chamber were not sensitive to the change of flow velocity. The measurement from C-AFM suggested that not only the interfacial force but also the adhesive forces changed while MP was approaching/retracting to the collector surface. Information related to the magnitude, location, and occurrence of interfacial/adhesive forces were analyzed. Comparisons of the interaction energy determined from the measured force and ones derived from surface energy components using DLVO theory were conducted to explain the synergies of IS and flow velocity on pathogenic size MPs transport and deposition during filtration.
Collapse
Affiliation(s)
- Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peng Peng
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Wang Y, Bradford SA, Shang J. Release of colloidal biochar during transient chemical conditions: The humic acid effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114068. [PMID: 32041081 DOI: 10.1016/j.envpol.2020.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Our understanding of colloidal biochar (CB) transport and release is largely unknown in environments with transient chemical conditions, e.g., ionic strength (IS), pH, and especially humic acid (HA). In this study, column experiments were conducted to investigate CB transport and retention in the presence and absence of HA, and CB release under transient IS and pH conditions in saturated sand. Step reductions in solution IS from 25 to 0.01 mM produced significant release peaks of CB due to a reduction in the depth of the primary minima on rough surfaces with small energy barriers. In contrast, step increases of solution pH from 4 to 10 only slightly increased CB release presumably due to the strong buffering capacity of CB. The CB retention was diminished by HA during the deposition phase. However, the release of CB with transients in IS and pH was not influenced much when deposition occurred in the presence of HA. These observations indicate that HA increased the energy barrier during deposition but did not have a large influence on the depth of the interacting minimum during transient release. Potential explanations for these effects of HA on CB retention and transient release include enhanced repulsive electrostatic interactions and/or altering of surface roughness properties. Our findings indicated that the release of retained CB is sensitive to transient IS conditions, but less dependent on pH increases and CB deposition in the presence of HA. This information is needed to quantify potential benefits and/or adverse risks of mobile CB in natural environments.
Collapse
Affiliation(s)
- Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, 92507, United States
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
30
|
Liang Y, Zhou J, Dong Y, Klumpp E, Šimůnek J, Bradford SA. Evidence for the critical role of nanoscale surface roughness on the retention and release of silver nanoparticles in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113803. [PMID: 31864922 DOI: 10.1016/j.envpol.2019.113803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Although nanoscale surface roughness has been theoretically demonstrated to be a crucial factor in the interaction of colloids and surfaces, little experimental research has investigated the influence of roughness on colloid or silver nanoparticle (AgNP) retention and release in porous media. This study experimentally examined AgNP retention and release using two sands with very different surface roughness properties over a range of solution pH and/or ionic strength (IS). AgNP transport was greatly enhanced on the relatively smooth sand in comparison to the rougher sand, at higher pH, and lower IS and fitted model parameters showed systematic changes with these physicochemical factors. Complete release of the retained AgNPs was observed from the relatively smooth sand when the solution IS was decreased from 40 mM NaCl to deionized (DI) water and then the solution pH was increased from 6.5 to 10. Conversely, less than 40% of the retained AgNPs was released in similar processes from the rougher sand. These observations were explained by differences in the surface roughness of the two sands which altered the energy barrier height and the depth of the primary minimum with solution chemistry. Limited numbers of AgNPs apparently interacted in reversible, shallow primary minima on the smoother sand, which is consistent with the predicted influence of a small roughness fraction (e.g., pillar) on interaction energies. Conversely, larger numbers of AgNPs interacted in deeper primary minima on the rougher sand, which is consistent with the predicted influence at concave locations. These findings highlight the importance of surface roughness and indicate that variations in sand surface roughness can greatly change the sensitivity of nanoparticle transport to physicochemical factors such as IS and pH due to the alteration of interaction energy and thus can strongly influence nanoparticle mobility in the environment.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| | - Jini Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yawen Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Erwin Klumpp
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jiří Šimůnek
- Department of Environmental Sciences, University of California, Riverside, CA, United States
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, United States.
| |
Collapse
|
31
|
Zhang Q, Yu Z, Jin S, Liu C, Li Y, Guo D, Hu M, Ruan R, Liu Y. Role of surface roughness in the algal short-term cell adhesion and long-term biofilm cultivation under dynamic flow condition. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Tong M, He L, Rong H, Li M, Kim H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe 3O 4-biochar amendment. WATER RESEARCH 2020; 169:115284. [PMID: 31739235 DOI: 10.1016/j.watres.2019.115284] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
As an environmentally friendly material, biochar has been widely used to remediate soil/water contaminants such as heavy metals and organic pollutants. The addition of biochar or modified biochar to porous media might affect the retention of plastic particles and thus influence their fate in natural environment. In this study, both biochar and magnetic biochar (Fe3O4-biochar) were synthesized via a facile precipitation method at room temperature. To determine the significance of biochar and Fe3O4-biochar amendment on the transport and deposition behaviors of plastic particles, the breakthrough curves and retained profiles of three different sized plastic particles (0.02 μm nano-plastic particles, and 0.2 μm and 2 μm micro-plastic particles) in quartz sand were compared with those obtained in quartz sand either with biochar or Fe3O4-biochar amendment in both 5 mM and 25 mM NaCl solutions. The results show that for all three different sized plastic particles under both examined solution conditions, the addition of biochar and Fe3O4-biochar in quartz sand decreases the transport and increases the retention of plastic particles in porous media. Fe3O4-biochar more effectively inhibits the transport of plastic particles than biochar. We found that the addition of biochar/Fe3O4-biochar could change the suspension property and increase the adsorption capacity of porous media (due to the increase of porous media surface roughness and negatively decrease the zeta potentials of porous media), contributing to the enhanced deposition of plastic particles. Moreover, we found that negligible amount of biochar and Fe3O4-biochar (<1%) were released from the columns following the plastic particle transport when the columns were eluted with very low ionic strength solution at high flow rate (to simulate a sudden rainstorm). Similarly, small amount of plastic particles were detached from the porous media under this extreme condition (16.5% for quartz sand, 14.6% for quartz sand with biochar amendment, and 7.5% for quartz sand with Fe3O4-biochar amendment). We found that over 74% of the Fe3O4-biochar can be recovered from the porous media after the retention of plastic particles by using a magnet and 87% plastic particles could be desorbed from Fe3O4-biochar by dispersing the Fe3O4-biochar into 10 mM NaOH solution. In addition, we found that the amendment of unsaturated porous media with biochar/Fe3O4-biochar also decreased the transport of plastic particles. When biochar/Fe3O4-biochar were added into porous media as one layer of permeable barrier near to column inlet, the decreased transport of plastic particles could be also obtained. The results of this study indicate that magnetic biochar can be potentially applied to immobilize plastic particles in terrestrial ecosystems such as in soil or groundwater.
Collapse
Affiliation(s)
- Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea
| |
Collapse
|
33
|
Rasmuson A, Erickson B, Borchardt M, Muldoon M, Johnson WP. Pathogen Prevalence in Fractured versus Granular Aquifers and the Role of Forward Flow Stagnation Zones on Pore-Scale Delivery to Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:137-145. [PMID: 31770489 DOI: 10.1021/acs.est.9b03274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lesser pathogen prevalence is well recognized in granular versus fractured aquifers; however, the impact of residence time (inactivation/death) versus removal (pore-scale delivery to surfaces) on pathogen prevalence remains unaddressed. The objective of this study was to examine the specific role of pore-scale delivery to surfaces (removal) as an explanation of contrasting pathogen prevalence in granular versus fractured media from Wisconsin. Inactivation/death was obviated by the use of nonbiological colloids in column transport experiments conducted in representative media from the two Wisconsin sites. Trends in retention as a function of colloid size were examined using nano- to microsized (0.1-4.2 μm) carboxylate-modified polystyrene latex microspheres that represented virus- to protozoa-sized pathogens. Several orders of magnitude greater removal of all colloid sizes were observed in granular relative to those in fractured media, whereas the size corresponding to minimum retention contrasted between the two media. Particle trajectory simulations in collectors (flow fields with surfaces) representing granular versus fractured media captured the observed contrasting retention and trends with colloid size. These results demonstrate that flow impingement on surfaces at forward flow stagnation zones drives contrasting pore-scale delivery to surfaces in granular versus fractured media and potentially the observed contrasting pathogen prevalence in granular versus fractured aquifers.
Collapse
Affiliation(s)
- Anna Rasmuson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Brock Erickson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark Borchardt
- USDA-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Maureen Muldoon
- Department of Geology, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54901-8649, United States
| | - William P Johnson
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
34
|
Wang Y, Zhang W, Shang J, Shen C, Joseph SD. Chemical Aging Changed Aggregation Kinetics and Transport of Biochar Colloids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8136-8146. [PMID: 31185160 DOI: 10.1021/acs.est.9b00583] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Little is known about aggregation and transport behaviors of aged biochar colloids in the terrestrial environment. This study investigated aggregation kinetics and transport of biochar colloids from aged (HNO3 treatment) and pristine pinewood biochars pyrolyzed at 300 and 600 °C (PB300 and PB600) in NaCl and CaCl2 solutions. In NaCl solutions, critical coagulation concentrations (CCCs) of aged PB300 and PB600 colloids (540 mM and 327 mM) were much greater than the CCCs of pristine biochar colloids (300 mM and 182 mM). This is likely due to substantial increase of negatively charged oxygen-containing functional groups (primarily carboxyl) on aged biochar surfaces. Intriguingly, in CaCl2 solutions the CCCs of the aged PB300 and PB600 colloids decreased to 25.2 mM and 32.1 mM from 58.6 mM and 41.7 mM for the pristine colloids, respectively. This probably resulted from greater surface charge neutralization and Ca2+ bridging for the aged biochar colloids. In salt solutions (e.g., 10 and 50 mM NaCl and 1 and 10 mM CaCl2), the aged biochar colloids showed higher mobility in porous media than the pristine biochar colloids. This study demonstrated that pristine and aged biochar colloids were stable in the solutions with environmentally relevant ionic strength, and the aging process might substantially increase their mobility in the subsurface.
Collapse
Affiliation(s)
- Yang Wang
- College of Resources and Environmental Sciences , China Agricultural University and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193 , China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science and Policy Program , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Jianying Shang
- College of Resources and Environmental Sciences , China Agricultural University and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193 , China
| | - Chongyang Shen
- College of Resources and Environmental Sciences , China Agricultural University and Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193 , China
| | - Stephen D Joseph
- School of Materials Science and Engineering , University of New South Wales , Kensington , New South Wales 2052 , Australia
| |
Collapse
|
35
|
VanNess K, Rasmuson A, Ron CA, Johnson WP. A Unified Force and Torque Balance for Colloid Transport: Predicting Attachment and Mobilization under Favorable and Unfavorable Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9061-9070. [PMID: 31181161 DOI: 10.1021/acs.langmuir.9b00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloid attachment and detachment behaviors concern a wide range of environmental contexts but have typically been mechanistically predicted exclusive of one another despite their obvious coupling. Furthermore, previous mechanistic prediction often addressed packed column contexts, wherein specific forces and torques on the colloid could not be well-constrained, preventing robust predictions. These weaknesses were addressed through direct observation experiments under conditions where perfect sink assumptions fail and allow calibration of the contact between the colloid and collector. Attachment and flow perturbation experiments in the presence of colloid-collector attraction (favorable conditions) permitted calibration of contact parameters without the complexity that comes with colloid-collector repulsion (unfavorable conditions). Combining calibrated contact parameters with discrete representative nanoscale heterogeneity, developed to predict unfavorable attachment, provided an independent means to predict unfavorable detachment. The result was mechanistic prediction of colloid attachment and detachment that quantitatively agreed with experimental observation for both ionic strength and flow perturbation results, improving significantly upon previous qualitative prediction.
Collapse
Affiliation(s)
- Kurt VanNess
- Department of Geology & Geophysics , University of Utah , 115 South 1460 East , Salt Lake City , Utah 84112 , United States
| | - Anna Rasmuson
- Department of Geology & Geophysics , University of Utah , 115 South 1460 East , Salt Lake City , Utah 84112 , United States
| | - Cesar A Ron
- Department of Geology & Geophysics , University of Utah , 115 South 1460 East , Salt Lake City , Utah 84112 , United States
| | - William P Johnson
- Department of Geology & Geophysics , University of Utah , 115 South 1460 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|