1
|
Kerdsomboon K, Techo T, Mhuantong W, Limcharoensuk T, Luangkamchorn ST, Laoburin P, Auesukaree C. Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175915. [PMID: 39216765 DOI: 10.1016/j.scitotenv.2024.175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cadmium-resistant Cupriavidus sp. strain E324 has been previously shown to have a high potential for use in cadmium (Cd) remediation, due to its high capacity for cadmium bioaccumulation. According to the comparative genomic analysis, the strain E324 was most closely related to C. nantongensis X1T, indicating that the strain E324 should be re-identified as C. nantongensis. To unravel the Cd tolerance mechanisms of C. nantongensis strain E324, the transcriptional response of this strain to acute Cd exposure was assessed using RNA-seq-based transcriptome analysis, followed by validation through qRT-PCR. The results showed that the upregulated Differentially Expressed Genes (DEGs) were significantly enriched in categories related to metal binding and transport, phosphate transport, and oxidative stress response. Consistently, we observed significant increases in both the cell wall and intracellular contents of certain essential metals (Cu, Fe, Mn, and Zn) upon Cd exposure. Among these, only the Zn pretreatment resulting in high Zn accumulation in the cell walls could enhance bacterial growth under Cd stress conditions through its role in inhibiting Cd accumulation. Additionally, the promotion of catalase activity and glutathione metabolism upon Cd exposure to cope with Cd-induced oxidative stress was demonstrated. Meanwhile, the upregulation of phosphate transport-related genes upon Cd treatment seems to be the bacterial response to Cd-induced phosphate depletion. Altogether, our findings suggest that these adaptive responses are critical mechanisms contributing to increased Cd tolerance in C. nantongensis strain E324 via the enhancement of metal-chelating and antioxidant capacities of the cells.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supinda Tatip Luangkamchorn
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| | - Patcharee Laoburin
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Ge Y, Sheng Q, Sun L, He L, Sheng X. The quorum sensing SinI/SinR-TraI/TraR systems promote Pb stabilization by Ensifer adhaerens S24 in the Pb-polluted aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135477. [PMID: 39128153 DOI: 10.1016/j.jhazmat.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In this study, the Pb-resistant Ensifer adhaerens strain S24, which contains quorum sensing (QS) systems responsible for N-acyl homoserine lactone (AHL) production, was investigated for QS system-mediated Pb stabilization and the underlying mechanisms. Whole-genome sequence analysis revealed the QS SinI/R and TraI/R systems in strain S24. Subsequently, strains S24 and the S24∆sinI/R, S24∆traI/R, S24∆traI/R/sinR, and S24∆sinI/R-traI/R/sinR mutants were constructed and compared for QS SinI/SinR-TraI/TraR system-mediated Pb stabilization in the solution and the mechanisms involved. After 5 days of incubation, strain S24 significantly decreased the Pb concentration in the Pb-contaminated solution compared with the mutants. The S24∆sinI/R-traI/R/sinR mutant exhibited reduced Pb stabilization and AHL activity than the other mutants. The S24∆sinI/R-traI/R/sinR mutant had significantly greater Pb concentrations in the solution and lower cell surface-adsorbed and extracellular precipitated Pb (PbS) contents as well as lower expression of H2S-producing genes of metC and sseA than did strain S24. Furthermore, the S24∆sinI/R-traI/R/sinR mutant displayed reduced interactions between the hydroxyl, amino, carboxyl, and ether groups and Pb, compared with strain S24. These findings implied the vital role of the SinI/SinR-TraI/TraR systems in strain S24 for Pb stabilization through enhanced cell surface adsorption and extracellular precipitation in Pb-polluted aquatic environments.
Collapse
Affiliation(s)
- Yanyan Ge
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijing Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Thakur P, Gopalakrishnan V, Saxena P, Subramaniam M, Goh KM, Peyton B, Fields M, Sani RK. Influence of Copper on Oleidesulfovibrio alaskensis G20 Biofilm Formation. Microorganisms 2024; 12:1747. [PMID: 39338422 PMCID: PMC11434458 DOI: 10.3390/microorganisms12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented with high copper ion concentrations of 5, 15, and 30 µM, exhibited inhibited growth in its planktonic state. Conversely, under similar copper concentrations, OA G20 demonstrated enhanced biofilm formation on glass coupons. Microscopic studies revealed that biofilms exposed to copper stress demonstrated a change in cellular morphology and more accumulation of carbohydrates and proteins than controls. Consistent with these findings, sulfur (dsrA, dsrB, sat, aprA) and electron transport (NiFeSe, NiFe, ldh, cyt3) genes, polysaccharide synthesis (poI), and genes involved in stress response (sodB) were significantly upregulated in copper-induced biofilms, while genes (ftsZ, ftsA, ftsQ) related to cellular division were negatively regulated compared to controls. These results indicate that the presence of copper ions triggers alterations in cellular morphology and gene expression levels in OA G20, impacting cell attachment and EPS production. This adaptation, characterized by increased biofilm formation, represents a crucial strategy employed by OA G20 to resist metal ion stress.
Collapse
Affiliation(s)
- Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Brent Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Matthew Fields
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
4
|
Liu W, Wang Q, Wang Y, Zhan W, Wu Z, Zhou H, Cheng H, Chen Z. Effects of Cd(II) on nitrogen removal by a heterotrophic nitrification aerobic denitrification bacterium Pseudomonas sp. XF-4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116588. [PMID: 38878332 DOI: 10.1016/j.ecoenv.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Simultaneous heterotrophic nitrification and aerobic denitrification (SND) is gaining tremendous attention due to its high efficiency and low cost in water treatment. However, SND on an industrial scale is still immature since effects of coexisting pollutants, for example, heavy metals, on nitrogen removal remains largely unresolved. In this study, a HNAD bacterium (Pseudomonas sp. XF-4) was isolated. It could almost completely remove ammonium and nitrate at pH 5-9 and temperature 20 ℃-35 ℃ within 10 h, and also showed excellently simultaneous nitrification and denitrification efficiency under the coexistence of any two of inorganic nitrogen sources with no intermediate accumulation. XF-4 could rapidly grow again after ammonium vanish when nitrite or nitrate existed. There was no significant effects on nitrification and denitrification when Cd(II) was lower than 10 mg/L, and 95 % of Cd(II) was removed by XF-4. However, electron carrier and electron transport system activity was inhibited, especially at high concentration of Cd(II). Overall, this study reported a novel strain capable of simultaneous nitrification and denitrification coupled with Cd(II) removal efficiently. The results provided new insights into treatment of groundwater or wastewater contaminated by heavy metals and nitrogen.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China.
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| |
Collapse
|
5
|
Gu Z, Yan H, Zhang Q, Wang Y, Liu C, Cui X, Liu Y, Yu Z, Wu X, Ruan R. Elimination of copper obstacle factor in anaerobic digestion effluent for value-added utilization: Performance and resistance mechanisms of indigenous bacterial consortium. WATER RESEARCH 2024; 252:121217. [PMID: 38335748 DOI: 10.1016/j.watres.2024.121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The presence of excessive residual Cu(II), a high-risk heavy metal with potential toxicity and biomagnification property, substantially impede the value-added utilization of anaerobic digestion effluent (ADE). This study adapted indigenous bacterial consortium (IBCs) to eliminate Cu(II) from ADE, and their performances and resistance mechanisms against Cu(II) were analyzed. Results demonstrated that when the Cu(II) exposure concentration exceeded 7.5 mg/L, the biomass of IBCs decreased significantly, cells produced a substantial amount of ROS and EPS, at which time the intracellular Cu(II) content gradually decreased, while Cu(II) accumulation within the EPS substantially increased. The combined features of a high PN/PS ratio, a reversed Zeta potential gradient, and abundant functional groups within EPS collectively render EPS a primary diffusion barrier against Cu(II) toxicity. Mutual physiological and metagenomics analyses reveal that EPS synthesis and secretion, efflux, DNA repair along with coordination between each other were the primary resistance mechanisms of IBCs against Cu(II) toxicity. Furthermore, IBCs exhibited enhanced resistance by enriching bacteria carrying relevant resistance genes. Continuous pretreatment of actual ADE with IBCs at a 10-day hydraulic retention time (HRT) efficiently eliminated Cu(II) concentration from 5.01 mg/L to ∼0.68 mg/L by day 2. This elimination remained stable for the following 8 days of operation, further validated their good Cu(II) elimination stability. Notably, supplementing IBCs with 200 mg/L polymerized ferrous sulfate significantly enhanced their settling performance. By elucidating the intricate interplay of Cu(II) toxicity and IBC resistance mechanisms, this study provides a theoretical foundation for eliminating heavy metal barriers in ADE treatment.
Collapse
Affiliation(s)
- Zhiqiang Gu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Hongbin Yan
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, PR China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul 55108, USA
| |
Collapse
|
6
|
Zhao W, Yang H, Huang Y, Fan X, Tong Z. Genomic Sequencing of Clinical Cupriavidus gilardii Isolates Revealed Their Diverse Antimicrobial Resistance Mechanisms. Infect Drug Resist 2024; 17:655-664. [PMID: 38379587 PMCID: PMC10878315 DOI: 10.2147/idr.s438328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose Cupriavidus gilardii is an emerging multidrug-resistant pathogen found in many environments and few clinical samples. The clinical infectiousness, pathogenicity, and resistance mechanisms of C. gilardii are still unclear due to the lack of clinical and sequencing data. We need to obtain insight into the clinical characteristics, virulence, and resistance mechanisms of C. gilardii. Patients and Methods We isolated five C. gilardii isolates from hospitalized patients and carried out assay, culture and genome sequencing. We analyzed the genomic features of clinical C. gilardii isolates and took insight into their clinical characteristics, virulence, and resistance mechanisms. Results These isolates were resistant to meropenem, gentamicin, and other antimicrobials due to intrinsic resistance genes. Furthermore, the sequencing results revealed the widespread presence of the MCR-5.1 gene in C. gilardii. The virulence magnitude of C. gilardii is closely correlated with the number of virulence factors they carry. Some C. gilardii strains can acquire resistance to levofloxacin through gyrA gene mutation during treatment. The diverse antimicrobial resistance mechanisms challenge the treatment of C. gilardii infections. Conclusion We present the genomic characteristics of clinically isolated C. gilardii to improve (i) our understanding of this pathogen and (ii) treatment options.
Collapse
Affiliation(s)
- Weichao Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, People’s Republic of China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Huang Y, Yang L, Pan K, Yang Z, Yang H, Liu J, Zhong G, Lu Q. Heavy metal-tolerant bacteria Bacillus cereus BCS1 degrades pyrethroid in a soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132594. [PMID: 37748314 DOI: 10.1016/j.jhazmat.2023.132594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The heightened concern about the environmental impacts of pollutants drives interest in reducing their threats to humans and the environment. Bioremediating polluted sites under environmental stresses like biotic and abiotic poses significant challenges. This study aimed to isolate a bacterium that effectively degrades pyrethroids even under abiotic stresses involving heavy metals and biotic stresses with autochthonous factors. Here, a bacterial strain, Bacillus cereus BCS1 was isolated. The response surface methodology was established to quantify the environmental impacts on pyrethroid degradation. BCS1 effectively degraded pyrethroids across conditions at 21-36 °C, pH 6.5-8.0 and inoculum sizes 1.9-4.1 mg·L-1, exceeding 90% degradation. Notably, over 84% of β-cypermethrin (β-CP) was degraded even when exposed to various concentrations of lead (10-1000 mg·L-1), chromium (10-1000 mg·L-1), or cadmium (0.5-50 mg·L-1). Moreover, BCS1 significantly accelerated β-CP degradation in soil-plant systems, displaying biotic stress tolerance, with lower half-life values (10.1 and 9.5 d) in soil and higher removal (92.1% and 60.9%) in plants compared to controls (27.7 and 25.7 d), and (18.2% and 24.3%). This study presents a novel strain capable of efficiently degrading pyrethroids and displaying remarkable environmental stress resistance. Findings shed light on bioremediating organic pollutants in complex soil ecosystems.
Collapse
Affiliation(s)
- Yanfeng Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhengyi Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hongxia Yang
- Huangpu Customs Technology Center, China; Guangdong Provincial Key Laboratory for Port Security Intelligent Testing, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Cao D, Chen X, Nan J, Wang A, Li Z. Biomolecular insights into the inhibition of heavy metals on reductive dechlorination of 2,4,6-trichlorophenol in Pseudomonas sp. CP-1. WATER RESEARCH 2023; 247:120836. [PMID: 37950953 DOI: 10.1016/j.watres.2023.120836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Influences of heavy metal exposure to the organohalide respiration process and the related molecular mechanism remain poorly understood. In this study, a non-obligate organohalide respiring bacterium, Pseudomonas sp. strain CP-1, was isolated and its molecular response to the five types of commonly existed heavy metal ions were thoroughly investigated. All types of heavy metal ions posed inhibitory effects on 2,4,6-trichlorophenol dechlorination activity and cell growth with the varied degree. Exposure to Cu (II) showed the most serious inhibitive effects on dechlorination even at the lowest concentration of 0.05 mg/L, while the inhibition by As (V) was the least with the removal kinetic constant k decreased to 0.05 under 50 mg/L. Further, multi-omics analysis found compared with Cu (II), As (V) exposure led to the insignificant downregulation of a variety of biosynthesis processes, which would be one possible account for the less inhibited activity. More importantly, the inhibited mechanisms on the organohalide respiration catabolism of strain CP-1 were firstly revealed. Cu (II) stress severely downregulated NADH generation during TCA cycle and electron donation of organohalide respiration process, which might decrease the reducing power required for organohalide respiration. While both Cu (II) and As (Ⅴ) inhibited substrate level phosphorylation during TCA cycle, as well as electron transfer and ATP generation during organohalide respiration. Meanwhile, CprA-2 was confirmed as the responsible reductive dehalogenase in charge of 2,4,6-TCP dechlorination, and transcriptional and proteomic studies confirmed the directly inhibited gene transcription and expression of CprA-2. The in-depth reveal of inhibitory effects and mechanism gave theoretical supports for alleviating heavy metal inhibition on organohalide respiration activity in groundwater co-contaminated with organohalides and heavy metals.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
9
|
Wang H, Zhang S, Zhang J. The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:484-496. [PMID: 37328952 PMCID: PMC10667631 DOI: 10.1111/1758-2229.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY-33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY-33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY-33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY-33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro-energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY-33, which may acquire from the long-term interaction with the living environment.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| | - Siyao Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
| | - Jing Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| |
Collapse
|
10
|
Zhang B, Xu J, Sun M, Yu P, Ma Y, Xie L, Chen L. Comparative secretomic and proteomic analysis reveal multiple defensive strategies developed by Vibrio cholerae against the heavy metal (Cd 2+, Ni 2+, Pb 2+, and Zn 2+) stresses. Front Microbiol 2023; 14:1294177. [PMID: 37954246 PMCID: PMC10637575 DOI: 10.3389/fmicb.2023.1294177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Vibrio cholerae is a common waterborne pathogen that can cause pandemic cholera in humans. The bacterium with heavy metal-tolerant phenotypes is frequently isolated from aquatic products, however, its tolerance mechanisms remain unclear. In this study, we investigated for the first time the response of such V. cholerae isolates (n = 3) toward the heavy metal (Cd2+, Ni2+, Pb2+, and Zn2+) stresses by comparative secretomic and proteomic analyses. The results showed that sublethal concentrations of the Pb2+ (200 μg/mL), Cd2+ (12.5 μg/mL), and Zn2+ (50 μg/mL) stresses for 2 h significantly decreased the bacterial cell membrane fluidity, but increased cell surface hydrophobicity and inner membrane permeability, whereas the Ni2+ (50 μg/mL) stress increased cell membrane fluidity (p < 0.05). The comparative secretomic and proteomic analysis revealed differentially expressed extracellular and intracellular proteins involved in common metabolic pathways in the V. cholerae isolates to reduce cytotoxicity of the heavy metal stresses, such as biosorption, transportation and effluxing, extracellular sequestration, and intracellular antioxidative defense. Meanwhile, different defensive strategies were also found in the V. cholerae isolates to cope with different heavy metal damage. Remarkably, a number of putative virulence and resistance-associated proteins were produced and/or secreted by the V. cholerae isolates under the heavy metal stresses, suggesting an increased health risk in the aquatic products.
Collapse
Affiliation(s)
- Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuming Ma
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Purnomo JS, Victor H, Dikson, Cornelia M, Pinontoan R. Decolorization potential of malachite green by Ralstonia mannitolilytica isolated from Indonesian cassava-based fermented food tapai. Arch Microbiol 2023; 205:339. [PMID: 37747508 DOI: 10.1007/s00203-023-03678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Pollution due to textile dye effluent mishandling is hazardous to ecosystems and to the living beings inhabiting them. This can cause retarded photosynthesis, disrupted fish day/night cycles, unbalanced bacterial populations, and decreased oxygen concentration in contaminated water, leading to low habitability. In this study, we aimed to isolate and characterize the microorganisms found in Indonesian cassava-based fermented food tapai starter cultures as a source of potential microbes for the biological remediation of textile dye pollutants. Microorganisms in the tapai starter culture were screened for their decolorization activity via spread-culture inoculation on a solid growth medium supplemented with textile dyes. Isolated microorganisms were selected based on their ability to secrete textile dye-decolorizing extracellular enzymes via increased light penetration after incubation of the cell-free supernatant (CFS) containing extracellular enzymes in textile dye solutions. Isolate JSP1 was the only bacterium capable of producing malachite green (MG)-decolorizing extracellular enzymes, which enabled it to survive and decolorize MG up to 375 ppm. Moreover, isolate JSP1 CFS was able to optimally decolorize 75% of MG at 100 ppm, but its activity was diminished at concentrations > 350 ppm. Colony and cellular morphology, biochemistry, and 16S rRNA tests revealed that the isolate was of Ralstonia mannitolilytica. Therefore, R. mannitolilytica isolate JSP1 may be a potential bioremediation agent for MG.
Collapse
Affiliation(s)
- Jonathan Suciono Purnomo
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Hans Victor
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Dikson
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Melanie Cornelia
- Department of Food Technology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia.
| |
Collapse
|
12
|
Wang C, Sun X, Chen Y, Zhang Y, Li M. Comparative metabolomic analysis reveals Ni(II) stress response mechanism of Comamonas testosteroni ZG2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115244. [PMID: 37441950 DOI: 10.1016/j.ecoenv.2023.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The focus on the toxicity of nickel (Ni(II)) in animal and human cells has increased recently. Ni(II) contamination hazards to animals and humans can be reduced by bioremediation methods. However, one of the limitation of bioremediation bacteria in soil remediation is that they cannot survive in moderate and heavy contamination Ni(II)-contaminated environments. Therefore, the Ni(II) response mechanism of Comamonas testosteroni ZG2 which has soil remediation ability in high-concentration Ni(II) environment must be elucidated. The results demonstrated that the ZG2 strain can survive at 350 mg/L concentration of Ni(II), but the growth of ZG2 was completely inhibited under the concentration of 400 mg/L Ni(II) with significant alterations in the membrane morphology, adhesion behavior, and functional groups and serious membrane damage. Furthermore, the metabolic analysis showed that Ni(II) may affect the adhesion behavior and biofilm formation of the ZG2 strain by affecting the abundance of metabolites in amino acid biosynthesis, aminoacyl-tRNA biosynthesis, ABC transporter, and cofactor biosynthesis pathways, and inhibiting its growth. This study provides new evidence clarifying the response mechanism of Ni(II) stress in the ZG2 strain, thus playing a significant role in designing the strategies of bioremediation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yuanhui Chen
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
13
|
Vishakha K, Das S, Ganguli A. The Facile Synthesis of Eco-Friendly Zinc Magnesium Bimetal Nanoparticles and its Application in the Eradication of Xanthomonas oryzae pv. oryzae that Causes Leaf Blight Disease of Rice. Curr Microbiol 2023; 80:340. [PMID: 37712946 DOI: 10.1007/s00284-023-03455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
In this research work, we formulated and successfully assessed the antibacterial capability of zinc magnesium bimetal nanoparticles (ZnMgNPs) against Xanthomonas oryzae pv. oryzae (Xoo), the pathogenic microorganism responsible for causing the destructive leaf blight disease in rice. Successful preparation of ZnMgNPs were determined by UV-vis spectroscopy, EDX (Energy dispersive X-ray), FTIR (Fourier transform infrared) and SEM (Scanning Electron Microscopy). ZnMgNPs had antibacterial efficacy towards Xoo at MIC (minimum inhibitory concentration) 50 µg/ml. ZnMgNPs impeded the formation of biofilm of Xoo by drastically reducing the amount of EPS (extracellular polymeric substances) production and number of sessile cells. The ZnMgNPs also reduced several pathogenic traits of Xoo like motility, xanthomonadin and exoenzymes production. ZnMgNPs target cell membrane of Xoo and also induced oxidative damage as mechanisms of its antibacterial activity. As revealed by an ex-vivo study, ZnMgNPs diminished BLB (bacterial leaf blight) disease symptoms in rice leaves, ZnMgNPs had no effect on rice seed germination, and that following foliar application, the length and biomass of roots and shoots of rice seedling were unaffected, low cytotoxic to A549 cell line showing that ZnMgNPs are non-toxic. However, with ZnMgNPs treatment, the chlorophyll content index (CCI) increased significantly, indicating a good impact on rice physiology. All of these findings suggest that ZnMgNPs could be applied in agriculture to combat the Xoo-caused BLB disease.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
14
|
Luo Y, Pang J, Peng C, Ye J, Long B, Tong J, Shi J. Cr(VI) Reduction and Fe(II) Regeneration by Penicillium oxalicum SL2-Enhanced Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37474249 DOI: 10.1021/acs.est.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Nanoscale zero-valent iron (nZVI) faces significant challenges in Cr(VI) remediation through aggregation and passivation. This study identified a Cr(VI)-resistant filamentous fungus (Penicillium oxalicum SL2) for nZVI activation and elucidated the synergistic mechanism in chromium remediation. P. oxalicum SL2 and nZVI synergistically and effectively removed Cr(VI), mainly by extracellular nonenzymatic reduction (89.1%). P. oxalicum SL2 exhibited marked iron precipitate solubilization and Fe(II) regeneration capabilities. The existence of the Fe(II)-Cr(V)-oxalate complex (HCrFeC4O9) indicated that in addition to directly reducing Cr(VI), iron ions generated by nZVI stimulated Cr(VI) reduction by organic acids secreted by P. oxalicum SL2. RNA sequencing and bioinformatics analysis revealed that P. oxalicum SL2 inhibited phosphate transport channels to suppress Cr(VI) transport, facilitated iron and siderophore transport to store Fe, activated the glyoxylate cycle to survive harsh environments, and enhanced organic acid and riboflavin secretion to reduce Cr(VI). Cr(VI) exposure also stimulated the antioxidative system, promoting catalase activity and maintaining the intracellular thiol/disulfide balance. Cr(VI)/Fe(III) reductases played crucial roles in the intracellular reduction of chromium and iron, while nZVI decreased cellular oxidative stress and alleviated Cr(VI) toxicity to P. oxalicum SL2. Overall, the P. oxalicum SL2-nZVI synergistic system is a promising approach for regenerating Fe(II) while reducing Cr(VI).
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jien Ye
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bibo Long
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Gao Y, Yu T, Ai F, Ji C, Wu Y, Huang X, Zheng X, Yan F. Bacillus coagulans XY2 ameliorates copper-induced toxicity by bioadsorption, gut microbiota and lipid metabolism regulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130585. [PMID: 37055990 DOI: 10.1016/j.jhazmat.2022.130585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Excessive copper pollutes the environment and endangers human health, attracting plenty of global attention. In this study, a novel strain named Bacillus coagulans XY2 was discovered to have a great copper tolerance and adsorption capacity. B. coagulans XY2 might maintain copper homeostasis through multisystem synergies of copper resistance, sulfur metabolism, Fe-S cluster assembly, and siderophore transport. In mice, by promoting the expression of SREBF-1 and SREBF-2 and their downstream genes, B. coagulans XY2 significantly inhibited the copper-induced decrease in weight growth rate, ameliorated dyslipidemia, restored total cholesterol and triglyceride contents both in serum and liver. Furthermore, B. coagulans XY2 recovered the diversity of gut microbiota and suppressed the copper-induced reduction in the ratio of Firmicutes to Bacteroidota. Serum metabolomics analysis showed that the alleviating effect of B. coagulans XY2 on copper toxicity was mainly related to lipid metabolism. For the first time, we demonstrated mechanisms of copper toxicity mitigation by B. coagulans XY2, which was related to self-adsorption, host copper excretion promotion, and lipid metabolism regulation. Moreover, working model of B. coagulans XY2 on copper homeostasis was predicted by whole-genome analysis. Our study provides a new solution for harmfulness caused by copper both in human health and the environment.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fang Ai
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Ji
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Tang F, Yue J, Tian J, Ge F, Li F, Liu Y, Deng S, Zhang D. Microbial induced phosphate precipitation accelerate lead mineralization to alleviate nucleotide metabolism inhibition and alter Penicillium oxalicum's adaptive cellular machinery. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129675. [PMID: 35907285 DOI: 10.1016/j.jhazmat.2022.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Microbial-induced phosphate (P) precipitation (MIPP) based on P-solubilizing microorganisms (PSM) is regarded as a promising approach to bioimmobilize environmental lead (Pb). Nevertheless, the underlying changes of Pb2+ biotoxicity in PSM during MIPP process were rarely discussed. The current study explored the Pb2+ immobilization and metabolic changes in PSM Penicillium oxalicum postexposure to Pb2+ and/or tricalcium phosphate (TCP). TCP addition significantly increased soluble P concentrations, accelerated extracellular Pb mineralization, and improved antioxidative enzyme activities in P. oxalicum during MIPP process. Secondary Pb2+ biomineralization products were measured as hydroxypyromorphite [Pb10(PO4)6(OH)2]. Using untargeted metabolomic and transcriptomics, we found that Pb2+ exposure stimulated the membrane integrity deterioration and nucleotide metabolism obstruction of P. oxalicum. Correspondingly, P. oxalicum could produce higher levels of gamma-aminobutyric acid (GABA) to enhance the adaptive cellular machineries under Pb2+ stress. While the MIPP process improved extracellular Pb2+ mineralization, consequently alleviating the nucleotide metabolism inhibition and membrane deterioration. Multi-omics results suggested that GABA degradation pathway was stimulated for arginine biosynthesis and TCA cycle after Pb2+ mineralization. These results provided new biomolecular information underlying the Pb2+ exposure biotoxicities to microorganisms in MIPP before the application of this approach in environmental Pb2+ remediation.
Collapse
Affiliation(s)
- Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
17
|
Fang L, Zhu H, Geng Y, Zhang G, Zhang H, Shi T, Wu X, Li QX, Hua R. Resistance properties and adaptation mechanism of cadmium in an enriched strain, Cupriavidus nantongensis X1 T. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128935. [PMID: 35461001 DOI: 10.1016/j.jhazmat.2022.128935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Bacterial adaption to heavy metal stress is a complex and comprehensive process of multi-response regulation. However, the mechanism is largely unexplored. In this study, cadmium (Cd) resistance and adaptation mechanism in Cupriavidus nantongensis X1T were investigated. Strain X1T could resist the stress of 307 mg/L Cd2+ and remove 70% Cd2+ in 48 h. Spectroscopic analyses suggested interactions between Cd2+ with C-N, -COOH, and -NH ligands of extracellular polymeric substances. Whole-genome sequencing found that the resistance of Cd2+ in strain X1T was caused by the joint action of Czc and Cad systems. Cd2+ at 20 mg/L elicited differential expression of 1157 genes in strain X1T. In addition to the reported effects of uptake, adsorption, effluxion, and accumulation system, the oxidative stress system, Type-VI secretory protein system, Fe-S protein synthesis, and cysteine synthesis system in strain X1T were involved in the Cd2+ resistance and accumulation. The intracellular accumulation content of Cd2+ in strain X1T was higher than the extracellular adsorption content made strain X1T to be an important resource strain in the bioremediation of Cd-contaminated sewage. The results provide a theoretical network for understanding the complex regulatory system of bacterial resistance and adaptation of Cd against stressful environments.
Collapse
Affiliation(s)
- Liancheng Fang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hao Zhu
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuehan Geng
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Genrong Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Houpu Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taozhong Shi
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Rimao Hua
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
18
|
Wang X, Lu H, Li Q, Zhou Y, Zhou J. Comparative genome and transcriptome of Rhodococcus pyridinivorans GF3 for analyzing the detoxification mechanism of anthraquinone compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113545. [PMID: 35453018 DOI: 10.1016/j.ecoenv.2022.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Anthraquinone compounds (ACs) could be efficiently degraded and detoxified by bacteria. However, the molecular mechanism of bacterial degradation and detoxification of ACs remains unclear. In this study, 1-aminoanthraquinone-2-sulfonate (ASA-2) was used as a model anthraquinone compound, the response mechanism of Rhodococcus pyridinivorans GF3 to ASA-2 using genomics and transcriptomics techniques was investigated. Comparative genome analysis showed that strain GF3 owned an especial gene region (Genes 1337-1399) containing the genes encoding cytochrome P450, monooxygenase, dehydrogenase and oxidoreductase, which did not commonly exist in Rhodococcus genus. The amino acid sequences of these genes were similar to those of the cleavage enzymes of anthraquinone ring in Aspergillus genus. Moreover, the transcriptions of Genes 1392-1394 (cytochrome 450 gene cluster) displayed 1.8-3.1-fold up-regulation under ASA-2 exposure. Meanwhile, as an intermediate product of ASA-2, catechol was degraded to acetyl-CoA, succinyl-CoA and pyruvate, resulting in the enhanced tricarboxylic acid cycle and ATP generation. This process also promoted the up-regulation of the genes encoding resistance, efflux, transporter and anti-oxidation pressure proteins, which were involved in resisting ASA-2 and maintaining the homeostasis of cells. These results provided us with a further understanding of the molecular mechanism of degradation and detoxification of ACs.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Wang C, Hao L, Sun X, Yang Y, Yin Q, Li M. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128363. [PMID: 35183050 DOI: 10.1016/j.jhazmat.2022.128363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The toxic effect of Nickel (Ni (II)) on humans and animals has been previously addressed. Owing to the important application of psychrotolerant bacteria in Ni (II) damage remediation in contamination sites at low temperatures, the response mechanism of psychrotolerant bacteria to Ni (II) toxicity must be elucidated. Therefore, the effect of Ni (II) toxicity on a psychrotolerant Bacillus cereus D2 was studied, showing a way to alleviate the Ni (II) toxicity in strain D2. The results showed that strain D2 growth was completely inhibited at a concentration of 100 mg/L of Ni (II). The main effects of Ni (II) toxicity on strain D2 were membrane damage and reactive oxygen species-dependent oxidative stress. Additionally, Ni (II) toxicity resulted in dysregulation of the cell cycle in strain D2. Furthermore, metabolomic analysis showed that the biosynthesis of amino acids and ABC transporters were significantly affected, and the relative abundance of seven important amino acids changed in a concentration-dependent manner. Addition of 20 mM or 5 mM amino acids to 100 mg/L Ni (II)-treated strain D2 restored its growth. This study provides insights into the way to alleviate the Ni (II) toxicity in strain D2, thus contributing to the development of bioremediation strategies.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yi Yang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Qiuxia Yin
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
20
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
21
|
Wu R, Wang L, Xie J, Zhang Z. Diversity and Function of Wolf Spider Gut Microbiota Revealed by Shotgun Metagenomics. Front Microbiol 2021; 12:758794. [PMID: 34975785 PMCID: PMC8718803 DOI: 10.3389/fmicb.2021.758794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Wolf spiders (Lycosidae) are crucial component of integrated pest management programs and the characteristics of their gut microbiota are known to play important roles in improving fitness and survival of the host. However, there are only few studies of the gut microbiota among closely related species of wolf spider. Whether wolf spiders gut microbiota vary with habitats remains unknown. Here, we used shotgun metagenomic sequencing to compare the gut microbiota of two wolf spider species, Pardosa agraria and P. laura from farmland and woodland ecosystems, respectively. The results show that the gut microbiota of Pardosa spiders is similar in richness and abundance. Approximately 27.3% of the gut microbiota of P. agraria comprises Proteobacteria, and approximately 34.4% of the gut microbiota of P. laura comprises Firmicutes. We assembled microbial genomes and found that the gut microbiota of P. laura are enriched in genes for carbohydrate metabolism. In contrast, those of P. agraria showed a higher proportion of genes encoding acetyltransferase, an enzyme involved in resistance to antibiotics. We reconstructed three high-quality and species-level microbial genomes: Vulcaniibacterium thermophilum, Anoxybacillus flavithermus and an unknown bacterium belonging to the family Simkaniaceae. Our results contribute to an understanding of the diversity and function of gut microbiota in closely related spiders.
Collapse
Affiliation(s)
- Runbiao Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Luyu Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhisheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Zhisheng Zhang, , orcid.org/0000-0002-9304-1789
| |
Collapse
|
22
|
Zhang L, Ye L, Yin Z, Xiao K, Jing C. Mechanistic study of antimonate reduction by Escherichia coli W3110. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118258. [PMID: 34606969 DOI: 10.1016/j.envpol.2021.118258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Microbial-assisted antimonate [Sb(V)] reduction immobilizes this redox-sensitive metalloid in the subsurface. Most indigenous aerobes in antimony (Sb)-contaminated areas do not contain Sb(V)-reducing genes but can resist high levels of Sb(V) threat. Herein, to unravel the mechanisms of Sb(V) resistance by aerobes, we used Escherichia coli W3110 as a model aerobe and incubated it with 10 μM Sb(V). We found that strain W3110, without known Sb(V)-reducing genes, was able to reduce Sb(V) to Sb(III). Our transcriptome analysis and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) results show that the Sb(V) threat at the 10 μM level had a negligible effect on the gene expression of strain W3110. In vitro incubation experiments further indicate that Sb(V) reduction was attributable to extracellular polymeric substances (EPS). Moreover, the three-dimensional excitation-emission matrix fluorescence spectroscopy reveals that the tryptophan-like components in EPS were involved in Sb(V) binding as evidenced by its weakened fluorescence intensity upon Sb(V) addition. The FTIR and XPS analyses indicate that hemiacetal and amide groups in EPS contributed to the reduction of Sb(V). Preculture with 10 μM Sb(V) did not exhibit a significant difference in Sb(V)-reducing capacity, suggesting that Sb(V) stress probably did not stimulate EPS secretion of W3110. Our results highlight the importance of EPS as the first line of defense against toxins, especially for those bacteria without such functional genes.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xiao
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
23
|
Transcriptome Analysis of Environmental Pseudomonas Isolates Reveals Mechanisms of Biodegradation of Naphthenic Acid Fraction Compounds (NAFCs) in Oil Sands Tailings. Microorganisms 2021; 9:microorganisms9102124. [PMID: 34683445 PMCID: PMC8540809 DOI: 10.3390/microorganisms9102124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Naphthenic acid fraction compounds (NAFCs) are highly recalcitrant constituents of oil sands tailings. Although some microorganisms in the tailings can individually and synergistically metabolize NAFCs, the biochemical mechanisms that underpin these processes are hitherto unknown. To this end, we isolated two microorganisms, Pseudomonas protegens and Pseudomonas putida, from oils sands tailings and analyzed their transcriptomes to shed light on the metabolic processes employed by them to degrade and detoxify NAFCs. We identified 1048, 521 and 1434 genes that are upregulated in P. protegens, P. putida and a 1:1 co-culture of the strains, respectively. We subsequently enumerated the biochemical activities of enriched genes and gene products to reveal the identities of the enzymes that are associated with NAFC degradation. Separately, we analyzed the NAFCs that are degraded by the two pseudomonads and their 1:1 co-culture and determined the composition of the molecules using mass spectrometry. We then compared these molecular formulas to those of the cognate substrates of the enriched enzymes to chart the metabolic network and understand the mechanisms of degradation that are employed by the microbial cultures. Not only does the consortium behave differently than the pure cultures, but our analysis also revealed the mechanisms responsible for accelerated rate of degradation of NAFCs by the co-culture. Our findings provide new directions for engineering or evolving microorganisms and their consortia for degrading NAFCs more stably and aggressively.
Collapse
|
24
|
Yan X, Yang J, Wang Q, Lin S. Transcriptomic analysis reveals resistance mechanisms of Klebsiella michiganensis to copper toxicity under acidic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111919. [PMID: 33476853 DOI: 10.1016/j.ecoenv.2021.111919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to elucidate the effect of pH on bacterial resistance mechanisms to copper (Cu) stress by genomic and transcriptomic analysis. Klebsiella michiganensis cells were exposed to 0.5 mM CuCl2 at pH 4 and 5. Lower pH (pH < 4) strongly inhibited K. michiganensis growth, while Cu stress and higher pH (pH > 5) induced Cu precipitation in the medium. Transcriptomic analyses indicated that two groups of genes related to quorum sensing (QS) systems (lsrABCDFGKR) and type II secretion systems (T2SS) (gspCDEFGHIJKLM) were significantly up-regulated at pH 4 only. These results suggest that T2SS may be induced and controlled by QS, thereby contributing to the formation of extracellular polymeric substances (EPS) and the secretion of proteins to prevent Cu ions from entering cells. Six Cu resistance genes (cusABF, copA, cueO, and gene05308) were more significantly up-regulated at pH 4 than at pH 5. In addition, the relative expression (log2|FC=) of the sulfur assimilation genes cysHJIK was relatively higher at pH 4 than at pH 5, while the gene encoding organic sulfur metabolism, tauB, was also significantly up-regulated at only pH 4. These results indicate that the Cu efflux system can remove intracellular Cu ions from cells, and that the sulfur assimilation system is related to the detoxification of Cu ions. Furthermore, increased free Cu ions at lower pH (4) could induce communication signals among cells, thereby stimulating the response of T2SS-related genes in K. michiganensis to tolerate Cu stress. Consequently, the resistance of K. michiganensis to Cu stress is a multisystem collaborative process composed of intracellular and extracellular components.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Junlin Yang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Qi Wang
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China
| | - Shanshan Lin
- Engineering Laboratory for Water Pollution Control and Resources of National Environmental Protection, School of Environment, Northeast Normal University, No. 2555, Jingyue Street, Changchun 130117, Jilin, PR China.
| |
Collapse
|
25
|
Chang J, Si G, Dong J, Yang Q, Shi Y, Chen Y, Zhou K, Chen J. Transcriptomic analyses reveal the pathways associated with the volatilization and resistance of mercury(II) in the fungus Lecythophora sp. DC-F1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142172. [PMID: 33207499 DOI: 10.1016/j.scitotenv.2020.142172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The biotic enzymatic reduction of mercury II [Hg(II)] to elemental Hg [Hg(0)] is an important pathway for Hg detoxification in natural ecosystems. However, the mechanisms of Hg(II) volatilization and resistance in fungi have not been understood completely. In the present study, we investigated the mechanisms of Hg(II) volatilization and resistance in the fungus Lecythophora sp. DC-F1. Hg(II) volatilization occurred during the investigation via the reduction of Hg(II) to Hg(0) in DC-F1. Comparative transcriptome analyses of DC-F1 revealed 3439 differentially expressed genes under 10 mg/L Hg(II) stress, among which 2770 were up-regulated and 669 were down-regulated. Functional enrichment analyses of genes and pathways further suggested that the Hg(II) resistance of DC-F1 is a multisystem collaborative process with three important transcriptional responses to Hg(II) stress: a mer-mediated Hg detoxification system, a thiol compound metabolism, and a cell reactive oxygen species stress response system. The phylogenetic analysis of merA protein homologs suggests that the Hg(II) reduction by merA is widely distributed in fungi. Overall, this study provides evidence for the reduction of Hg(II) to Hg(0) in fungi via the mer-mediated Hg detoxification system and offers a comprehensive explanation for its role within Hg biogeochemical cycling. These findings offer a strong theoretical basis for the application of fungi in the bioremediation of Hg-contaminated envionments.
Collapse
Affiliation(s)
- Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Guangzheng Si
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Jia Dong
- International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China
| | - Qingchen Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yu Shi
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Yaling Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Kexin Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan Kunming, 650091, China.
| |
Collapse
|
26
|
Chang J, Shi Y, Si G, Yang Q, Dong J, Chen J. The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122638. [PMID: 32361297 DOI: 10.1016/j.jhazmat.2020.122638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 05/20/2023]
Abstract
Bioremediation of Hg-contaminated soil using microbe-based strategies is a promising and efficient method as it is inexpensive and not harmful to the environment. In this study, a novel Hg(II)-volatilizing fungus Penicillium spp., DC-F11 was isolated and showed bioremediation potential for reducing Hg(II) phytotoxicity, total Hg, and exchangeable Hg in Hg(II)-polluted soil. Subsequently, the mechanisms of Hg(II) volatilization and resistance involved were investigated using multiple complementary techniques. The fungal cells could detoxify Hg(II) by extracellular sequestration via adsorption and precipitation. Moreover, a comparative transcriptome analysis uncovered the primary intracellular adaptive responses of the DC-F11 to Hg(II) stress, including mer-mediated detoxification system, thiol compound metabolism, and oxidative stress defense and damage repair metabolism. These results showed that the resistance of DC-F11 to Hg(II) was generally a multisystem collaborative process. Here, we report, for the first time, that the mer-mediated detoxification system was responsible for Hg(II) volatilization in fungus. These findings provide a better understanding of the mechanisms involved in Hg(II) volatilization and resistance that occur in fungi and also provide a strong theoretical basis for the future application of fungi in the bioremediation of Hg-polluted environments.
Collapse
Affiliation(s)
- Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, 650091, China
| | - Yu Shi
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Qingchen Yang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Jia Dong
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, 650091, China.
| |
Collapse
|
27
|
Maertens L, Leys N, Matroule JY, Van Houdt R. The Transcriptomic Landscape of Cupriavidus metallidurans CH34 Acutely Exposed to Copper. Genes (Basel) 2020; 11:E1049. [PMID: 32899882 PMCID: PMC7563307 DOI: 10.3390/genes11091049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria are increasingly used for biotechnological applications such as bioremediation, biorecovery, bioproduction, and biosensing. The development of strains suited for such applications requires a thorough understanding of their behavior, with a key role for their transcriptomic landscape. We present a thorough analysis of the transcriptome of Cupriavidus metallidurans CH34 cells acutely exposed to copper by tagRNA-sequencing. C. metallidurans CH34 is a model organism for metal resistance, and its potential as a biosensor and candidate for metal bioremediation has been demonstrated in multiple studies. Several metabolic pathways were impacted by Cu exposure, and a broad spectrum of metal resistance mechanisms, not limited to copper-specific clusters, was overexpressed. In addition, several gene clusters involved in the oxidative stress response and the cysteine-sulfur metabolism were induced. In total, 7500 transcription start sites (TSSs) were annotated and classified with respect to their location relative to coding sequences (CDSs). Predicted TSSs were used to re-annotate 182 CDSs. The TSSs of 2422 CDSs were detected, and consensus promotor logos were derived. Interestingly, many leaderless messenger RNAs (mRNAs) were found. In addition, many mRNAs were transcribed from multiple alternative TSSs. We observed pervasive intragenic TSSs both in sense and antisense to CDSs. Antisense transcripts were enriched near the 5' end of mRNAs, indicating a functional role in post-transcriptional regulation. In total, 578 TSSs were detected in intergenic regions, of which 35 were identified as putative small regulatory RNAs. Finally, we provide a detailed analysis of the main copper resistance clusters in CH34, which include many intragenic and antisense transcripts. These results clearly highlight the ubiquity of noncoding transcripts in the CH34 transcriptome, many of which are putatively involved in the regulation of metal resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| |
Collapse
|
28
|
Li Y, Liu Y, Yang D, Jin Q, Wu C, Cui J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122551. [PMID: 32272326 DOI: 10.1016/j.jhazmat.2020.122551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide sheets loaded with copper nanoparticles (MoS2-CuNPs) was prepared and its antibacterial activity against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo) was investigated in vitro and in vivo for the first time. In a 2 h co-incubation, MoS2-CuNPs exhibited 19.2 times higher antibacterial activity against Xoo cells than a commercial copper bactericide (Kocide 3000). In the detached leaf experiment, the disease severity decreased from 86.25 % to 7.5 % in the MoS2-CuNPs treated rice leaves. The results further demonstrated that foliar application of MoS2-CuNPs could form a protective film and increase the density of trichome on the surface of rice leaves, finally prevent the infection of Xoo cells. This was probably due to the synergistic effect of MoS2-CuNPs. Additionally, foliar application of MoS2-CuNPs (4-32 μg/mL) increased obviously the content of Mo and chlorophyll (up 30.85 %), and then improved the growth of rice seedlings. Furthermore, the obtained MoS2-CuNPs could activate the activities of the antioxidant enzymes in rice, indicating higher resistance of rice under abiotic/biotic stresses. The multifunctional MoS2-CuNPs with superior antibacterial activity provided a promising alternative to the traditional antibacterial agents and had great potential in plant protection.
Collapse
Affiliation(s)
- Yadong Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Desong Yang
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Cailan Wu
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|