1
|
Silva PV, Santos CSA, Papadiamantis AG, Gonçalves SF, Prodana M, Verweij RA, Lynch I, van Gestel CAM, Loureiro S. Toxicokinetics of silver and silver sulfide nanoparticles in Chironomus riparius under different exposure routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161087. [PMID: 36566851 DOI: 10.1016/j.scitotenv.2022.161087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles released into surface water may accumulate in sediments, potentially threatening benthic organisms. This study determined the toxicokinetics in Chironomus riparius of Ag from pristine silver nanoparticles (Ag NPs), a simulating aged Ag NP form (Ag2S NPs), and AgNO3 as an ionic control. Chironomid larvae were exposed to these Ag forms through water, sediment, or food. The potential transfer of Ag from larvae to adult midges was also evaluated. Results revealed higher Ag uptake by C. riparius upon exposure to Ag2S NPs, while larvae exposed to pristine Ag NPs and AgNO3 generally presented similar uptake kinetics. Uptake patterns of the different Ag forms were generally similar in the tests with water or sediment exposures, suggesting that uptake from water was the most important route of Ag uptake in both experiments. For the sediment bioaccumulation test, uptake was likely a combination of water uptake and sediment particles ingestion. Ag uptake via food exposure was only significant for Ag2S NPs. Ag transfer to the terrestrial compartment was low. In our environmentally relevant exposure scenario, chironomid larvae accumulated relatively high Ag concentrations and elimination was extremely low in some cases. These results suggest that bioaccumulation of Ag in its nanoparticulate and/or ionic form may occur in the environment, raising concerns regarding chronic exposure and trophic transfer. This is the first study determining the toxicokinetics of NPs in Chironomus, providing important information for understanding chironomid exposure to NPs and their potential interactions in the environment.
Collapse
Affiliation(s)
- Patrícia V Silva
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cátia S A Santos
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Sandra F Gonçalves
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marija Prodana
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. Int J Mol Sci 2022; 23:ijms231911197. [PMID: 36232494 PMCID: PMC9569858 DOI: 10.3390/ijms231911197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly report the preparation of heterogeneously assembled structures Au-Ag nanoclusters (NCs) as good drug carriers with high loading performance and biocompatible capability. As glutathione-protected Au and Ag clusters self-assembled into porous Au-Ag NCs, the size value is about 1.358 (±0.05) nm. The morphology characterization revealed that the diameter of Au-Ag NCs is approximately 120 nm, as well as the corresponding potential ability in loading performance of the metal cluster triggered-assembling process. Compared with individual components, the stability and loading performance of heterogeneous Au-Ag NCs were improved and exhibit that the relative biocompatibility was enhanced. The exact information about this is that cell viability was approximately to 98% when cells were incubated with 100 µg mL−1 particle solution for 3 days. The drug release of Adriamycin from Au-Ag NCs was carried out in PBS at pH = 7.4 and 5.8, respectively. By simulating in vivo and tumor microenvironment, the release efficiency could reach over 65% at pH = 5.8 but less than 30% at pH = 7.2. Using an ultrasound field as external environment can accelerate the assembling process while metal clusters triggered assembling Au-Ag NCs. The size and morphology of the assembled Au-Ag NCs can be controlled by using different power parameters (8 W, 13 W, 18 W) under ambient atmosphere. Overall, a novel approach is exhibited, which conveys assembling work for metal clusters triggers into heterogeneous structures with porous characteristic. Its existing properties such as water-solubility, stability, low toxicity and capsulation can be considered as dependable agents in various biomedical applications and drug carriers in immunotherapies.
Collapse
|
3
|
Curtis BJ, Niemuth NJ, Bennett E, Schmoldt A, Mueller O, Mohaimani AA, Laudadio ED, Shen Y, White JC, Hamers RJ, Klaper RD. Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. NATURE NANOTECHNOLOGY 2022; 17:661-669. [PMID: 35393598 DOI: 10.1038/s41565-022-01096-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Physico-chemical characteristics of engineered nanomaterials are known to be important in determining the impact on organisms but effects are equally dependent upon the characteristics of the organism exposed. Species sensitivity may vary by orders of magnitude, which could be due to differences in the type or magnitude of the biochemical response, exposure or uptake of nanomaterials. Synthesizing conclusions across studies and species is difficult as multiple species are not often included in a study, and differences in batches of nanomaterials, the exposure duration and media across experiments confound comparisons. Here three model species, Danio rerio, Daphnia magna and Chironomus riparius, that differ in sensitivity to lithium cobalt oxide nanosheets are found to differ in immune-response, iron-sulfur protein and central nervous system pathways, among others. Nanomaterial uptake and dissolution does not fully explain cross-species differences. This comparison provides insight into how biomolecular responses across species relate to the varying sensitivity to nanomaterials.
Collapse
Affiliation(s)
- Becky J Curtis
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nicholas J Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Evan Bennett
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Angela Schmoldt
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Olaf Mueller
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Aurash A Mohaimani
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Elizabeth D Laudadio
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Yu Shen
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
- Great Lakes Genomics Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Li F, Mitchell HD, Mensch AC, Hu D, Laudadio ED, Hedlund Orbeck JK, Hamers RJ, Orr G. Expression Patterns of Energy-Related Genes in Single Cells Uncover Key Isoforms and Enzymes That Gain Priority Under Nanoparticle-Induced Stress. ACS NANO 2022; 16:7197-7209. [PMID: 35290009 PMCID: PMC9134505 DOI: 10.1021/acsnano.1c08934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
Cellular responses to nanoparticles (NPs) have been largely studied in cell populations, providing averaged values that often misrepresent the true molecular processes that occur in the individual cell. To understand how a cell redistributes limited molecular resources to achieve optimal response and survival requires single-cell analysis. Here we applied multiplex single molecule-based fluorescence in situ hybridization (fliFISH) to quantify the expression of 10 genes simultaneously in individual intact cells, including glycolysis and glucose transporter genes, which are critical for restoring and maintaining energy balance. We focused on individual gill epithelial cell responses to lithium cobalt oxide (LCO) NPs, which are actively pursued as cathode materials in lithium-ion batteries, raising concerns about their impact on the environment and human health. We found large variabilities in the expression levels of all genes between neighboring cells under the same exposure conditions, from only a few transcripts to over 100 copies in individual cells. Gene expression ratios among the 10 genes in each cell uncovered shifts in favor of genes that play key roles in restoring and maintaining energy balance. Among these genes are isoforms that can secure and increase glycolysis rates more efficiently, as well as genes with multiple cellular functions, in addition to glycolysis, including DNA repair, regulation of gene expression, cell cycle progression, and proliferation. Our study uncovered prioritization of gene expression in individual cells for restoring energy balance under LCO NP exposures. Broadly, our study gained insight into single-cell strategies for redistributing limited resources to achieve optimal response and survival under stress.
Collapse
Affiliation(s)
- Fangjia Li
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Hugh D. Mitchell
- Biological
Sciences Division, Pacific Northwest National
laboratory, Richland, Washington 99354, United States
| | - Arielle C. Mensch
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| | - Elizabeth D. Laudadio
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | - Robert J. Hamers
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Galya Orr
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Metal Release Mechanism and Electrochemical Properties of Lix(Ni1/3Mn1/3Co1/3)O2. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex metal oxides (CMOs) are used broadly in applications including electroreactive forms found in lithium-ion battery technology. Computational chemistry can provide unique information about how the properties of CMO cathode materials change in response to changes in stoichiometry, for example, changes of the lithium (Li) content during the charge–discharge cycle of the battery. However, this is difficult to measure experimentally due to the small cross-sectional area of the cations. Outside of operational conditions, the Li content can influence the transformations of the CMO when exposed to the environment. For example, metal release from CMOs in aqueous settings has been identified as a cross-cutting mechanism important to CMO degradation. Computational studies investigating metal release from CMOs show that the thermodynamics depend on the oxidation states of lattice cations, which is expected to vary with the lithium content. In this work, computational studies track changes in metal release trends as a function of Li content in Lix(Ni1/3Mn1/3Co1/3)O2 (NMC). The resulting dataset is used to construct a random forest tree (RFT) machine learning (ML) model. A modeling challenge in delithiation studies is the large configurational space to sample. Through investigating multiple configurations at each lithium fraction, we find structural features associated with favorable energies to chemically guide the identification of relevant structures and adequately predict voltage values.
Collapse
|
6
|
Martin-Folgar R, Esteban-Arranz A, Negri V, Morales M. Toxicological effects of three different types of highly pure graphene oxide in the midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152465. [PMID: 34953842 DOI: 10.1016/j.scitotenv.2021.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) is a carbon nanomaterial used in electronics, biomedicine, environmental remediation and biotechnology. The production of graphene will increase in the upcoming years. The carbon nanoparticles (NPs) are released into the environment and accumulated in aquatic ecosystems. Information on the effects of GO in aquatic environments and its impact on organisms is still lacking. The aim of this study was to synthesise and characterise label-free GO with controlled lateral dimensions and thickness - small GO (sGO), large GO (lGO) and monolayer GO (mlGO) - and determine their impact on Chironomus riparius, a sentinel species in the freshwater ecosystem. Superoxide dismutase (SOD) and lipid peroxidation (LPO) was evaluated after exposures for 24 h and 96 h to 50, 500, and 3000 μg/L. GOs accumulated in the gut of C. riparius and disturbed its antioxidant metabolism. We suggest that all types of GO exposure can upregulate of SOD. Moreover, both lGO and mlGO treatments caused LPO damage in C. riparius in comparison to sGO, proving its favourable lateral size impact in this organism. Our results indicate that GOs could accumulate and induce significant oxidative stress on C. riparius. This work shows new information about the potential oxidative stress of these NMs in aquatic organisms.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Las Rozas (Madrid), Spain.
| | - Adrián Esteban-Arranz
- Departamento de Ingeniería Química de la Universidad de Castilla la Mancha (UCLM), Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - Viviana Negri
- Departamento de Ciencias de la Salud de la Universidad Europea de Madrid (UEM), C/ Tajo, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED, Urbanización Monte Rozas, Avda. Esparta s/n, Crta. de Las Rozas al Escorial Km 5, 28232 Las Rozas (Madrid), Spain
| |
Collapse
|
7
|
Hoang KNL, Wheeler KE, Murphy CJ. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Anal Chem 2022; 94:4737-4746. [PMID: 35258278 DOI: 10.1021/acs.analchem.1c05243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Upon exposure to a biological environment, nanoparticles (NPs) acquire biomolecular coatings, the most studied of which is the protein corona. This protein corona gives NPs a new biological identity that will determine various biological responses including cellular uptake, biodistribution, and toxicity. The standard method to isolate NPs from a biological matrix in order to study their coronas is centrifugation, but more gentle means of retrieval may enable deeper understanding of both irreversibly bound hard coronas and more loosely bound soft coronas. In this study, magnetic gold-coated iron oxide NPs were incubated with rainbow trout gill cell total protein extracts and mass spectrometric proteomic analysis was conducted to determine the composition of the protein coronas isolated by either centrifugation or magnetic retrieval. The number of washes were varied to strip away the soft coronas and isolate the hard corona. Hundreds of proteins were adsorbed to the NPs. Some proteins were common to all isolation methods and many others were particular to the isolation method. Some qualitative trends in protein character were discerned from quantitative proteomic analyses, but more importantly, a new kind of protein corona was identified, mixed corona, in which the labile or inert nature of the protein-NP interaction is dependent upon sample history.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Niemuth NJ, Curtis BJ, Laudadio ED, Sostare E, Bennett EA, Neureuther NJ, Mohaimani AA, Schmoldt A, Ostovich ED, Viant MR, Hamers RJ, Klaper RD. Energy Starvation in Daphnia magna from Exposure to a Lithium Cobalt Oxide Nanomaterial. Chem Res Toxicol 2021; 34:2287-2297. [PMID: 34724609 DOI: 10.1021/acs.chemrestox.1c00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Growing evidence across organisms points to altered energy metabolism as an adverse outcome of metal oxide nanomaterial toxicity, with a mechanism of toxicity potentially related to the redox chemistry of processes involved in energy production. Despite this evidence, the significance of this mechanism has gone unrecognized in nanotoxicology due to the field's focus on oxidative stress as a universal─but nonspecific─nanotoxicity mechanism. To further explore metabolic impacts, we determined lithium cobalt oxide's (LCO's) effects on these pathways in the model organism Daphnia magna through global gene-expression analysis using RNA-Seq and untargeted metabolomics by direct-injection mass spectrometry. Our results show that a sublethal 1 mg/L 48 h exposure of D. magna to LCO nanosheets causes significant impacts on metabolic pathways versus untreated controls, while exposure to ions released over 48 h does not. Specifically, transcriptomic analysis using DAVID indicated significant enrichment (Benjamini-adjusted p ≤0.0.5) in LCO-exposed animals for changes in pathways involved in the cellular response to starvation (25 genes), mitochondrial function (70 genes), ATP-binding (70 genes), oxidative phosphorylation (53 genes), NADH dehydrogenase activity (12 genes), and protein biosynthesis (40 genes). Metabolomic analysis using MetaboAnalyst indicated significant enrichment (γ-adjusted p <0.1) for changes in amino acid metabolism (19 metabolites) and starch, sucrose, and galactose metabolism (7 metabolites). Overlap of significantly impacted pathways by RNA-Seq and metabolomics suggests amino acid breakdown and increased sugar import for energy production. Results indicate that LCO-exposed Daphnia respond to energy starvation by altering metabolic pathways, both at the gene expression and metabolite levels. These results support altered energy production as a sensitive nanotoxicity adverse outcome for LCO exposure and suggest negative impacts on energy metabolism as an important avenue for future studies of nanotoxicity, including for other biological systems and for metal oxide nanomaterials more broadly.
Collapse
Affiliation(s)
- Nicholas J Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Becky J Curtis
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Elizabeth D Laudadio
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Elena Sostare
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Evan A Bennett
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Nicklaus J Neureuther
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Angela Schmoldt
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Eric D Ostovich
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
9
|
Rebechi D, Palacio-Cortés AM, Richardi VS, Beltrão T, Vicentini M, Grassi MT, da Silva SB, Alessandre T, Hasenbein S, Connon R, Navarro-Silva MA. Molecular and biochemical evaluation of effects of malathion, phenanthrene and cadmium on Chironomus sancticaroli (Diptera: Chironomidae) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111953. [PMID: 33482495 DOI: 10.1016/j.ecoenv.2021.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-β activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.
Collapse
Affiliation(s)
- Débora Rebechi
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Tiago Beltrão
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maiara Vicentini
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Thiago Alessandre
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | - Richard Connon
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
10
|
Niemuth NJ, Zhang Y, Mohaimani AA, Schmoldt A, Laudadio ED, Hamers RJ, Klaper RD. Protein Fe-S Centers as a Molecular Target of Toxicity of a Complex Transition Metal Oxide Nanomaterial with Downstream Impacts on Metabolism and Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15257-15266. [PMID: 33166448 DOI: 10.1021/acs.est.0c04779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress is frequently identified as a mechanism of toxicity of nanomaterials. However, rarely have the specific underlying molecular targets responsible for these impacts been identified. We previously demonstrated significant negative impacts of transition metal oxide (TMO) lithium-ion battery cathode nanomaterial, lithium cobalt oxide (LCO), on the growth, development, hemoglobin, and heme synthesis gene expression in the larvae of a model sediment invertebrate Chironomus riparius. Here, we propose that alteration of the Fe-S protein function by LCO is a molecular initiating event leading to these changes. A 10 mg/L LCO exposure causes significant oxidation of the aconitase 4Fe-4S center after 7 d as determined from the electron paramagnetic resonance spectroscopy measurements of intact larvae and a significant reduction in the aconitase activity of larval protein after 48 h (p < 0.05). Next-generation RNA sequencing identified significant changes in the expression of genes involved in 4Fe-4S center binding, Fe-S center synthesis, iron ion binding, and metabolism for 10 mg/L LCO at 48 h (FDR-adjusted, p < 0.1). We propose an adverse outcome pathway, where the oxidation of metabolic and regulatory Fe-S centers of proteins by LCO disrupts metabolic homeostasis, which negatively impacts the growth and development, a mechanism that may apply for these conserved proteins across species and for other TMO nanomaterials.
Collapse
Affiliation(s)
- Nicholas J Niemuth
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Yonqian Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Angela Schmoldt
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Elizabeth D Laudadio
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
11
|
Abstract
New and emerging nanotechnologies are increasingly using nanomaterials that undergo significant chemical reactions upon exposure to environmental conditions. The rapid advent of lithium ion batteries for energy storage in mobile electronics and electric vehicles is leading to rapid increases in the manufacture of complex transition metal oxides that incorporate elements such as Co and Ni that have the potential for significant adverse biological impact. This Perspective summarizes some of the important technological drivers behind complex oxide materials and highlights some of the chemical transformations that need to be understood in order to assess the overall environmental impact associated with energy storage technologies.
Collapse
Affiliation(s)
- Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Khosrovyan A, Kahru A. Evaluation of the hazard of irregularly-shaped co-polyamide microplastics on the freshwater non-biting midge Chironomus riparius through its life cycle. CHEMOSPHERE 2020; 244:125487. [PMID: 31835048 DOI: 10.1016/j.chemosphere.2019.125487] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Plastics pollution is increasingly attracting societal and political attention. However, despite extensive research effort recently dedicated to the hazard of plastics in the environment, the data obtained are often redundant and essential knowledge gaps exist: available freshwater ecotoxicity data mostly concern Daphnia magna and are derived from acute exposure to spherical particles. In this paper, we address this gap by exploring the biological effects of irregularly-shaped co-polyamide (PA, 10-180 μm) on Chironomus riparius - a very versatile organism that during its life-stages inhabits both sediment and water column - relevant compartments for microplastics (MP) pollution. C. riparius represents an important part of the freshwater food chain and is also a standard OECD test organism. Different toxicity endpoints along the life cycle of C. riparius (28 days) were used as described in OECD 218: emergence, time to emergence, sex ratio of imagoes and the number of egg clutches per female. Chironomid larvae were exposed to 100 mg PA kg-1 (i.e., 10,100 particles kg-1) sediment throughout. Soluble Zn-salt (1 mg Zn L-1) was used as a positive control and as a co-pollutant in combination with PA. We demonstrated that the tested concentrations of PA and Zn alone as well in combination showed no adverse effects for C. riparius in chronic exposures. 100 mg PA kg-1 also did not affect the life cycle traits of the offspring of PA-exposed parent Chironomids. The data obtained will be useful for environmental risk assessment of PA when actual environmental concentrations of PA will be available.
Collapse
Affiliation(s)
- Alla Khosrovyan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Anne Kahru
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, 12618, Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
13
|
Nanoparticle-Biological Interactions in a Marine Benthic Foraminifer. Sci Rep 2019; 9:19441. [PMID: 31857637 PMCID: PMC6923483 DOI: 10.1038/s41598-019-56037-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.
Collapse
|