1
|
Li W, Tang H, Zhang D, Huang T, Xing B. Identifying the Stripping of Oxide Debris from Graphene Oxide: Evidence from Experimental Analysis and Molecular Simulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5963-5973. [PMID: 38512311 DOI: 10.1021/acs.est.3c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this study, characteristics of oxidation debris (OD) and its stripping mechanism from graphene oxide (GO) were explored. The results demonstrated that OD contains three components, namely, protein-, fulvic acid-, and humic acid-like substances; among these, protein-like substances with lower molecular weight and higher hydrophilicity were most liable to be stripped from GO and were the primary components stripped from GO at pH < 10, whereas humic acid- and fulvic acid-like substances were stripped from GO at pH > 10. During the stripping of OD, hydrogen bonds from carboxyl and carbonyl were the first to break, followed by hydrogen bonds from epoxy. Subsequently, π-π interactions were broken, and hydrogen bond interactions induced by hydroxyl groups were the hardest to break. After the stripping of OD, the recombination of OD on GO was observed, and regions containing relatively fewer oxygen-containing functional groups were favorable binding sites for the readsorbed OD. The stripping and recombination of OD on GO resulted in an uneven GO surface, which should be considered during the development of GO-based environmental materials and the evaluation of their environmental behavior.
Collapse
Affiliation(s)
- Wenli Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Namazkar S, Ragnarsdottir O, Josefsson A, Branzell F, Abel S, Abou-Elwafa Abdallah M, Harrad S, Benskin JP. Characterization and dermal bioaccessibility of residual- and listed PFAS ingredients in cosmetic products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:259-268. [PMID: 38226854 DOI: 10.1039/d3em00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
As a large group of chemicals with diverse properties, per- and polyfluoroalkyl substances (PFAS) have found extensive application throughout consumer products, including cosmetics. Little is known about the importance of dermal uptake as a human exposure pathway for PFAS. Here we investigate a suite of listed-ingredient and residual PFAS in cosmetic products, along with their dermal bioaccessibility using in vitro incubations with artificial sweat. Concentrations of volatile listed ingredients (including cyclic perfluorinated alkanes, perfluorinated ethers, and polyfluorinated silanes) in three products ranged from 876-1323 μg g-1, while polar listed ingredients (i.e., polyfluoroalkyl phosphate esters [PAPs]) in a single product occurred at up to 2427 μg g-1 (6 : 2/6 : 2 diPAP)). Residual perfluoroalkyl carboxylic acids (PFCAs) were also measured at concentrations ranging from 0.02-29 μg g-1. When listed ingredients were included, our targeted analysis accounted for up to 103% of the total fluorine, while highlighting ambiguous and/or incorrect International Nomenclature of Cosmetic Ingredient (INCI) names used in several products. Bioaccessibility experiments revealed that residual PFCAs readily partitioned to artificial sweat (bioaccessible fractions ranging from 43-76% for detectable substances) while listed ingredients (i.e., PAPs and neutral/volatile PFAS) displayed negligible partitioning. This work provides new insight into the occurrence of PFAS in cosmetic products, while furthering our understanding on their mechanisms of dermal uptake.
Collapse
Affiliation(s)
- Shahla Namazkar
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Oddny Ragnarsdottir
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Anton Josefsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Felice Branzell
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Sebastian Abel
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Merel S. Critical assessment of the Kendrick mass defect analysis as an innovative approach to process high resolution mass spectrometry data for environmental applications. CHEMOSPHERE 2023; 313:137443. [PMID: 36464021 DOI: 10.1016/j.chemosphere.2022.137443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The growing application of high resolution mass spectrometry (HRMS) over the last decades has dramatically improved our knowledge about the occurrence of environmental contaminants. However, most of the compounds detected remain unknown and the large volume of data generated requires specific processing approaches. Therefore, this study presents the concepts of mass defect (MD), Kendrick mass (KM) and Kendrick mass defect (KMD) to the expert and non-expert reader along with relevant examples of applications in environmental HRMS data processing. A preliminary bibliometric overview indicates that the potential benefits of KMD analysis are rather overlooked in environmental science. In practice, a simple calculation allows transforming a mass from the IUPAC system (normalized so that the mass of 12C is exactly 12) to its corresponding KM normalized on a specific moiety such as CH2 (the mass of CH2 is exactly 14). Then, plotting the KMD according to the nominal KM allows revealing groups of compounds that differ only by their number of CH2 moieties. For instance, data processing using KM and KMD was proven particularly useful to characterize natural organic matter in a sample, to reveal the occurrence of polymers as well as poly/perfluorinated alkylated substances (PFASs), and to search for transformation products (TPs) of a given chemical.
Collapse
Affiliation(s)
- Sylvain Merel
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France.
| |
Collapse
|
6
|
Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wang W, Lin Y, Yang H, Ling W, Liu L, Zhang W, Lu D, Liu Q, Jiang G. Internal Exposure and Distribution of Airborne Fine Particles in the Human Body: Methodology, Current Understandings, and Research Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6857-6869. [PMID: 35199997 DOI: 10.1021/acs.est.1c07051] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Exposure to airborne fine particles (PM2.5, particulate matter with aerodynamic diameter <2.5 μm) severely threatens global human health. Understanding the distribution and processes of inhaled PM2.5 in the human body is crucial to clarify the causal links between PM2.5 pollution and diseases. In contrast to extensive research on the emission and formation of PM2.5 in the ambient environment, reports about the occurrence and fate of PM2.5 in humans are still limited, although many studies have focused on the exposure and adverse effects of PM2.5 with animal models. It has been shown that PM2.5, especially ultrafine particles (UFPs), have the potential to go across different biological barriers and translocate into different human organs (i.e., blood circulation, brain, heart, pleural cavity, and placenta). In this Perspective, we summarize the factors affecting the internal exposure of PM2.5 and the relevant analytical methodology and review current knowledge about the exposure pathways and distribution of PM2.5 in humans. We also discuss the research challenges and call for more studies on the identification and characterization of key toxic species of PM2.5, quantification of internal exposure doses in the general population, and further clarification of translocation, metabolism, and clearance pathways of PM2.5 in the human body. In this way, it is possible to develop toxicity-based air quality standards instead of the currently used mass-based standards.
Collapse
Affiliation(s)
- Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Liu Z, Bentel MJ, Yu Y, Ren C, Gao J, Pulikkal VF, Sun M, Men Y, Liu J. Near-Quantitative Defluorination of Perfluorinated and Fluorotelomer Carboxylates and Sulfonates with Integrated Oxidation and Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7052-7062. [PMID: 33950686 DOI: 10.1021/acs.est.1c00353] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The UV-sulfite reductive treatment using hydrated electrons (eaq-) is a promising technology for destroying perfluorocarboxylates (PFCAs, CnF2n+1COO-) in any chain length. However, the C-H bonds formed in the transformation products strengthen the residual C-F bonds and thus prevent complete defluorination. Reductive treatments of fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-) and sulfonates (FTSAs, CnF2n+1-CH2CH2-SO3-) are also sluggish because the ethylene linker separates the fluoroalkyl chain from the end functional group. In this work, we used oxidation (Ox) with hydroxyl radicals (HO•) to convert FTCAs and FTSAs to a mixture of PFCAs. This process also cleaved 35-95% of C-F bonds depending on the fluoroalkyl chain length. We probed the stoichiometry and mechanism for the oxidative defluorination of fluorotelomers. The subsequent reduction (Red) with UV-sulfite achieved deep defluorination of the PFCA mixture for up to 90%. The following use of HO• to oxidize the H-rich residues led to the cleavage of the remaining C-F bonds. We examined the efficacy of integrated oxidative and reductive treatment of n = 1-8 PFCAs, n = 4,6,8 perfluorosulfonates (PFSAs, CnF2n+1-SO3-), n = 1-8 FTCAs, and n = 4,6,8 FTSAs. A majority of structures yielded near-quantitative overall defluorination (97-103%), except for n = 7,8 fluorotelomers (85-89%), n = 4 PFSA (94%), and n = 4 FTSA (93%). The results show the feasibility of complete defluorination of legacy PFAS pollutants and will advance both remediation technology design and water sample analysis.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Michael J Bentel
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yaochun Yu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Changxu Ren
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyu Gao
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Vivek Francis Pulikkal
- Department of Civil & Environmental Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mei Sun
- Department of Civil & Environmental Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Yujie Men
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115908. [PMID: 33190976 DOI: 10.1016/j.envpol.2020.115908] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C-F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|