1
|
Endo S, Hammer J, Matsuzawa S. Experimental Determination of Air/Water Partition Coefficients for 21 Per- and Polyfluoroalkyl Substances Reveals Variable Performance of Property Prediction Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8406-8413. [PMID: 37232091 PMCID: PMC10249623 DOI: 10.1021/acs.est.3c02545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals of high environmental concern. However, reliable data for the air/water partition coefficients (Kaw), which are required for fate, exposure, and risk analysis, are available for only a few PFAS. In this study, Kaw values at 25 °C were determined for 21 neutral PFAS by using the hexadecane/air/water thermodynamic cycle. Hexadecane/water partition coefficients (KHxd/w) were measured with batch partition, shared-headspace, and/or modified variable phase ratio headspace methods and were divided by hexadecane/air partition coefficients (KHxd/air) to obtain Kaw values over 7 orders of magnitude (10-4.9 to 102.3). Comparison to predicted Kaw values by four models showed that the quantum chemically based COSMOtherm model stood out for accuracy with a root-mean-squared error (RMSE) of 0.42 log units, as compared to HenryWin, OPERA, and the linear solvation energy relationship with predicted descriptors (RMSE, 1.28-2.23). The results indicate the advantage of a theoretical model over empirical models for a data-poor class like PFAS and the importance of experimentally filling data gaps in the chemical domain of environmental interest. Kaw values for 222 neutral (or neutral species of) PFAS were predicted using COSMOtherm as current best estimates for practical and regulatory use.
Collapse
Affiliation(s)
- Satoshi Endo
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Jort Hammer
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Sadao Matsuzawa
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Parkerton T, Boufadel M, Nordtug T, Mitchelmore C, Colvin K, Wetzel D, Barron MG, Bragin GE, de Jourdan B, Loughery J. Recommendations for advancing media preparation methods used to assess aquatic hazards of oils and spill response agents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106518. [PMID: 37030101 PMCID: PMC10519191 DOI: 10.1016/j.aquatox.2023.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/15/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Laboratory preparation of aqueous test media is a critical step in developing toxicity information needed for oil spill response decision-making. Multiple methods have been used to prepare physically and chemically dispersed oils which influence test outcome, interpretation, and utility for hazard assessment and modeling. This paper aims to review media preparation strategies, highlight advantages and limitations, provide recommendations for improvement, and promote the standardization of methods to better inform assessment and modeling. A benefit of media preparation methods for oil that rely on low to moderate mixing energy coupled with a variable dilution design is that the dissolved oil composition of the water accommodation fraction (WAF) stock is consistent across diluted treatments. Further, analyses that support exposure confirmation maybe reduced and reflect dissolved oil exposures that are bioavailable and amenable to toxicity modeling. Variable loading tests provide a range of dissolved oil compositions that require analytical verification at each oil loading. Regardless of test design, a preliminary study is recommended to optimize WAF mixing and settling times to achieve equilibrium between oil and test media. Variable dilution tests involving chemical dispersants (CEWAF) or high energy mixing (HEWAF) can increase dissolved oil exposures in treatment dilutions due to droplet dissolution when compared to WAFs. In contrast, HEWAF/CEWAFs generated using variable oil loadings are expected to provide dissolved oil exposures more comparable to WAFs. Preparation methods that provide droplet oil exposures should be environmentally relevant and informed by oil droplet concentrations, compositions, sizes, and exposure durations characteristic of field spill scenarios. Oil droplet generators and passive dosing techniques offer advantages for delivering controlled constant or dynamic dissolved exposures and larger volumes of test media for toxicity testing. Adoption of proposed guidance for improving media preparation methods will provide greater comparability and utility of toxicity testing in oil spill response and assessment.
Collapse
Affiliation(s)
- Thomas Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, TX 78731, United States.
| | - Michel Boufadel
- Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ, United States.
| | - Trond Nordtug
- SINTEF Ocean AS, P.O. box 4762, Torgarden, Trondheim NO-7465, Norway.
| | - Carys Mitchelmore
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 146 Williams Street, Solomons, MD, United States.
| | - Kat Colvin
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - Dana Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, United States.
| | - Mace G Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, FL 32561, United States.
| | - Gail E Bragin
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, United States.
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada.
| | - Jennifer Loughery
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada.
| |
Collapse
|
3
|
Wang Y, Slotsbo S, Damgaard CF, Holmstrup M. Influence of Soil Moisture on Bioaccumulation, Growth, and Recruitment of Folsomia candida Exposed to Phenanthrene-Polluted Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3085-3094. [PMID: 36790897 DOI: 10.1021/acs.est.2c07497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Climate change has resulted in an increased occurrence of summer droughts in large parts of the world. Low soil moisture has marked impacts on the physiology of soil invertebrates and lowers degradation rates of organic contaminants in soil. Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic contaminants that readily accumulate in the lipids of soil organisms. Here, we exposed springtails (Collembola, small soil living arthropods) to phenanthrene (a common PAH) in combination with a range of soil water contents to investigate the combined effects of these factors on the bioaccumulation, survival, recruitment, and body growth in a full factorial experiment. The results showed that phenanthrene up to 60 mg/kg dry soil had moderate effects on survival (<20%), whereas dry soil (4% soil water content) caused approximately 60% mortality. The bioaccumulation of phenanthrene increased almost 3-fold when soil water content decreased from 22 to 4%. We observed a joint effect of low soil water content and phenanthrene on recruitment, suggesting a synergistic interaction. The recruitment EC50 values of phenanthrene decreased from approximately 40 mg/kg dry soil at 22% soil water content to approximately 10 mg/kg dry soil at 12% soil water content. Our results show that the effects of phenanthrene are more pronounced in dry soil partly because bioaccumulation is enhanced when soils become dry.
Collapse
Affiliation(s)
- Yang Wang
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Stine Slotsbo
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Christian Frølund Damgaard
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| | - Martin Holmstrup
- Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Building 1120, C.F. Møllers Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Lai A, Clark AM, Escher BI, Fernandez M, McEwen LR, Tian Z, Wang Z, Schymanski EL. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7448-7466. [PMID: 35533312 PMCID: PMC9228065 DOI: 10.1021/acs.est.2c00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.
Collapse
Affiliation(s)
- Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Alex M. Clark
- Collaborative
Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Fernandez
- Environment
and Climate Change Canada, 401 Burrard Street, Vancouver, British Columbia V6C 3R2, Canada
| | - Leah R. McEwen
- Cornell
University, Ithaca, New York 14850, United States
- International
Union of Pure and Applied Chemistry, Research Triangle Park, North Carolina 27709, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Department of Marine and Environmental
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhanyun Wang
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology
and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
5
|
van der Voet M, Teunis M, Louter-van de Haar J, Stigter N, Bhalla D, Rooseboom M, Wever KE, Krul C, Pieters R, Wildwater M, van Noort V. Towards a reporting guideline for developmental and reproductive toxicology testing in C. elegans and other nematodes. Toxicol Res (Camb) 2021; 10:1202-1210. [PMID: 34950447 PMCID: PMC8692742 DOI: 10.1093/toxres/tfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
Collapse
Affiliation(s)
| | - Marc Teunis
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Johanna Louter-van de Haar
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Nienke Stigter
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Diksha Bhalla
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
| | - Martijn Rooseboom
- Toxicology group Shell International B.V., 2596 HR, The Hague, the Netherlands
| | - Kimberley E Wever
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, 6525 GA, Nijmegen, the Netherlands
| | - Cyrille Krul
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Raymond Pieters
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, 3584 CM, Utrecht, the Netherlands
| | | | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
- Leiden University, Institute of Biology Leiden, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
6
|
Trac LN, Sjo Holm KK, Birch H, Mayer P. Passive Dosing of Petroleum and Essential Oil UVCBs-Whole Mixture Toxicity Testing at Controlled Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6150-6159. [PMID: 33829772 DOI: 10.1021/acs.est.1c00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Petroleum products and essential oils are produced and used in large amounts and are categorized as "Substances of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs)." These UVCBs are notorious difficult-to-test substances, since they are complex mixtures of hydrophobic and volatile compounds. This study introduces two passive dosing (PD) approaches for whole UVCB toxicity testing: (1) headspace PD applies the UVCB and purified lipid oil as a donor to control exposure via the headspace and (2) silicone rod PD applies UVCB-loaded silicone rods to control exposure via an aqueous test medium and headspace. Headspace gas chromatography-mass spectrometry measurements were used to cross-validate the approaches at the saturation level and to confirm exposure and maintain mixture composition at varying donor concentration levels. Both approaches were applied to whole-mixture toxicity tests of petroleum and essential oil UVCBs with daphnia and algae. Finally, the observed toxicity was linked to concentrations in the donor and in lipid membranes at equilibrium with the donors. Dose-response curves were similar across the dosing approaches and tested species for petroleum products but differed by an order of magnitude between essential oils and PD systems. All observed toxic effects were consistent with baseline toxicity, and no excess mixture toxicity was observed.
Collapse
Affiliation(s)
- Lam Ngoc Trac
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Karina Knudsmark Sjo Holm
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| |
Collapse
|
7
|
Parkerton TF, Letinski DJ, Febbo EJ, Butler JD, Sutherland CA, Bragin GE, Hedgpeth BM, Kelley BA, Redman AD, Mayer P, Camenzuli L, Vaiopoulou E. Assessing toxicity of hydrophobic aliphatic and monoaromatic hydrocarbons at the solubility limit using novel dosing methods. CHEMOSPHERE 2021; 265:129174. [PMID: 33340835 DOI: 10.1016/j.chemosphere.2020.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Reliable delineation of aquatic toxicity cut-offs for poorly soluble hydrocarbons is lacking. In this study, vapor and passive dosing methods were applied in limit tests with algae and daphnids to evaluate the presence or absence of chronic effects at exposures corresponding to the water solubility for representative hydrocarbons from five structural classes: branched alkanes, mono, di, and polynaphthenic (cyclic) alkanes and monoaromatic naphthenic hydrocarbons (MANHs). Algal growth rate and daphnid immobilization, growth and reproduction served as the chronic endpoints investigated. Results indicated that the dosing methods applied were effective for maintaining mean measured exposure concentrations within a factor of two or higher of the measured water solubility of the substances investigated. Chronic effects were not observed for hydrocarbons with an aqueous solubility below approximately 5 μg/L. This solubility cut-off corresponds to structures consisting of 13-14 carbons for branched and cyclic alkanes and 16-18 carbons for MANHs. These data support reliable hazard and risk evaluation of hydrocarbon classes that comprise petroleum substances and the methods described have broad applicability for establishing empirical solubility cut-offs for other classes of hydrophobic substances. Future work is needed to understand the role of biotransformation on the observed presence or absence of toxicity in chronic tests.
Collapse
Affiliation(s)
- Thomas F Parkerton
- ExxonMobil Biomedical Sciences, Spring, TX, USA; Concawe, Environmental Management Group, Brussels, Belgium
| | | | | | | | | | | | | | | | - Aaron D Redman
- ExxonMobil Petroleum and Chemical, Machelen, Belgium; Concawe, Environmental Management Group, Brussels, Belgium
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Louise Camenzuli
- ExxonMobil Petroleum and Chemical, Machelen, Belgium; Concawe, Environmental Management Group, Brussels, Belgium
| | | |
Collapse
|
8
|
Stibany F, Schmidt SN, Mayer P, Schäffer A. Toxicity of dodecylbenzene to algae, crustacean, and fish - Passive dosing of highly hydrophobic liquids at the solubility limit. CHEMOSPHERE 2020; 251:126396. [PMID: 32163782 DOI: 10.1016/j.chemosphere.2020.126396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
In the current study, improved exposure control and measurements were applied for the aquatic toxicity testing of a highly hydrophobic organic compound. The aim was to reliably determine the ecotoxicity of the model compound dodecylbenzene (DDB, Log KOW = 8.65) by applying passive dosing for aquatic toxicity testing exactly at the solubility limit. Methodologically, silicone O-rings were saturated by immersion in pure liquid DDB (i.e., "loading by swelling") and then used as passive dosing donors. Daphnia immobilization and fish embryo toxicity tests were successfully conducted and provide, together with recently reported algal growth inhibition data, a full base-set of ecotoxicological data according to REACH. All tests were conducted in closed test systems to avoid evaporative losses, and exposure concentrations were measured throughout test durations. The Daphnia test was optimized by placing the O-rings in cages to prevent direct contact between daphnids and the passive dosing donor. Toxicologically, Daphnia magna immobilization was 19.3 ± 8% (mean ± 95% CI; 6 tests) within 72 h, whereas Danio rerio fish embryos did not show any significant lethal or sublethal toxic responses within 96 h. Growth rate inhibition for the algae Raphidocelis subcapitata was previously reported to be 13 ± 5% in a first and 8 ± 3% in a repeated test. These results for aquatic organisms, spanning three trophic levels, demonstrate toxicity of a highly hydrophobic compound and suggest that improvements of the current ecotoxicological standard tests are needed for these "difficult-to-test" chemicals. Furthermore, the obtained toxicity results significantly question the existence of a generic Log KOW cut-off in baseline toxicity.
Collapse
Affiliation(s)
- Felix Stibany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark.
| | - Stine Nørgaard Schmidt
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet B115, 2800, Kgs. Lyngby, Denmark
| | - Andreas Schäffer
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
9
|
Eftekhari A, Frederiksen H, Andersson AM, Weschler CJ, Morrison G. Predicting Transdermal Uptake of Phthalates and a Paraben from Cosmetic Cream Using the Measured Fugacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7471-7484. [PMID: 32432857 DOI: 10.1021/acs.est.0c01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transdermal uptake models compliment in vitro and in vivo experiments in assessing risk of environmental exposures to semivolatile organic compounds (SVOCs). A key parameter for mechanistic models is the chemical driving force for mass transfer from environmental media to human skin. In this research, we measure this driving force in the form of fugacity for chemicals in cosmetic cream and use it to model uptake from cosmetics as a surrogate for condensed environmental media. A simple cosmetic cream, containing no target analytes, was mixed with diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and butyl paraben (BP) and diluted to make creams with concentrations ranging from 0.025% to 6%. The fugacity, relative to the pure compound, was measured using solid-phase micro extraction (SPME). We found that the relationship between the concentration and fugacity is highly nonlinear. The relative fugacity of the chemicals for a 2% w/w formulation was used in a diffusion-based model to predict transdermal uptake of each chemical and was compared with excretion data from a prior human subject study with the same formulation. Dynamic simulations of excretion are generally consistent with the results of the human subject experiment but sensitive to the input parameters, especially the time between cream application and showering.
Collapse
Affiliation(s)
- Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Hanne Frederiksen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Charles J Weschler
- International Center for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08901, United States
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
10
|
Ehlers BK, Berg MP, Staudt M, Holmstrup M, Glasius M, Ellers J, Tomiolo S, Madsen RB, Slotsbo S, Penuelas J. Plant Secondary Compounds in Soil and Their Role in Belowground Species Interactions. Trends Ecol Evol 2020; 35:716-730. [PMID: 32414604 DOI: 10.1016/j.tree.2020.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
Knowledge of the effect of plant secondary compounds (PSCs) on belowground interactions in the more diffuse community of species living outside the rhizosphere is sparse compared with what we know about how PSCs affect aboveground interactions. We illustrate here that PSCs from foliar tissue, root exudates, and leaf litter effectively influence such belowground plant-plant, plant-microorganism, and plant-soil invertebrate interactions. Climatic factors can induce PSC production and select for different plant chemical types. Therefore, climate change can alter both quantitative and qualitative PSC production, and how these compounds move in the soil. This can change the soil chemical environment, with cascading effects on both the ecology and evolution of belowground species interactions and, ultimately, soil functioning.
Collapse
Affiliation(s)
- Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Matty P Berg
- Community and Conservation Ecology Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands; Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Michael Staudt
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier, France
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Marianne Glasius
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Sara Tomiolo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Plant Ecology Group, Institute for Evolution and Ecology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - René B Madsen
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
11
|
Hammershøj R, Birch H, Sjøholm KK, Mayer P. Accelerated Passive Dosing of Hydrophobic Complex Mixtures-Controlling the Level and Composition in Aquatic Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4974-4983. [PMID: 32142613 DOI: 10.1021/acs.est.9b06062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Petroleum products and essential oils are complex mixtures of hydrophobic and volatile chemicals and are categorized as substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). In aquatic testing and research of such mixtures, it is challenging to establish initial concentrations without the addition of cosolvents, to maintain constant concentrations during the test, and to keep a constant mixture composition in dilution series and throughout test duration. Passive dosing was here designed to meet these challenges by maximizing the surface area (Adonor/Vmedium = 3.8 cm2/mL) and volume (Vdonor/Vmedium > 0.1 L/L) of the passive dosing donor in order to ensure rapid mass transfer and avoid donor depletion for all mixture constituents. Cracked gas oil, cedarwood Virginia oil, and lavender oil served as model mixtures. This study advances the field by (i) showing accelerated passive dosing kinetics for 68 cracked gas oil constituents with typical equilibration times of 5-10 min and for 21 cederwood Virginia oil constituents with typical equilibration times < 1 h, (ii) demonstrating how to control mixture concentration and composition in aquatic tests, and (iii) discussing the fundamental differences between solvent spiking, water-accommodated fractions, and passive dosing.
Collapse
Affiliation(s)
- Rikke Hammershøj
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Karina K Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Jensen TG, Holmstrup M, Madsen RB, Glasius M, Trac LN, Mayer P, Ehlers B, Slotsbo S. Effects of α-pinene on life history traits and stress tolerance in the springtail Folsomia candida. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108681. [PMID: 31816427 DOI: 10.1016/j.cbpc.2019.108681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022]
Abstract
Volatile monoterpenes are emitted in large quantities to both air and soil by many plant species. While studies have addressed effects of monoterpenes on aboveground invertebrates, we have much poorer understanding of the possible effects of monoterpenes on soil invertebrates. Monoterpenes play a protective role in some plant species during heat and water stress, and therefore may provide similar protection against abiotic stress to soil invertebrates. The aim of the present study was to investigate the effects of the common monoterpene, α-pinene, on the soil living springtail, Folsomia candida (Collembola; Isotomidae). We hypothesized that exposure to α-pinene would lower the transition temperature of membranes, and thereby improve cold tolerance. Controlled exposure to α-pinene, which is a volatile liquid at room temperature, was made possible by passive dosing through the air-phase using a lipid donor. This lipid-based passive dosing approach also allows linking observed effects to concentrations in membrane when equilibrium is achieved. Equilibrium membrane concentrations above 116 mmol kg-1 caused springtails to become comatose, and coma recovery time was proportional to exposure concentration. Alpha-pinene delayed time to first egg laying, while the number of eggs laid and hatchability was unaffected. Springtails exposed to α-pinene showed increased survival of cold shock (-6 °C, 2 h), but no effects on heat (34 °C, 2 h) or drought tolerance (98.2% relative humidity, 7d) were observed. The present study has demonstrated that α-pinene has direct toxic effects to F. candida, but on the other hand can improve their cold tolerance considerably at membrane concentrations above 87 mmol kg-1.
Collapse
Affiliation(s)
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | | | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Lam Ngoc Trac
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Bodil Ehlers
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark.
| |
Collapse
|
13
|
Mueller MT, Fueser H, Trac LN, Mayer P, Traunspurger W, Höss S. Surface-Related Toxicity of Polystyrene Beads to Nematodes and the Role of Food Availability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1790-1798. [PMID: 31934751 DOI: 10.1021/acs.est.9b06583] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microplastics released into freshwaters from anthropogenic sources settle in the sediments, where they may pose an environmental threat to benthic organisms. However, few studies have considered the ecotoxicological hazard of microplastic particles for nematodes, one of the most abundant taxa of the benthic meiofauna. This study investigated the toxic effects of polystyrene (PS) beads (0.1-10.0 μm) and the underlying mechanisms thereof on the reproduction of the nematode Caenorhabditis elegans. The observed effect of the PS beads on the nematodes correlated well with the total surface area of the beads per volume, with a 50% inhibition of reproduction at 55.4 ± 12.9 cm2/mL, independent of the bead size. The adverse effects were not explained by styrene monomers leaching from the beads because chemical activities of styrene in PS suspensions were well below the toxic levels. However, the observed effects could be related to the bead material because the same-sized silica (SiO2) beads had considerably less impact, probably due to their higher specific density. PS and SiO2 beads affected the food availability of C. elegans, with greater effects by the PS beads. Our results demonstrate the importance of including indirect food web effects in studies of the ecological risks posed by microplastics.
Collapse
Affiliation(s)
- Marie-Theres Mueller
- Bielefeld University , Animal Ecology, Konsequenz 45 , 33615 Bielefeld , Germany
| | - Hendrik Fueser
- Bielefeld University , Animal Ecology, Konsequenz 45 , 33615 Bielefeld , Germany
| | - Lam Ngoc Trac
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Philipp Mayer
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Walter Traunspurger
- Bielefeld University , Animal Ecology, Konsequenz 45 , 33615 Bielefeld , Germany
| | - Sebastian Höss
- Bielefeld University , Animal Ecology, Konsequenz 45 , 33615 Bielefeld , Germany
- Ecossa , Giselastr. 6 , 82319 Starnberg , Germany
| |
Collapse
|