1
|
Dresser W, Silberstein JM, Reid CE, Vance ME, Wiedinmyer C, Hannigan MP, de Gouw JA. Volatile Organic Compounds Inside Homes Impacted by Smoke from the Marshall Fire. ACS ES&T AIR 2025; 2:4-12. [PMID: 39817253 PMCID: PMC11730946 DOI: 10.1021/acsestair.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average. The VOC composition could be described by a combination of biomass burning emissions and indoor air composition. Comparisons were made between polycyclic aromatic hydrocarbon (PAH) distributions in the gas phase and ash, with differences observed in their distribution between each other and when compared to fresh fuel inventory measurements. Mitigation tests were conducted running air cleaners with activated carbon and opening windows to promote indoor-outdoor air exchange, with both methods showing a decrease greater than 50% for average VOC levels indoors while active. We compare our results with simulated smoke impact experiments that show the slow decline in VOCs must be understood in the context of indoor reservoirs, beyond just on surfaces, leading to the slow release of VOCs to indoor air.
Collapse
Affiliation(s)
- William
D. Dresser
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jonathan M. Silberstein
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Colleen E. Reid
- Department
of Geography and Institute of Behavioral Science, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christine Wiedinmyer
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael P. Hannigan
- Department
of Mechanical Engineering, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joost A. de Gouw
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Wang X, Tang S, Ding L, Qiu X, Zhang Z, Xu L, Liang X, Huang X, Guo X. Contribution of plastic solid components to volatile organic compounds formation during plastics combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135977. [PMID: 39342857 DOI: 10.1016/j.jhazmat.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The combustion of plastic waste releases volatile organic compounds (VOCs) that are harmful to human health. However, information on the micro-mechanisms of VOC formation remains lacking. Here, the study hypothesized and verified the relationship between VOC formation and solid component degradation during plastics combustion. The VOCs released during plastics combustion exhibit characteristics such as low carbon content (nc< 10), volatility (9 μg m-3 < log10C0 < 11 μg m-3), and medium oxidation degree (-1.5 < OSC¯ < -0.5). The dominant VOCs ketones/aldehydes/acids (33-43 %) may be attributed to the depolymerization of the polymer structure of plastics, the oxidation of C-O/CO groups, and the secondary cleavage of gaseous oxygen-containing macromolecules. The VOCs released from the combustion of polyethylene terephthalate (PET) and poly(butyleneadipate-co-terephthalate) (PBAT) contained more aromatics than polyethylene (PE) and polypropylene (PP). And the temperature response of aromatics released from PET and PBAT lagged other VOCs compared that of PP and PE. However, compared to biomass thermal conversion, combustion of plastics releases fewer aromatics and nitrogenous compounds. Collectively, this work shows that the formation mechanisms of VOCs contributed by the solid components during plastic combustion are similar for PET and PBAT due to their similar chemical structures. The proposed mechanism in this paper will provide insight into the control of contaminants during plastic combustion.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Simeng Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
3
|
Webb M, Morrison G, Baumann K, Li J, Ditto JC, Huynh HN, Yu J, Mayer K, Mael L, Vance ME, Farmer DK, Abbatt J, Poppendieck D, Turpin BJ. Dynamics of residential indoor gas- and particle-phase water-soluble organic carbon: measurements during the CASA experiment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39373709 DOI: 10.1039/d4em00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOCg) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOCg and total particle phase WSOC (WSOCp)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOCg and WSOCp inside a residential test facility in the house background and during scripted activities. A total organic carbon (TOC) analyzer pulled alternately from a particle-into-liquid sampler (PILS) or a mist chamber (MC). WSOCg concentrations (215 ± 29 μg-C m-3) were generally 36× higher than WSOCp (6 ± 3 μg-C m-3) and 20× higher than outdoor levels. A building-specific emission factor (Ef) of 31 mg-C h-1 maintained the relatively high house WSOCg background, which was dominated by ethanol (46 μg-C m-3 to 82 μg-C m-3). When we opened the windows, WSOCg decayed slower (2.8 h-1) than the air change rate (21.2 h-1) and Ef increased (243 mg-C h-1). The response (increased Ef) suggests WSOCg concentrations are regulated by large near surface reservoirs rather than diffusion through surface materials. Cooking and ozone addition had a small impact on WSOC, whereas surface cleaning, volatile organic compound (VOC) additions, or wood smoke injections had significant impacts on WSOC concentrations. WSOCg concentration decay rates from these activities (0.4 h-1 to 4.0 h-1) were greater than the normal operating 0.24 h-1 air change rate, which is consistent with an important role for surface removal.
Collapse
Affiliation(s)
- Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Han N Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Liora Mael
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Marina E Vance
- Department of Mechanical Engineering, Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | | | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, Dannemiller KC, Deeleepojananan C, Ditto J, Dougherty B, Farinas OR, Goldstein AH, Grassian VH, Huynh H, Kim D, King JC, Kroll J, Li J, Link MF, Mael L, Mayer K, Martin AB, Morrison G, O'Brien R, Pandit S, Turpin BJ, Webb M, Yu J, Zimmerman SM. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 38953218 DOI: 10.1039/d4em00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.
Collapse
Affiliation(s)
- Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | - Jon Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Michael R Alves
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | | | - Jenna Ditto
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Dougherty
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Olivia R Farinas
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Deborah Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jon C King
- Department of Civil, Environmental, and Geodetic Engineering, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, USA
| | - Jesse Kroll
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Liora Mael
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Kathryn Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew B Martin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel O'Brien
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Marc Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
5
|
Link MF, Robertson RL, Shore A, Hamadani BH, Cecelski CE, Poppendieck DG. Ozone generation and chemistry from 222 nm germicidal ultraviolet light in a fragrant restroom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1090-1106. [PMID: 38787731 PMCID: PMC11421862 DOI: 10.1039/d4em00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Devices using 222 nm germicidal ultraviolet light (GUV222) have been marketed to reduce virus transmission indoors with low risk of occupant harm from direct UV exposure. GUV222 generates ozone, an indoor air pollutant and oxidant, under constrained laboratory conditions, but the chemistry byproducts of GUV222-generated ozone in real indoor spaces is uncharacterized. We deployed GUV222 in a public restroom, with an air change rate of 1 h-1 one weekend and 2 h-1 the next, to measure ozone formation and byproducts generated from ozone chemistry indoors. Ozone from GUV222 increased background concentrations by 5 ppb on average for both weekends and reacted rapidly (e.g., at rates of 3.7 h-1 for the first weekend and 2.0 h-1 for the second) with gas-phase precursors emitted by urinal screens and on surfaces. These ozone reactions generated volatile organic compound and aerosol byproducts (e.g., up to 2.6 μg m-3 of aerosol mass). We find that GUV222 is enhancing indoor chemistry by at least a factor of two for this restroom. The extent of this enhanced chemistry will likely be different for different indoor spaces and is dependent upon ventilation rates, species and concentrations of precursor VOCs, and surface reactivity. Informed by our measurements of ozone reactivity and background aerosol concentrations, we present a framework for predicting aerosol byproduct formation from GUV222 that can be extended to other indoor spaces. Further research is needed to understand how typical uses of GUV222 could impact air quality in chemically diverse indoor spaces and generate indoor air chemistry byproducts that can affect human health.
Collapse
Affiliation(s)
- Michael F Link
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Rileigh L Robertson
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Andrew Shore
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Behrang H Hamadani
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | | | | |
Collapse
|
6
|
Cecinato A, Romagnoli P, Cerasa M, Perilli M, Balducci C. Organic toxicants and emerging contaminants in hospital interiors before and during the SARS-CoV2 pandemic: alkanes and PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9713-9731. [PMID: 38194174 DOI: 10.1007/s11356-023-31735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 μg/g and ~ 15-76 μg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy.
| | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Marina Cerasa
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| |
Collapse
|
7
|
Link MF, Li J, Ditto JC, Huynh H, Yu J, Zimmerman SM, Rediger KL, Shore A, Abbatt JPD, Garofalo LA, Farmer DK, Poppendieck D. Ventilation in a Residential Building Brings Outdoor NO x Indoors with Limited Implications for VOC Oxidation from NO 3 Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16446-16455. [PMID: 37856830 DOI: 10.1021/acs.est.3c04816] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Energy-efficient residential building standards require the use of mechanical ventilation systems that replace indoor air with outdoor air. Transient outdoor pollution events can be transported indoors via the mechanical ventilation system and other outdoor air entry pathways and impact indoor air chemistry. In the spring of 2022, we observed elevated levels of NOx (NO + NO2) that originated outdoors, entering the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility through the mechanical ventilation system. Using measurements of NOx, ozone (O3), and volatile organic compounds (VOCs), we modeled the effect of the outdoor-to-indoor ventilation of NOx pollution on the production of nitrate radical (NO3), a potentially important indoor oxidant. We evaluated how VOC oxidation chemistry was affected by NO3 during NOx pollution events compared to background conditions. We found that nitric oxide (NO) pollution introduced indoors titrated O3 and inhibited the modeled production of NO3. NO ventilated indoors also likely ceased most gas-phase VOC oxidation chemistry during plume events. Only through the artificial introduction of O3 to the ventilation duct during a NOx pollution event (i.e., when O3 and NO2 concentrations were high relative to typical conditions) were we able to measure NO3-initiated VOC oxidation products, indicating that NO3 was impacting VOC oxidation chemistry.
Collapse
Affiliation(s)
- Michael F Link
- National Institute of Standards and Technology, Gaithersburg 20899, Maryland, United States
| | - Jienan Li
- Colorado State University, Fort Collins 80523, Colorado, United States
| | - Jenna C Ditto
- University of Toronto, Toronto M5S 3H6, Ontario,Canada
| | - Han Huynh
- University of Toronto, Toronto M5S 3H6, Ontario,Canada
| | - Jie Yu
- University of Toronto, Toronto M5S 3H6, Ontario,Canada
| | - Stephen M Zimmerman
- National Institute of Standards and Technology, Gaithersburg 20899, Maryland, United States
| | - Katelyn L Rediger
- Colorado State University, Fort Collins 80523, Colorado, United States
| | - Andrew Shore
- National Institute of Standards and Technology, Gaithersburg 20899, Maryland, United States
| | | | - Lauren A Garofalo
- Colorado State University, Fort Collins 80523, Colorado, United States
| | - Delphine K Farmer
- Colorado State University, Fort Collins 80523, Colorado, United States
| | - Dustin Poppendieck
- National Institute of Standards and Technology, Gaithersburg 20899, Maryland, United States
| |
Collapse
|
8
|
Barber VP, Goss MB, Franco Deloya LJ, LeMar LN, Li Y, Helstrom E, Canagaratna M, Keutsch FN, Kroll JH. Indoor Air Quality Implications of Germicidal 222 nm Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15990-15998. [PMID: 37827494 PMCID: PMC10607233 DOI: 10.1021/acs.est.3c05680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
One strategy for mitigating the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus, is irradiation by germicidal UV light (GUV). A particularly promising approach is 222 nm light from KrCl excimer lamps (GUV222); this inactivates airborne pathogens and is thought to be relatively safe for human skin and eye exposure. However, the impact of GUV222 on the composition of indoor air has received little experimental study. Here, we conduct laboratory experiments in a 150 L Teflon chamber to examine the formation of secondary species by GUV222. We show that GUV222 generates ozone (O3) and hydroxyl radicals (OH), both of which can react with volatile organic compounds to form oxidized volatile organic compounds and secondary organic aerosol particles. Results are consistent with a box model based on the known photochemistry. We use this model to simulate GUV222 irradiation under more realistic indoor air scenarios and demonstrate that under some conditions, GUV222 irradiation can lead to levels of O3, OH, and secondary organic products that are substantially elevated relative to normal indoor conditions. The results suggest that GUV222 should be used at low intensities and in concert with ventilation, decreasing levels of airborne pathogens while mitigating the formation of air pollutants.
Collapse
Affiliation(s)
- Victoria P. Barber
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew B. Goss
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lesly J. Franco Deloya
- Department
of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lexy N. LeMar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaowei Li
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Erik Helstrom
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Manjula Canagaratna
- Center
for Aerosol and Cloud Chemistry, Aerodyne
Research Incorporated, Billerica, Massachusetts 01821, United States
| | - Frank N. Keutsch
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jesse H. Kroll
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Li J, Link MF, Pandit S, Webb MH, Mayer KJ, Garofalo LA, Rediger KL, Poppendieck DG, Zimmerman SM, Vance ME, Grassian VH, Morrison GC, Turpin BJ, Farmer DK. The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house. SCIENCE ADVANCES 2023; 9:eadh8263. [PMID: 37831770 PMCID: PMC10575580 DOI: 10.1126/sciadv.adh8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.
Collapse
Affiliation(s)
- Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc H. Webb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn J. Mayer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Lauren A. Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Katelyn L. Rediger
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Marina E. Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barbara J. Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
10
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Moravek A, VandenBoer TC, Finewax Z, Pagonis D, Nault BA, Brown WL, Day DA, Handschy AV, Stark H, Ziemann P, Jimenez JL, de Gouw JA, Young CJ. Reactive Chlorine Emissions from Cleaning and Reactive Nitrogen Chemistry in an Indoor Athletic Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15408-15416. [PMID: 36326040 DOI: 10.1021/acs.est.2c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.
Collapse
Affiliation(s)
- Alexander Moravek
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| | | | - Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Harald Stark
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Aerodyne Research, Inc., Billerica, Massachusetts01821, United States
| | - Paul Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Cora J Young
- Department of Chemistry, York University, Toronto, OntarioM3J 1P3, Canada
| |
Collapse
|
12
|
Li T, Song F, Wu F, Huang X, Bai Y. Heterogeneous Dynamic Behavior and Synergetic Evolution Mechanism of Internal Components and Released Gases during the Pyrolysis of Aquatic Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13595-13606. [PMID: 36102145 DOI: 10.1021/acs.est.2c02631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evolution of gaseous contaminants from biomass pyrolysis has drawn increasing attention. However, the thermal degradation, dynamics, and synergetic evolution mechanisms during real-time biomass pyrolysis remain unclear. Herein, a novel method using thermogravimetry-Fourier transform infrared spectrometry-gas chromatography/mass spectrometry (TG-FTIR-GC/MS) combined with thermal kinetics and two-dimensional correlation spectroscopy was proposed to explore the chemical properties and temperature response mechanisms of gaseous species released during Phragmites communis (PC) and Typha angustifolia (TA) pyrolysis. The thermal degradation mechanisms of PC/TA pyrolysis were mainly associated with the sigmoidal rate and random nucleation mechanisms. The formation intensities of alcohols/ethers, phenols/esters, acids, aldehydes, and ketones were higher during low-temperature TA pyrolysis and high-temperature PC pyrolysis. The average carbon oxidation state (OS¯C) of gaseous species mainly ranged from -1.5 to -0.5, and the OS¯C slope of most gaseous species was greater than -2.0, which was related to the reduction of aldehyde/ketone groups. Two-dimensional (2D)-TG-FTIR-COS analysis revealed that the sequential temperature response of gaseous species followed: acids → phenols, esters → aldehydes → hydrocarbons → alcohols, ethers → aromatics during PC/TA pyrolysis. The establishment of relationships between the sequential response of gases and degraded components provides an important basis for online monitoring/recovery of gaseous contaminants during biomass pyrolysis.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Hodshire AL, Carter E, Mattila JM, Ilacqua V, Zambrana J, Abbatt JPD, Abeleira A, Arata C, DeCarlo PF, Goldstein AH, Ruiz LH, Vance ME, Wang C, Farmer DK. Detailed Investigation of the Contribution of Gas-Phase Air Contaminants to Exposure Risk during Indoor Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12148-12157. [PMID: 35952310 PMCID: PMC9454252 DOI: 10.1021/acs.est.2c01381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 05/31/2023]
Abstract
Analytical capabilities in atmospheric chemistry provide new opportunities to investigate indoor air. HOMEChem was a chemically comprehensive indoor field campaign designed to investigate how common activities, such as cooking and cleaning, impacted indoor air in a test home. We combined gas-phase chemical data of all compounds, excluding those with concentrations <1 ppt, with established databases of health effect thresholds to evaluate potential risks associated with gas-phase air contaminants and indoor activities. The chemical composition of indoor air is distinct from outdoor air, with gaseous compounds present at higher levels and greater diversity─and thus greater predicted hazard quotients─indoors than outdoors. Common household activities like cooking and cleaning induce rapid changes in indoor air composition, raising levels of multiple compounds with high risk quotients. The HOMEChem data highlight how strongly human activities influence the air we breathe in the built environment, increasing the health risk associated with exposure to air contaminants.
Collapse
Affiliation(s)
- Anna L. Hodshire
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Ellison Carter
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - James M. Mattila
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Vito Ilacqua
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | - Jordan Zambrana
- U.S.
Environmental Protection Agency, Office of Radiation and Indoor Air, Washington District of Columbia 20460, United States
| | | | - Andrew Abeleira
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| | - Caleb Arata
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lea Hildebrandt Ruiz
- McKetta
Department of Chemical Engineering, The
University of Texas at Austin, Austin, Texas 78712, United States
| | - Marina E. Vance
- Department
of Mechanical Engineering, University of
Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, Colorado 80309, United States
| | - Chen Wang
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Delphine K. Farmer
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80524, United States
| |
Collapse
|
14
|
Ding L, Wang L, Nian L, Tang M, Yuan R, Shi A, Shi M, Han Y, Liu M, Zhang Y, Xu Y. Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155277. [PMID: 35447177 DOI: 10.1016/j.scitotenv.2022.155277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Non-targeted analysis (NTA) was used in identifying volatile organic compounds (VOCs) in a museum in China with the gas chromatograph (GC)-Orbitrap-mass spectrometer (MS). Approximately 230 VOCs were detected, of which 117 were observed at 100% frequency across all sampling sites. Although some were common in indoor environments, most of the detected VOCs were rarely reported in previous studies on museum environments. Some of the detected VOCs were found to be associated with the materials used in furnishings and the chemicals applied in conservation treatment. Spearman's correlation analysis showed that several classes of VOCs were well correlated, suggesting their common sources. Compared with compounds in outdoor air, indoor VOCs had a lower level of unsaturation and more portions of chemically reduced compounds. Hierarchical cluster analysis (HCA) were performed. The results suggested that the sampling adsorbents chosen may have a large impact and that a single type of adsorbent may not be sufficient to cover a wide range of compounds in NTA studies. The MonoTrap adsorbent containing octadecylsilane (ODS) and activated carbon (AC) is suitable for aliphatic polar compounds that contain low levels of oxygen, whereas the MonoTrap ODS and silica gel are good at sampling aliphatic and aromatic hydrocarbons with limited polarity. Principle component analysis (PCA) showed that the indoor VOCs changed significantly at different times in the museum; this may have been caused by the removal of artifacts and refurbishment of the gallery between sampling events. A comparison with compounds identified by chamber emission tests showed that decorative materials may have been one of the main sources of indoor VOCs in the museum. The VOCs identified in the present study are likely to be present in other similar museums; therefore, further examination may be warranted of their potential impacts on cultural heritage artifacts, museum personnel, and visitors.
Collapse
Affiliation(s)
- Li Ding
- National Museum of China, Beijing, China
| | - Luyang Wang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Luying Nian
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ming Tang
- National Museum of China, Beijing, China
| | - Rui Yuan
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Anmei Shi
- National Museum of China, Beijing, China
| | - Meng Shi
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Han
- National Museum of China, Beijing, China
| | - Min Liu
- National Museum of China, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
15
|
Mattila JM, Arata C, Abeleira A, Zhou Y, Wang C, Katz EF, Goldstein AH, Abbatt JPD, DeCarlo PF, Vance ME, Farmer DK. Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:109-118. [PMID: 34910454 DOI: 10.1021/acs.est.1c03915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactive organic carbon (ROC) comprises a substantial fraction of the total atmospheric carbon budget. Emissions of ROC fuel atmospheric oxidation chemistry to produce secondary pollutants including ozone, carbon dioxide, and particulate matter. Compared to the outdoor atmosphere, the indoor organic carbon budget is comparatively understudied. We characterized indoor ROC in a test house during unoccupied, cooking, and cleaning scenarios using various online mass spectrometry and gas chromatography measurements of gaseous and particulate organics. Cooking greatly impacted indoor ROC concentrations and bulk physicochemical properties (e.g., volatility and oxidation state), while cleaning yielded relatively insubstantial changes. Additionally, cooking enhanced the reactivities of hydroxyl radicals and ozone toward indoor ROC. We observed consistently higher median ROC concentrations indoors (≥223 μg C m-3) compared to outdoors (54 μg C m-3), demonstrating that buildings can be a net source of reactive carbon to the outdoor atmosphere, following its removal by ventilation. We estimate the unoccupied test house emitted 0.7 g C day-1 from ROC to outdoors. Indoor ROC emissions may thus play an important role in air quality and secondary pollutant formation outdoors, particularly in urban and suburban areas, and indoors during the use of oxidant-generating air purifiers.
Collapse
Affiliation(s)
- James M Mattila
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Andrew Abeleira
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yong Zhou
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chen Wang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Erin F Katz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Peter F DeCarlo
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
16
|
Nazaroff WW, Weschler CJ. Indoor ozone: Concentrations and influencing factors. INDOOR AIR 2022; 32:e12942. [PMID: 34609012 DOI: 10.1111/ina.12942] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
Because people spend most of their time indoors, much of their exposure to ozone occurs in buildings, which are partially protective against outdoor ozone. Measurements in approximately 2000 indoor environments (residences, schools, and offices) show a central tendency for average indoor ozone concentration of 4-6 ppb and an indoor to outdoor concentration ratio of about 25%. Considerable variability in this ratio exists among buildings, as influenced by seven building-associated factors: ozone removal in mechanical ventilation systems, ozone penetration through the building envelope, air-change rates, ozone loss rate on fixed indoor surfaces, ozone loss rate on human occupants, ozone loss by homogeneous reaction with nitrogen oxides, and ozone loss by reaction with gas-phase organics. Among these, the most important are air-change rates, ozone loss rate on fixed indoor surfaces, and, in densely occupied spaces, ozone loss rate on human occupants. Although most indoor ozone originates outdoors and enters with ventilation air, indoor emission sources can materially increase indoor ozone concentrations. Mitigation technologies to reduce indoor ozone concentrations are available or are being investigated. The most mature of these technologies, activated carbon filtration of mechanical ventilation supply air, shows a high modeled health-benefit to cost ratio when applied in densely occupied spaces.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
17
|
Li K, Wentzell JJB, Liu Q, Leithead A, Moussa SG, Wheeler MJ, Han C, Lee P, Li SM, Liggio J. Evolution of Atmospheric Total Organic Carbon from Petrochemical Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12841-12851. [PMID: 34525806 DOI: 10.1021/acs.est.1c02620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reactive organic compounds play a central role in the formation of ozone and secondary organic aerosols. The ability to accurately predict their fate, in part, relies upon quantitative knowledge of the chemical and physical parameters associated with the total organic carbon (TOC), which includes both precursors and oxidation products that evolve in the atmosphere over short to long time scales. However, such knowledge, obtained via limited carbon closure experiments, has not been attained for complex anthropogenic emissions. Here we present the first comprehensive characterization of TOC in the atmospheric oxidation of organic vapors from light and heavy oil mixtures associated with oil sand operations. Despite the complexity of the investigated oil mixtures, we are able to achieve carbon closure (83-116%) within the uncertainties (±20%), with the degree of the closure being dependent upon the vapor composition and NOx levels. In contrast to biogenic precursors (e.g., α-pinene), the photochemical time scale required for a largely complete oxidation and evolution of chemical parameters is very long for the petrochemical vapors (i.e., ∼7-10 days vs ∼1 day), likely due to the lower initial precursor reactivity. This suggests that petrochemical emissions and their impacts are likely to extend further spatially than biogenic emissions, and retain more of their complex composition and reactivity for many days. The results of this work provide key parameters to regional models for further improving the representation of the chemical evolution of petrochemical emissions.
Collapse
Affiliation(s)
- Kun Li
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jeremy J B Wentzell
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Qifan Liu
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amy Leithead
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Samar G Moussa
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael J Wheeler
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Chong Han
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Patrick Lee
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Shao-Meng Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - John Liggio
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
18
|
Finewax Z, Pagonis D, Claflin MS, Handschy AV, Brown WL, Jenks O, Nault BA, Day DA, Lerner BM, Jimenez JL, Ziemann PJ, de Gouw JA. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. INDOOR AIR 2021; 31:1323-1339. [PMID: 33337567 DOI: 10.1111/ina.12781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 05/15/2023]
Abstract
Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.
Collapse
Affiliation(s)
- Zachary Finewax
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Anne V Handschy
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Wyatt L Brown
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Olivia Jenks
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Benjamin A Nault
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Douglas A Day
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | | | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Paul J Ziemann
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Joost A de Gouw
- Cooperative Institute for Research in Environmental Sciences (CIRES, University of Colorado, Boulder, CO, USA
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
19
|
Joo T, Rivera-Rios JC, Alvarado-Velez D, Westgate S, Ng NL. Formation of Oxidized Gases and Secondary Organic Aerosol from a Commercial Oxidant-Generating Electronic Air Cleaner. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:691-698. [PMID: 37566381 PMCID: PMC8315241 DOI: 10.1021/acs.estlett.1c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic increased the demand for indoor air cleaners. While some commercial electronic air cleaners can be effective in reducing primary pollutants and inactivating bioaerosol, studies on the formation of secondary products from oxidation chemistry during their use are limited. Here, we measured oxygenated volatile organic compounds (OVOCs) and the chemical composition of particles generated from a hydroxyl radical generator in an office. During operation, enhancements in OVOCs, especially low-molecular-weight organic acids, were detected. Rapid increases in particle number and mass concentrations were observed, corresponding to the formation of highly oxidized secondary organic aerosol (SOA) (O:C ∼ 1.3), with an enhanced signal at m/z 44 (CO2+) in the organic mass spectra. These results suggest that organic acids generated during VOC oxidation contributed to particle nucleation and SOA formation. Nitrate, sulfate, and chloride also increased during the oxidation without a corresponding increase in ammonium, suggesting organic nitrate, organic sulfate, and organic chloride formation. As secondary species are reported to have detrimental health effects, further studies should not be limited to the inactivation of bioaerosol or reduction of particular VOCs, but should also evaluate potential OVOCs and SOA formation from electronic air cleaners in different indoor environments.
Collapse
Affiliation(s)
- Taekyu Joo
- School of Earth and Atmospheric Sciences,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Jean C. Rivera-Rios
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Daniel Alvarado-Velez
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Sabrina Westgate
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
- School of Civil and Environmental Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
20
|
Sheu R, Fortenberry CF, Walker MJ, Eftekhari A, Stönner C, Bakker A, Peccia J, Williams J, Morrison GC, Williams BJ, Gentner DR. Evaluating Indoor Air Chemical Diversity, Indoor-to-Outdoor Emissions, and Surface Reservoirs Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10255-10267. [PMID: 34270218 PMCID: PMC8461992 DOI: 10.1021/acs.est.1c01337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h-1, doubling with ventilation. While the largest single-compound emissions observed were furfural (61-275 mg h-1) and acetic acid, observations spanned a wide range of individual volatile chemical products (e.g., terpenoids, glycol ethers, phthalates, other oxygenates), highlighting the abundance of long-lived reservoirs resulting from prior indoor use or materials, and their gradual transport outdoors.
Collapse
Affiliation(s)
- Roger Sheu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Claire F Fortenberry
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael J Walker
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
| | - Christof Stönner
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Alexa Bakker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27515, United States
| | - Brent J Williams
- Department of Energy, Environmental, & Chemical Engineering and Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
21
|
Heeley-Hill AC, Grange SK, Ward MW, Lewis AC, Owen N, Jordan C, Hodgson G, Adamson G. Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:699-713. [PMID: 34037627 DOI: 10.1039/d0em00504e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) are a key class of atmospheric emission released from highly complex petrochemical, transport and solvent sources both outdoors and indoors. This study established the concentrations and speciation of VOCs in 60 homes (204 individuals, 360 × 72 h samples, 40 species) in summer and winter, along with outdoor controls. Self-reported daily statistics were collected in each home on the use of cleaning, household and personal care products, all of which are known to release VOCs. Frequency of product use varied widely: deodorants: 2.9 uses home per day; sealant-mastics 0.02 uses home per day. The total concentration of VOCs indoors (range C2-C10) was highly variable between homes e.g. range 16.6-8150 μg m-3 in winter. Indoor concentrations of VOCs exceeded outdoor for 84% of households studied in summer and 100% of homes in winter. The most abundant VOCs found indoors in this study were n-butane (wintertime range: 1.5-4630 μg m-3), likely released as aerosol propellant, ethanol, acetone and propane. The cumulative use VOC-containing products over multiday timescales by occupants provided little predictive power to infer 72 hour averaged indoor concentrations. However, there was weak covariance between the cumulative usage of certain products and individual VOCs. From a domestic emissions perspective, reducing the use of hydrocarbon-based aerosol propellants indoors would likely have the largest impact.
Collapse
Affiliation(s)
- Aiden C Heeley-Hill
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Stuart K Grange
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Martyn W Ward
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, UK
| | - Alastair C Lewis
- National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK.
| | - Neil Owen
- Givaudan UK Ltd, Kennington Road, TN24 0LT Ashford, UK
| | | | - Gemma Hodgson
- QI Statistics, Overdene House, 49 Church Street, Theale, Berkshire RG7 5BX, UK
| | - Greg Adamson
- Givaudan Fragrances Corp., 717 Ridgedale Ave, East Hanover, New Jersey 07936, USA
| |
Collapse
|
22
|
Wang N, Zannoni N, Ernle L, Bekö G, Wargocki P, Li M, Weschler CJ, Williams J. Total OH Reactivity of Emissions from Humans: In Situ Measurement and Budget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:149-159. [PMID: 33295177 PMCID: PMC7788569 DOI: 10.1021/acs.est.0c04206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Humans are a potent, mobile source of various volatile organic compounds (VOCs) in indoor environments. Such direct anthropogenic emissions are gaining importance, as those from furnishings and building materials have become better regulated and energy efficient homes may reduce ventilation. While previous studies have characterized human emissions in indoor environments, the question remains whether VOCs remain unidentified by current measuring techniques. In this study conducted in a climate chamber occupied by four people, the total OH reactivity of air was quantified, together with multiple VOCs measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and fast gas chromatography-mass spectrometry (fast-GC-MS). Whole-body, breath, and dermal emissions were assessed. The comparison of directly measured OH reactivity and that of the summed reactivity of individually measured species revealed no significant shortfall. Ozone exposure (37 ppb) was found to have little influence on breath OH reactivity but enhanced dermal OH reactivity significantly. Without ozone, the whole-body OH reactivity was dominated by breath emissions, mostly isoprene (76%). With ozone present, OH reactivity nearly doubled, with the increase being mainly caused by dermal emissions of mostly carbonyl compounds (57%). No significant difference in total OH reactivity was observed for different age groups (teenagers/young adults/seniors) without ozone. With ozone present, the total OH reactivity decreased slightly with increasing age.
Collapse
Affiliation(s)
- Nijing Wang
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Nora Zannoni
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Lisa Ernle
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Mengze Li
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
| | - Charles J. Weschler
- International
Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
- Environmental
and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jonathan Williams
- Max
Planck Institute for Chemistry, Mainz 55128, Germany
- The
Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
23
|
Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O'Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020; 6:3203-3218. [PMID: 32984643 PMCID: PMC7501779 DOI: 10.1016/j.chempr.2020.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.
Collapse
Affiliation(s)
- Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.,Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, North Yorkshire YO10 5NG, UK
| | - Douglas B Collins
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | - Hugo Destaillats
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D James Donaldson
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel E O'Brien
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23185, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Algrim LB, Pagonis D, de Gouw JA, Jimenez JL, Ziemann PJ. Measurements and modeling of absorptive partitioning of volatile organic compounds to painted surfaces. INDOOR AIR 2020; 30:745-756. [PMID: 32077147 DOI: 10.1111/ina.12654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Partitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, Cw , which is a measure of absorption capacity, and VOC diffusion coefficients, Df , from VOC time profiles measured during film passivation and depassivation. Values of Cw agreed well with the value estimated from the paint film mass and flow tube air volume, and Df values (also measured using attenuated total reflectance-Fourier transform infrared spectroscopy) correlated well with VOC vapor saturation concentrations, C*, estimated using a group contribution method. The value of these relationships for estimating key parameters that control VOC partitioning into paint and the fate of VOCs indoors was demonstrated using a house model, which indicated that >50% of VOCs with C* ≤108 μg/m3 (C* of octane, hexanone, and propanol) that contacted a paint film of typical thickness fully permeated the film regardless of emission duration.
Collapse
Affiliation(s)
- Lucas B Algrim
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Demetrios Pagonis
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Joost A de Gouw
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Jose L Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Paul J Ziemann
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| |
Collapse
|