1
|
Zhang H, Li B, Liu X, Qian T, Zhao D, Wang J, Zhang L, Wang T. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. WATER RESEARCH 2024; 262:122089. [PMID: 39018586 DOI: 10.1016/j.watres.2024.122089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microbes possessing electron transfer capabilities hold great promise for remediating subsurface contaminated by redox-active radionuclides such as technetium-99 (99TcO4-) through bio-transformation of soluble contaminants into their sparingly soluble forms. However, the practical application of this concept has been impeded due to the low electron transfer efficiency and long-term product stability under various biogeochemical conditions. Herein, we proposed and tested a pyrite-stimulated bio-immobilization strategy for immobilizing ReO4- (a nonradioactive analogue of 99TcO4-) using sulfate-reducing bacteria (SRB), with a focus on pure-cultured Desulfovibrio vulgaris. Pyrite acted as an effective stimulant for the bio-transformation of ReO4-, boosting the removal rate of ReO4- (50 mg/L) in a solution from 2.8 % (without pyrite) to 100 %. Moreover, the immobilized products showed almost no signs of remobilization during 168 days of monitoring. Dual lines of evidence were presented to elucidate the underlying mechanisms for the pyrite-enhanced bio-activity. Transcriptomic analysis revealed a global upregulation of genes associated with electron conductive cytochromes c network, extracellular tryptophan, and intracellular electron transfer units, leading to enhanced ReO4- bio-reduction. Spectroscopic analysis confirmed the long-term stability of the bio-immobilized products, wherein ReO4- is reduced to stable Re(IV) oxides and Re(IV) sulfides. This work provides a novel green strategy for remediation of radionuclides- or heavy metals-contaminated sites.
Collapse
Affiliation(s)
- Haoqing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States.
| | - Jianhui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Taiyuan 030024, China; Shanxi Low-Carbon Environmental Protection Industry Group Co. Ltd. Taiyuan 030032, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
2
|
Strub E, Grödler D, Zaratti D, Yong C, Dünnebier L, Bazhenova S, Roca Jungfer M, Breugst M, Zegke M. Pertechnetates - A Structural Study Across the Periodic Table. Chemistry 2024; 30:e202400131. [PMID: 38415941 DOI: 10.1002/chem.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
The number of crystal structures of pertechnetates derived from aqueous solutions has been expanded from seven to over 30. We report the conversion of NH4TcO4 to aqueous HtcO4 via acidic cation exchange. This is followed by the synthesis and structural elucidation of pertechnetate salts of alkaline earth (AE), transition metal I and lanthanoids (Ln) elements. Various degrees of hydration and coordination are discussed. Where possible, a comparison with the perrhenate homologues is made. The described syntheses and materials may be used as novel starting materials for extended technetium research.
Collapse
Affiliation(s)
- Erik Strub
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Dennis Grödler
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Daniele Zaratti
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Clarence Yong
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Lisa Dünnebier
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Sonja Bazhenova
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Maximilian Roca Jungfer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Markus Zegke
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| |
Collapse
|
3
|
Wang J, Xu B. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107267. [PMID: 37598575 DOI: 10.1016/j.jenvrad.2023.107267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Technetium isotope 99Tc is a main radioactive waste produced in the process of nuclear reaction, which has the characteristics of long half-life and strong environmental mobility, and can be bio-accumulated in organisms, resulting in serious threat to human health and ecosystem. Adsorption method is widely used in the field of removing radionuclides from water due to the advantages of high treatment rate, simple and mature industrial application. In this review paper, the recent advances in research and application of various adsorption materials for 99Tc pollution treatment were summarized and analyzed for the first time, including inorganic adsorbents, such as activated carbon, zero-valent iron, metallic minerals, clay minerals, layered double hydroxides (LDHs), tin-based materials, and sulfur-based materials; organic adsorbents, such as porous organic polymers (POPs), covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and ion exchange resin; and biological adsorbents, such as biopolymers (chitosan, cellulose, alginate), and microbial cells. The performance characteristics and the adsorption kinetics and isotherms of various adsorption materials were discussed. This review could deepen the understanding of the adsorptive removal of 99Tc from aqueous solution, and provide a reference for the future research in this field.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Bowen Xu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130977. [PMID: 36860053 DOI: 10.1016/j.jhazmat.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
Collapse
Affiliation(s)
- Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Changzhong Liao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
5
|
Alexey M, Alexey S, Anastasiia S, Konstantin M, Elena Z, Sergey K. Clay and carbon materials-based engineered barriers for technetium immobilization. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Rodríguez DM, Mayordomo N, Parra-Puerto A, Schild D, Brendler V, Stumpf T, Müller K. Exploring the Reduction Mechanism of 99Tc(VII) in NaClO 4: A Spectro-Electrochemical Approach. Inorg Chem 2022; 61:10159-10166. [PMID: 35748436 DOI: 10.1021/acs.inorgchem.2c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Technetium (Tc) is an environmentally relevant radioactive contaminant whose migration is limited when Tc(VII) is reduced to Tc(IV). However, its reaction mechanisms are not well understood yet. We have combined electrochemistry, spectroscopy, and microscopy (cyclic voltammetry, rotating disk electrode, X-ray photoelectron spectroscopy, and Raman and scanning electron microscopy) to study Tc(VII) reduction in non-complexing media: 0.5 mM KTcO4 in 2 M NaClO4 in the pH from 2.0 to 10.0. At pH 2.0, Tc(VII) first gains 2.3 ± 0.3 electrons, following Tc(V) rapidly receives 1.3 ± 0.3 electrons yielding Tc(IV). At pH 4.0-10.0, Tc(IV) is directly obtained by transfer of 3.2 ± 0.3 electrons. The reduction of Tc(VII) produced always a black solid identified as Tc(IV) by Raman and XPS. Our results narrow a significant gap in the fundamental knowledge of Tc aqueous chemistry and are important to understand Tc speciation. They provide basic steps on the way from non-complexing to complex media.
Collapse
Affiliation(s)
- Diana M Rodríguez
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Natalia Mayordomo
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | | | - Dieter Schild
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Katharina Müller
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
7
|
Williamson AJ, Lloyd JR, Boothman C, Law GTW, Shaw S, Small JS, Vettese GF, Williams HA, Morris K. Biogeochemical Cycling of 99Tc in Alkaline Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15862-15872. [PMID: 34825817 DOI: 10.1021/acs.est.1c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200-1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under "no added Fe(III)" and "with added Fe(III)" conditions (added as ferrihydrite) at three Tc concentrations (10-11, 10-6, and 10-4 mol L-1). In the 10-6 mol L-1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.
Collapse
Affiliation(s)
- Adam J Williamson
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
- CENBG-Équipe Radioactivité et Environnement, UMR 5797, CNRS-IN2P3/Université de Bordeaux, 19 chemin du Solarium, CS 10120, 33175 Gradignan, France
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Christopher Boothman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Joe S Small
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
- National Nuclear Laboratory, Risley, Warrington, Cheshire WA3 6AE, U.K
| | - Gianni F Vettese
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Heather A Williams
- Department of Nuclear Medicine, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, U.K
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
8
|
Xu Y, Tian Y, Chen B, Yan Z, Ding J, Huang Y, Kang J, Chen S, Jin Y, Xia C. Porphyrin-based cationic conjugated network prepared by Zincke reaction and its adsorption for TcO4−/ReO4−. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Rodríguez DM, Mayordomo N, Schild D, Shams Aldin Azzam S, Brendler V, Müller K, Stumpf T. Reductive immobilization of 99Tc(VII) by FeS 2: The effect of marcasite. CHEMOSPHERE 2021; 281:130904. [PMID: 34289606 DOI: 10.1016/j.chemosphere.2021.130904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Reductive immobilization of 99Tc by a synthetic FeS2 mixture, i.e. marcasite-pyrite 60:40, was studied by a combined approach of batch experiments and powder X-ray diffraction, X-ray photoelectron spectroscopy as well as Raman microscopy. It was found that the FeS2 mixture removes 100% of Tc from the suspension after 7 days in contact at 6.0 < pH ≤ 9.0. The retention outside that pH range was slower and incomplete. Spectroscopic analysis showed that the redox active species at pH 6.0 is Fe2+ as expected from previous works with pyrite. However, at pH 10.0 the surprising oxidation of S2- to SO42- was found responsible for Tc immobilization. This was explained by the high reactivity of marcasite that is easily oxidized to produce H2SO4. Our work provides new molecular insights into the reductive mobilization of Tc(VII) by oxidative formation of sulfate. The assigned molecular reactions may also be relevant for the assessment of other redox reactive contaminants. Technetium re-oxidation experiments showed that the fast oxidation of marcasite is associated to the reduction of the remaining Tc(VII) in solution, which gives marcasite the potential of Tc natural remediation since it delays the re-oxidation of Tc(IV).
Collapse
Affiliation(s)
- Diana M Rodríguez
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Natalia Mayordomo
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Dieter Schild
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Salim Shams Aldin Azzam
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Vinzenz Brendler
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| |
Collapse
|
10
|
Schmeide K, Rossberg A, Bok F, Shams Aldin Azzam S, Weiss S, Scheinost AC. Technetium immobilization by chukanovite and its oxidative transformation products: Neural network analysis of EXAFS spectra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145334. [PMID: 33736379 DOI: 10.1016/j.scitotenv.2021.145334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The uptake of the fission product technetium (Tc) by chukanovite, an FeII hydroxy carbonate mineral formed as a carbon steel corrosion product in anoxic and carbonate-rich environments, was studied under anoxic, alkaline to hyperalkaline conditions representative for nuclear waste repositories in deep geological formations with cement-based inner linings. The retention potential of chukanovite towards TcVII is high in the pH range 7.8 to 12.6, evidenced by high solid-water distribution coefficients, log Rd ~ 6, and independent of ionic strength (0.1 or 1 M NaCl). Using Tc K-edge X-ray absorption spectroscopy (XAS) two series of samples were investigated, Tc chukanovite sorption samples and coprecipitates, prepared with varying Tc loadings, pH values and contact times. From the resulting 37 XAS spectra, spectral endmembers and their dependence on chemical parameters were derived by self-organizing (Kohonen) maps (SOM), a neural network-based approach of machine learning. X-ray absorption near-edge structure (XANES) data confirmed the complete reduction of TcVII to TcIV by chukanovite under all experimental conditions. Consistent with mineralogical phases identified by X-ray diffraction (XRD), SOM analysis of the extended X-ray absorption fine-structure (EXAFS) spectra revealed the presence of three species in the sorption samples, the speciation predominately controlled by pH: Between pH 7.8 and 11.8, TcO2-dimers form inner-sphere sorption complexes at the surface of the initial chukanovite as well as on the surface of secondary magnetite formed due to redox reaction. At pH ≥ 11.9, TcIV is incorporated in a mixed, chukanovite-like, Fe/Tc hydroxy carbonate precipitate. The same species formed when using the coprecipitation approach. Reoxidation of sorption samples resulted in a small remobilization of Tc, demonstrating that both the original chukanovite mineral and its oxidative transformation products, magnetite and goethite, contribute to the immobilization of Tc in the long term, thus strongly attenuating its environmental transport.
Collapse
Affiliation(s)
- Katja Schmeide
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - André Rossberg
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; The Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Frank Bok
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Salim Shams Aldin Azzam
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Stephan Weiss
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andreas C Scheinost
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; The Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
11
|
Ram R, Kalnins C, Pownceby MI, Ehrig K, Etschmann B, Spooner N, Brugger J. Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124989. [PMID: 33450517 DOI: 10.1016/j.jhazmat.2020.124989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities can redistribute the constituents of naturally occurring radioactive materials (NORM), posing potential hazards to populations and ecosystems. In the present study, the co-sorption of several RN from the U decay chain- 238U, 230Th, 226Ra, 210Pb and 210Po, onto common minerals associated with mining activities (chalcopyrite, bornite, pyrite and barite) was investigated, in order to identify the various factors that control long-term NORM mobility and retentivity in environmental acid-mine drainage systems and hydrometallurgical processing. The results show selective RN co-sorption to the various natural minerals, suggesting that mineral-specific mechanisms govern the variability in NORM mobility and retentivity. Both 226Ra and 210Po underwent significant sorption onto the natural minerals investigated in this study. The order of co-sorption in sulfate media for chalcopyrite and bornite was 210Po>226Ra>206Pb>210Pb>238U/230Th. Conversely, both pyrite and barite showed increased affinity for 226Ra; the order of co-sorption in sulfate media was 226Ra>210Po>206Pb/210Pb>238U/230Th for pyrite and 226Ra>206Pb/210Pb>230Th/238U/210Po for barite. Similar orders of co-sorption were observed in the nitrate media: for chalcopyrite and bornite the order was 210Po>226Ra/206Pb/210Pb/238U/230Th compared to 226Ra>210Po/206Pb/210Pb/238U/230Th for pyrite and barite. The behavior of 210Po was found to the anomalous: in both sulfate and nitrate solutions, 210Po had little affinity for barite compared to the sulfides. Thermodynamic modeling indicated the formation of a reduced PoS(s) phase at the surface of sulfide minerals, leading to the suggestion that 210Po likely undergoes reductive precipitation on the surface of sulfide minerals. The high sorption of both 206Pb and 210Pb observed in the sulfate systems were likely as a result of co-precipitation as insoluble anglesite compared to nitrate where they mainly remained in solution. Overall, barite showed the highest affinity for 226Ra, given its propensity to sorb 226Ra (similar ionic size). Both 238U and 230Th were highly mobile in acidic sulfate and nitrate solutions. The results highlighted here identify the various constraints on the natural variability and fractionation of NORM in the environment, as well as the mineral-specific mechanisms that control co-sorption of RN. This information provides a framework for predicting RN transport within soils and ground waters with variable geochemical conditions and in metallurgical extraction processes, in order to develop effective strategies towards NORM mitigation.
Collapse
Affiliation(s)
- Rahul Ram
- School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Monash University, Clayton, VIC 3168, Australia.
| | - Chris Kalnins
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Kathy Ehrig
- BHP Olympic Dam, Adelaide, SA 5000, Australia
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Monash University, Clayton, VIC 3168, Australia
| | - Nigel Spooner
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Joël Brugger
- School of Earth, Atmosphere and Environment, 9 Rainforest Walk, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|