1
|
Hu YL, Sun ZG. Environmentally sustainable synthesis of cyclic carbonates from epoxides and CO 2 promoted by MCM-41 supported dual imidazolium ionic liquids catalysts. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
A type of MCM-41 supported dual imidazolium ionic liquids have been synthesized and efficiently used as catalysts in the sustainable chemical conversion of CO2 and epoxides into cyclic carbonates. It was shown that the highest efficiency was achieved in the cycloaddition of a variety of epoxides and CO2 in the presence of the MCM-41@DILSCN solid catalyst under mild conditions. More interestingly, the catalyst was stable, very active, robust, and displayed good recyclability without significant loss of catalytic activity after six consecutive cycles during the process. Overall, the present protocol of synthesizing cyclic carbonates under solvent free conditions using MCM-41@DILSCN is promising for industrial applications.
Collapse
Affiliation(s)
- Yu Lin Hu
- College of Chemistry and Chemical Engineering , Anshun University , Anshun 561000 , P. R. China
| | - Zhi Guo Sun
- College of Chemistry and Chemical Engineering , Anshun University , Anshun 561000 , P. R. China
| |
Collapse
|
2
|
Li Y, Chen Y, Wan YL, Wang RS, Wang H, Lei YZ. Single-atom Zn on bipyridine-functionalized porous organic polymers towards highly efficient N-formylation of amines with CO2 under mild conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Liu YL, Zhao Y, Zhang J, Ye Y, Sun Q. Cu2-cluster-based MOF with open metal sites and Lewis basic sites: Construction, CO2 adsorption and fixation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Fu HQ, Mao H, Wang C, Yin K, Jin M, Dong Z, Zhao Y, Liu J. The Al( iii)-based polydentate chelate complex catalyzed cycloaddition of carbon dioxide and epoxides: synthetic optimization and mechanistic study. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aimed at greenhouse gas CO2 high value-added utilization, a N,N′-(propane-1,3-diyl)dipicolinamide (PPPA) supported Al(iii) metal–organic polydentate chelate complex (Al-PPPA) was designed and used to efficiently catalyze CO2 to cyclic carbonates.
Collapse
Affiliation(s)
- Hong-Qing Fu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Chaoyang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Kun Yin
- Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry & Materials Engineering, Fuyang Normal University, 100 West Qinghe Road, Fuyang, Anhui, 236037, China
| | - Miaomiao Jin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Zhenbiao Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Yun Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Jibo Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| |
Collapse
|
5
|
Yuan G, Lei Y, Meng X, Ge B, Ye Y, Song X, Liang Z. Metal-assisted synthesis of salen-based porous organic polymer for highly efficient fixation of CO2 into cyclic carbonates. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01643a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of metal–salen-based porous organic polymers was synthesized using a simple metal-assisted synthetic method, among which Co-salen-POP exhibited highly efficient performance in the fixation of CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yin Lei
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xianyu Meng
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bangdi Ge
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Munyentwali A, Li C, Li H, Yang Q. Synthesis of Sulfonated Porous Organic Polymers with a Hydrophobic Core for Efficient Acidic Catalysis in Organic Transformations. Chem Asian J 2021; 16:2041-2047. [PMID: 34060243 DOI: 10.1002/asia.202100456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Synthesis of sulfonated porous polymers with improved hydrophobicity and stability is of extreme importance in both academic research and industrial applications. However, there is often a trade-off between acidity and surface hydrophobicity of sulfonated polymers. In this study, we report a strategy for the synthesis of sulfonated porous organic polymers (S-PT) with improved hydrophobicity via free radical polymerization method by using a rigid and large multidentate monomer, 1,3,5-tri(4-vinylphenyl)-benzene, having a hydrophobic core. The results of vapor adsorption measurement show that S-PT has more hydrophobic properties than sulfonated poly(divinylbenzene) (S-PD), attributed to the hydrophobic core of its multidentate monomer. Furthermore, the optimization of sulfonation time established a balance between surface acidity and hydrophobicity. Under optimized conditions, S-PT afforded up to 113 mmol g-1 h-1 TOF in the esterification of oleic acid with methanol, more active than commercial Amberlyst-15 with TOF of 15 mmol g-1 h-1 and Nafion NR50 with TOF of 7 mmol g-1 h-1 . We believe that the findings of this study will provide useful insights to advance the design and synthesis of solid acid catalysts for organic transformations.
Collapse
Affiliation(s)
- Alexis Munyentwali
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunzhi Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Liu L, Jayakumar S, Chen J, Tao L, Li H, Yang Q, Li C. Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO 2 to Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29522-29531. [PMID: 34133113 DOI: 10.1021/acsami.1c04624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of efficient solid catalysts for catalytic conversion of dilute CO2 is of extreme importance for carbon capture and utilization. We report the synthesis of bifunctional polymers co-incorporated with porphyrin-Zn as Lewis acid sites and Br- as nucleophiles for the cycloaddition of dilute CO2 with epoxides in this work. It was found that the Br-/Zn ratio has a volcano relation with the activity of bifunctional polymers in a cycloaddition reaction, indicating the synergy effect between Lewis acid sites and nucleophiles. The turnover frequency (TOF) of the bifunctional polymer is more than four-fold that of the physical mixture of tetrabutylammonium bromide and porphyrin-Zn-incorporated polymer, implying the enhanced cooperation between Br- and porphyrin-Zn in the polymer network. The bifunctional polymer with optimized Br-/Zn afforded 99% conversion, 99% selectivity, and a TOF as high as 12,000 h-1 for the cycloaddition of CO2 and propylene oxide, which is among the most active solid catalysts ever reported. Furthermore, the bifunctional polymer could efficiently catalyze the cycloaddition of epichlorohydrin with dilute CO2 (7.5% CO2 balanced by N2) even under ambient conditions, demonstrating its potential application in industrial-scale production.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanjeevi Jayakumar
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Zhang X, Ding J, Qiu B, Li D, Bian Y, Zhu D, Wang S, Mai W, Ming S, Chen J, Li T. Ultralow Co Loading Phenanthroline‐based Porous Organic Polymer as a High‐efficient Heterogeneous Catalyst for the Fixation of CO
2
to Cyclic Carbonates at Ambient Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Junhao Ding
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Bo Qiu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dajian Li
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Yunpeng Bian
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dandan Zhu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shimin Wang
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Wenpeng Mai
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shujun Ming
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Jian Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang City 438000 Hubei Province P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
9
|
Li C, Ren X, Guo M, Li W, Li H, Yang Q. Highly active ultrafine Pd NPs confined in imine-linked COFs for nitrobenzene hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00129a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrafine Pd NPs with an average size of 1.8 nm were stabilized on an imine-linked COF. The Pd/COF with electron rich surface properties and a high surface area showed high catalytic activity in the hydrogenation of nitrobenzene.
Collapse
Affiliation(s)
- Chunzhi Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Xiaomin Ren
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Miao Guo
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Weijian Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - He Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Qihua Yang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
10
|
Chen H, Fan L, Lv H, Zhang X. Robust Anionic LnIII–Organic Frameworks: Chemical Fixation of CO2, Tunable Light Emission, and Fluorescence Recognition of Fe3+. Inorg Chem 2020; 59:13407-13415. [DOI: 10.1021/acs.inorgchem.0c01782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|