Dan Y, Wang Y, Zhang M, Huang L, Sun Q, Zhang P, Li Z, Wang W, Tang J. Synthesis of Polyethylene Terephthalate (PET) with High Crystallization and Mechanical Properties via Functionalized Graphene Oxide as Nucleation Agent.
Molecules 2024;
29:1953. [PMID:
38731443 PMCID:
PMC11085443 DOI:
10.3390/molecules29091953]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
In this work, a novel functionalized graphene oxide nucleating agent (GITP) was successfully synthesized using a silane coupling agent (IPTES), and polymer block (ITP) to efficiently improve the crystallization and mechanical performance of PET. To comprehensively investigate the effect of functionalized GO on PET properties, PET/GITP nanocomposites were prepared by introducing GITP into the PET matrix using the melt blending method. The results indicate that PET/GITP exhibits better thermal stability and crystallization properties compared with pure PET, increasing the melting temperature from 244.1 °C to 257.1 °C as well as reducing its crystallization half-time from 595 s to 201 s. Moreover, the crystallization temperature of PET/GITP nanocomposites was increased from 185.1 °C to 207.5 °C and the tensile strength was increased from 50.69 MPa to 66.8 MPa. This study provides an effective strategy for functionalized GO as a nucleating agent with which to improve the crystalline and mechanical properties of PET polyester.
Collapse