1
|
Simões ALA, de Carvalho LA, Lago RM, Ronconi CM, Vieira SS, Araujo MH. 3D Graphene-Like Carbon Structures from Poly(Acrylic Acid): A Novel Synthetic Route. Chem Asian J 2025; 20:e202400832. [PMID: 39472283 DOI: 10.1002/asia.202400832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Emerging contaminants, such as the hormone 17α-ethynylestradiol (EE), in aquatic environments pose a serious risk to both human and environmental health, making efficient removal essential. This study evaluated the effectiveness of three-dimensional porous carbon structures derived from poly(acrylic acid) (PAAc, Carbopol 990) as adsorbents for removing EE from aqueous solutions. Activated carbon materials were prepared using varying ratios of KOH as an activating agent (PAAc : KOH; 1 : 0 AAC, 1 : 1 AC1, 1 : 2 AC2, and 1 : 3 AC3). Adsorption tests were conducted by adding 10 mg of the adsorbent to 40 mL of an EE solution (100 ppm, 20 % acetonitrile in water). Analyses including TGA, XRD, and Raman spectroscopy were performed to evaluate the materials' structural properties and adsorption capacities. Among the materials, AC3 exhibited the highest adsorption capacity for EE (238 mg g-1), followed by AC2 (153 mg g-1) and AC1 (82 mg g-1). The superior efficiency of AC3 can be attributed to its larger surface area and pore volume, enabling greater interaction with EE molecules. These materials demonstrated higher adsorption capacities compared to commercial activated carbons and single-walled carbon nanotubes. This work opens new possibilities for developing efficient adsorbents, contributing to more effective and sustainable solutions for water purification and environmental protection.
Collapse
Affiliation(s)
- Ana L A Simões
- Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte/MG, 31270-901, Brazil
| | - Lílian A de Carvalho
- Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte/MG, 31270-901, Brazil
| | - Rochel M Lago
- Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte/MG, 31270-901, Brazil
| | - Célia M Ronconi
- Departamento de Química Inorgânica do Instituto de Química, Universidade Federal Fluminense, R. São João Batista, 2-188, Niterói/RJ, 24020-141, Brazil
| | - Sara S Vieira
- Departamento de Química Inorgânica do Instituto de Química, Universidade Federal Fluminense, R. São João Batista, 2-188, Niterói/RJ, 24020-141, Brazil
| | - Maria H Araujo
- Departamento de Química do Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte/MG, 31270-901, Brazil
| |
Collapse
|
2
|
Burguera S, Piña MDLN, Bauzá A. On the influence of metal nanoparticle and π-system sizes in the stability of noncovalent adducts: a theoretical study. Phys Chem Chem Phys 2024. [PMID: 39034821 DOI: 10.1039/d4cp02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Herein we have computationally evaluated the relationship between Ag and Au nanoparticle (Ag/AuNP) size and π-surface extension in the formation of noncovalent complexes at the PBE0-D3/def2-TZVP level of theory. The NP-π interaction is known in supramolecular chemistry as a Regium-π bond (Rg-π), and differentiates from classical coordination bonds in strength and type of metal orbitals involved. In this study, the Rg-π complexes involved small Ag/AuNPs composed by 1 to 5 atoms and benzene, naphthalene and anthracene as π-systems, being characterized using several molecular modeling tools, including molecular electrostatic potential (MEP) calculations, energy decomposition analysis (EDA), quantum theory of atoms in molecules (QTAIM), non covalent interaction plot (NCIplot) and natural bonding orbital (NBO) methodologies. We believe the results reported herein will be useful for those scientists working in catalysis, molecular recognition and materials science fields, where structural-energetic relationships of weak interactions are crucial to achieve product selectivity, a particular molecular recognition mode or a specific molecular assembly.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - María de Las Nieves Piña
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - Antonio Bauzá
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| |
Collapse
|
3
|
Samantaray S, Mohanty D, Satpathy SK, Hung IM. Exploring Recent Developments in Graphene-Based Cathode Materials for Fuel Cell Applications: A Comprehensive Overview. Molecules 2024; 29:2937. [PMID: 38931001 PMCID: PMC11206633 DOI: 10.3390/molecules29122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Fuel cells are at the forefront of modern energy research, with graphene-based materials emerging as key enhancers of performance. This overview explores recent advancements in graphene-based cathode materials for fuel cell applications. Graphene's large surface area and excellent electrical conductivity and mechanical strength make it ideal for use in different solid oxide fuel cells (SOFCs) as well as proton exchange membrane fuel cells (PEMFCs). This review covers various forms of graphene, including graphene oxide (GO), reduced graphene oxide (rGO), and doped graphene, highlighting their unique attributes and catalytic contributions. It also examines the effects of structural modifications, doping, and functional group integrations on the electrochemical properties and durability of graphene-based cathodes. Additionally, we address the thermal stability challenges of graphene derivatives at high SOFC operating temperatures, suggesting potential solutions and future research directions. This analysis underscores the transformative potential of graphene-based materials in advancing fuel cell technology, aiming for more efficient, cost-effective, and durable energy systems.
Collapse
Affiliation(s)
- Somya Samantaray
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Debabrata Mohanty
- Department of Chemical Engineering and Materials Science, Chang Gung University, Taoyuan 333323, Taiwan;
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333323, Taiwan
| | - Santosh Kumar Satpathy
- Department of Physics, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - I-Ming Hung
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
5
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
6
|
Shen Y, Sun J, Li J, Dong Y, Wang W, Song Z, Zhao X, Mao Y. Insights into the underpinning effect of graphene in Cu 1Mn 10 on enhancing the low-temperature catalytic activity for CO oxidation. ENVIRONMENTAL RESEARCH 2023; 237:116981. [PMID: 37640095 DOI: 10.1016/j.envres.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
CO emission is a critical issue of industrial processes such as steel-smelting, cement manufacturing, and waste incineration. Catalytic oxidation based on Cu-Mn binary catalysts shows great potential for efficient removal of CO, whereas their practical applicability is limited by the inferior low-temperature catalytic activity and the high catalyst cost owing to a substantial quantity of Cu. In this study, doping graphene is designed to adjust the electron transfer capability to improve the low-temperature catalytic activity as well as reduce the amount of Cu, and thereby Cu1Mn10 catalysts doped with slight amounts of graphene (x%G-Cu1Mn10, x is 1∼5) were fabricated. It was found that the introduction of graphene could form effective electron transport channels to enhance the intermetallic interaction and oxygen vacancy generation, thus improving the low-temperature catalytic performance of the Cu1Mn10 catalyst. Among all the catalysts, 4%G-Cu1Mn10 exhibited the highest activity, achieving CO conversion of 92% at 110 °C at a weight hourly space velocity of 120,000 mL/(g∙h). The introduction of graphene also enabled the catalyst with excellent catalytic activity and stability at a relative humidity of 70%. Attractively, 4%G-Cu1Mn10 can be further loaded into the polyester fabric, presenting great application potentials in the effective elimination of CO during the dust removal process since the flue gas temperature in the dust collector is just around the T90% and the catalyst that is inside of fabric fiber rather than on the fabric surface can be rarely influenced by the dust. In general, doping graphene provides a facile method to enhance the low-temperature activities of the Cu-Mn binary catalysts and cut down the use of valuable Cu, showing great application potential.
Collapse
Affiliation(s)
- Yafang Shen
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jing Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Jingwei Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yilin Dong
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Zhanlong Song
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xiqiang Zhao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yanpeng Mao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
7
|
Ishaq M, Numan M, Zeb U, Cui F, Shad S, Hayat SA, Azizullah A, Uddin I, Iqbal M, Rahim F, Khan N, Attia KA, Fiaz S. Facile one-step synthesis of gold nanoparticles using Viscum album and evaluation of their antibacterial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:955-964. [PMID: 37161500 DOI: 10.1071/fp22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 05/11/2023]
Abstract
Nanostructure gold nanoparticles (Au NPs) are well-known biological active materials, synthesised under different environment-friendly approaches that has gained significant interest in the field of biomedicine. This study investigated a novel, fast, easy, cost-effective and the eco-friendly method to synthesise Au NPs from mediated Viscum album Linn plant extract, where the plant metabolites act as stabilising and reducing agents. The synthesised Au NPs were analysed by UV/Vis spectroscopy that gave strong signals and a sharp absorption peak at 545nm due to the presence of surface plasmon resonance (SPR) bands. In addition, energy dispersive X-ray spectroscopy (EDX) showed that strong signals of Au NPs appeared at 9.7 and 2.3keV, as the rays of light passed. X-ray diffraction recognised the crystalline material and provided information on the cell unit that the synthesised Au NPs are face-centreed cubic in structure. The diffraction of X-ray spectra showed intense peaks at 38.44°, 44.7°, 44.9° and 77.8°. The mediated V. album plant extracts and synthesised Au NPs were screened against gram-positive and gram-negative (Enterobacter , Salmonella typhi , Escheria coli and Bacillus subtilis ) bacterial strains, confirming their antibacterial potential. Au NPs showed strong antibacterial activity due to its unique steric configuration. Au NPs damaged bacterial cell membrane leading to the leakage of the cytoplasm and death of the cell.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Muhammad Numan
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Umar Zeb
- Faculty of Biological & Biomedical Sciences, Department of Biology, The University of Haripur, Haripur, KPK 22620, Pakistan; and School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Salma Shad
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Syed Adil Hayat
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Azizullah Azizullah
- Faculty of Biological & Biomedical Sciences, Department of Biology, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Imad Uddin
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Muzaffar Iqbal
- Faculty of Natural Sciences, Department of Chemistry, The University of Haripur, Haripur, KPK 22620, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KPK 24631, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL 32611, USA
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| |
Collapse
|
8
|
Huynh ND, Choi WM, Hur SH. Exploring the Effects of Various Two-Dimensional Supporting Materials on the Water Electrolysis of Co-Mo Sulfide/Oxide Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2463. [PMID: 37686972 PMCID: PMC10490037 DOI: 10.3390/nano13172463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
In this study, various two-dimensional (2D) materials were used as supporting materials for the bimetallic Co and Mo sulfide/oxide (CMSO) heterostructure. The water electrolysis activity of CMSO supported on reduced graphene oxide (rGO), graphite carbon nitride (gC3N4), and siloxene (SiSh) was better than that of pristine CMSO. In particular, rGO-supported CMSO (CMSO@rGO) exhibited a large surface area and a low interface charge-transfer resistance, leading to a low overpotential and a Tafel slope of 259 mV (10 mA/cm2) and 85 mV/dec, respectively, with excellent long-term stability over 40 h of continuous operation in the oxygen evolution reaction.
Collapse
Affiliation(s)
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea;
| | - Seung Hyun Hur
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea;
| |
Collapse
|
9
|
Sharma A, Sharma S, Dutta S, Yadav S, Dixit R, Arora B, Mehta S, Srivastava A, Sharma RK. A simple and straightforward strategy for expedient access to benzoxazoles using chemically engineered 2D magnetic graphene oxide nanosheets as an eco-compatible catalyst. Dalton Trans 2023; 52:11303-11314. [PMID: 37530180 DOI: 10.1039/d3dt01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Two-dimensional (2D) graphene oxide nanosheets serve as an excellent support material for immobilizing metal complexes to deal with the drawbacks of homogeneous catalysis. In this work, we report a magnetically retrievable graphene oxide (MGO) based copper nanocatalytic system that has been efficiently exploited for obtaining a series of pharmaceutically and biologically active benzoxazole scaffolds. The nanocatalyst was designed by covalent immobilization of dehydroacetic acid (DHA) onto a magnetic amino-silanized graphene oxide nanosupport which was accompanied by its metallation with copper acetate. The structure of the synthesized MGO hybrid material (Cu@DHA@APTES@MGO) was characterized by numerous physico-chemical techniques such as transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental mapping, atomic absorption spectroscopy (AAS), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis and energy-dispersive X-ray fluorescence spectroscopy (ED-XRF). The fabricated architectures exhibited high efficiency for cyclization of 2-aminophenols and β-diketones with wide substrate scope, excellent functional group tolerance, a higher conversion percentage (>98%) and a high turnover number (TON). The exceptional catalytic activity could be attributed to the 2D architecture of graphene oxide which provides space for trapping of reactants between 2D graphitic overlayers and metal surfaces and the reaction proceeds to afford benzoxazole products with moderate to excellent conversion percentages. Notably, this nanocomposite could be recovered easily through an external magnetic force and reused for multiple runs without any appreciable loss in its catalytic efficacy.
Collapse
Affiliation(s)
- Aditi Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Shivani Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Sriparna Dutta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Sneha Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Department of Chemistry, Institute of Home Economics, University of Delhi, Delhi-110016, India
| | - Ranjana Dixit
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Bhavya Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Shilpa Mehta
- Department of Chemistry, Ramjas College, University of, Delhi, Delhi-110007, India
| | - Anju Srivastava
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
10
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
11
|
Nippes RP, Macruz PD, Scaliante MHNO, Cardozo-Filho L. Fischer–Tropsch synthesis using cobalt catalysts supported on graphene materials: a systematic review. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-05006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Sci Rep 2023; 13:2650. [PMID: 36788265 PMCID: PMC9929218 DOI: 10.1038/s41598-023-29725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The long-term use of chemical fertilizers to maintain agricultural production has had various harmful effects on farmland and has greatly impacted agriculture's sustainable expansion. Graphene, a unique and effective nanomaterial, is used in plant-soil applications to improve plant nutrient uptake, reduce chemical fertilizer pollution by relieving inadequate soil nutrient conditions and enhance soil absorption of nutrient components. We investigated the effects of graphene amendment on nutrient content, maize growth, and soil physicochemical parameters. In each treatment, 5 graphene concentration gradients (0, 25, 50, 100, and 150 g kg-1) were applied in 2 different types (single-layer and few-layers, SL and FL). Soil aggregates, soil accessible nutrients, soil enzyme activity, plant nutrients, plant height, stem diameter, dry weight, and fresh weight were all measured throughout the maize growth to the V3 stage. Compared to the control (0 g kg-1), we found that graphene increased the percentage of large agglomerates (0.25-10 mm) in the soil and significantly increased the geometric mean diameter (GMD) and mean weight diameter (MWD) values of > 0.25 mm water-stable agglomerates as the increase of concentration. Soil available nutrient content (AN, AP, and AK) increased, peaking at 150 g kg-1. Graphene boosted nutrient absorption by maize plants, and aboveground total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents rose with the increasing application, which raised aboveground fresh weight, dry weight, plant height, and stalk thickness. The findings above confirmed our prediction that adding graphene to the soil may improve maize plant biomass by enhancing soil fertility and improving the soil environment. Given the higher manufacturing cost of single-layer graphene and the greater effect of few-layer graphene on soil and maize plants at the same concentration, single-layer graphene and few-layer graphene at a concentration of 50 g kg-1 were the optimal application rates.
Collapse
|
13
|
Feature-rich electronic and magnetic properties in silicene monolayer induced by nitrogenation: A first-principles study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Nandeshwar M, Mandal S, Kuppuswamy S, Prabusankar G. A Sustainable Approach for Graphene Oxide-supported Metal N-Heterocyclic Carbenes Catalysts. Chem Asian J 2023; 18:e202201138. [PMID: 36448356 DOI: 10.1002/asia.202201138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Sustainable noble metal-N-heterocyclic carbenes (NHC's) are a topic of arising concern in both the chemical industry and the academic community due to a growing consciousness of environmental pollution and scarcity. Recovering and reusing homogeneous catalysts from the reaction mixture requires a tremendous amount of capital investment in the chemical manufacturing industry. Heterogeneous catalysts are proved to have better functional groups tolerance; however, catalysts support largely influences the active catalyst sites to affect catalyst efficiency and selectivity. Thus the, choice of catalyst supports plays an almost decisive role in this emerging area of catalysis research. Graphene oxide (GO)/reduced graphene oxide (rGO) support has a potential growth in heterogeneous catalysis owing to their commercial availability, considerably larger surface area, inert towards chemical transformations, and easy surface functionalization to attached metal complexes via covalent and non-covalent aromatic π-conjugates. To take advantage of two independently well-established research areas of noble metal-N-heterocyclic carbenes and GO/rGO support via covalent or non-covalent interactions approach would offer novel heterogeneous complexes with improved catalytic efficiency without sacrificing product selectivity. This unique concept of marrying metal-N-heterocyclic carbenes with GO/rGO support has potential growth in the chemical and pharmaceutical industry, however, limited examples are reported in the literature. In this perspective, a comprehensive summary of metal-NHC synthesis on GO/rGO support and synthetic strategies to graft M-NHC onto GO/rGO surface, catalytic efficiency, for the catalytic transformation are critically reviewed. Furthermore, a plausible mechanism for non-covalent grafting methodology is summarized to direct readers to give a better understanding of M-NHC@rGO complexes. This would also allow the designing of engineered catalysts for unexplored catalytic applications.
Collapse
Affiliation(s)
- Muneshwar Nandeshwar
- Organometallics and Materials Chemistry Lab Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| | - Suman Mandal
- Organometallics and Materials Chemistry Lab Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| | | | - Ganesan Prabusankar
- Organometallics and Materials Chemistry Lab Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
15
|
Chen T, Ji Y, Ding YM, Li Y. Tuning low-temperature CO oxidation activities via N-doping on graphene-supported three-coordinated nickle single-atom catalysts. Phys Chem Chem Phys 2022; 24:29586-29593. [PMID: 36448576 DOI: 10.1039/d2cp04975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen doping is identified as an intriguing way to regulate graphene-supported single-atom catalysts (SACs) for heterogeneous catalysis. However, little theoretical effort has been directed towards exploring the activity trend in terms of N-doping level. In this study, we systematically investigated the N-doping effect on CO oxidation activities for graphene-supported three-coordinated Ni SACs (Ni-NxC3-x) in virtue of density functional theory (DFT) calculations and microkinetic modeling. We found that N-doping will shift the d-band center of single-atom Ni upwards, enhance the adsorption of intermediates, and tune the activation barrier to the overall reaction activities. Ni-N1C2 exhibits excellent catalytic performance with the highest total reaction rate comparable to that of noble metal SACs. These findings are helpful for understanding the N-doping influence and rationalizing the art of designing novel SACs for CO oxidation at low temperatures.
Collapse
Affiliation(s)
- Tao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yi-Min Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China. .,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China. .,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
16
|
Bayzidi M, Zeynizadeh B. The Immobilized Zirconocene Chloride on Magnetite‐reduced Graphene Oxide: A Highly Efficient and Reusable Heterogeneous Nanocatalyst for One‐pot Three‐component Synthesis of Tetrahydrobenzo[
b
]pyrans and Dihydropyrano[3,2‐
c
]chromenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Liu H, Zou H, Wang M, Dong H, Wang D, Li F, Dai H, Song T, Wei S, Ji Y, Wang C, Duan L. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203442. [PMID: 36156407 DOI: 10.1002/smll.202203442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH- and Cl- ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, P. R. China
| | - Dan Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Song
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shuting Wei
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510075, P. R. China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
18
|
Mousavi H, Small TD, Sharma SK, Golovko VB, Shearer CJ, Metha GF. Graphene Bridge for Photocatalytic Hydrogen Evolution with Gold Nanocluster Co-Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3638. [PMID: 36296827 PMCID: PMC9612079 DOI: 10.3390/nano12203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Herein, the UV light photocatalytic activity of an Au101NC-AlSrTiO3-rGO nanocomposite comprising 1 wt% rGO, 0.05 wt% Au101(PPh3)21Cl5 (Au101NC), and AlSrTiO3 evaluated for H2 production. The synthesis of Au101NC-AlSrTiO3-rGO nanocomposite followed two distinct routes: (1) Au101NC was first mixed with AlSrTiO3 followed by the addition of rGO (Au101NC-AlSrTiO3:rGO) and (2) Au101NC was first mixed with rGO followed by the addition of AlSrTiO3 (Au101NC-rGO:AlSrTiO3). Both prepared samples were annealed in air at 210 °C for 15 min. Inductively coupled plasma mass spectrometry and high-resolution scanning transmission electron microscopy showed that the Au101NC adhered almost exclusively to the rGO in the nanocomposite and maintained a size less than 2 nm. Under UV light irradiation, the Au101NC-AlSrTiO3:rGO nanocomposite produced H2 at a rate 12 times greater than Au101NC-AlSrTiO3 and 64 times greater than AlSrTiO3. The enhanced photocatalytic activity is attributed to the small particle size and high loading of Au101NC, which is achieved by non-covalent binding to rGO. These results show that significant improvements can be made to AlSrTiO3-based photocatalysts that use cluster co-catalysts by the addition of rGO as an electron mediator to achieve high cluster loading and limited agglomeration of the clusters.
Collapse
Affiliation(s)
- Hanieh Mousavi
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas D. Small
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shailendra K. Sharma
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Vladimir B. Golovko
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Cameron J. Shearer
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gregory F. Metha
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Liu Y, Fan S, Chen Y, Chen J, Meng J, Yang M, Li C, Qing H, Xiao Z. Catalytic membrane nano reactor with two-dimensional channels assembly of graphene oxide nanosheets with ZIF-67 derived Co3S4 catalyst immobilized on. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
|
21
|
Shiba S, Yoshimoto S, Hashiguchi S, Kunitake M, Kato D, Niwa O, Matsuguchi M. Porous gold nanomesh films electrodeposited in toluene-based dynamic soft template. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Frecha E, Remón J, Torres D, Suelves I, Pinilla JL. Design of highly active Ni catalysts supported on carbon nanofibers for the hydrolytic hydrogenation of cellobiose. Front Chem 2022; 10:976281. [PMID: 36092678 PMCID: PMC9449348 DOI: 10.3389/fchem.2022.976281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The direct transformation of cellulose into sugar alcohols (one-pot conversion) over supported nickel catalysts represents an attractive chemical route for biomass valorization, allowing the use of subcritical water in the hydrolysis step. The effectiveness of this process is substantially conditioned by the hydrogenation ability of the catalyst, determined by design parameters such as the active phase loading and particle size. Herein, mechanistic insights into catalyst design to produce superior activity were outlined using the hydrolytic hydrogenation of cellobiose as a model reaction. Variations in the impregnation technique (precipitation in basic media, incipient wetness impregnation, and the use of colloidal-deposition approaches) endowed carbon-nanofiber-supported catalysts within a wide range of Ni crystal sizes (5.8–20.4 nm) and loadings (5–14 wt%). The link between the properties of these catalysts and their reactivity has been established using characterization techniques such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectroscopy (ICP-OES). A fair compromise was found between the Ni surface area (3.89 m2/g) and its resistance against oxidation for intermediate crystallite sizes (∼11.3 nm) loaded at 10.7 wt%, affording the hydrogenation of 81.2% cellobiose to sorbitol after 3 h reaction at 190°C and 4.0 MPa H2 (measured at room temperature). The facile oxidation of smaller Ni particle sizes impeded the use of highly dispersed catalysts to reduce the metal content requirements.
Collapse
|
23
|
Hurtado A, Cano-Vicent A, Tuñón-Molina A, Aparicio-Collado JL, Salesa B, I Serra RS, Serrano-Aroca Á. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int J Biol Macromol 2022; 219:694-708. [PMID: 35961550 PMCID: PMC9364692 DOI: 10.1016/j.ijbiomac.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/27/2022]
Abstract
A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Jose Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
| | - Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain.
| |
Collapse
|
24
|
Brooks A, Jenkins SJ, Wrabetz S, McGregor J, Sacchi M. The dehydrogenation of butane on metal-free graphene. J Colloid Interface Sci 2022; 619:377-387. [DOI: 10.1016/j.jcis.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
25
|
Gao K, Huang Y, Han Y, Gao Y, Dong C, Liu J, Li F, Zhang L. Designing Heterogeneous Surfaces of Two-Dimensional Nanosheets to Maximize Mechanical Reinforcing of Polymer Nanocomposites via Molecular Dynamics Simulation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yongdi Huang
- Department of Mathematics and Computer Science, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yue Han
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Caibo Dong
- Institute of Automation, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Fanzhu Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| |
Collapse
|
26
|
Zhao L, Wei C, Ren J, Li Y, Zheng J, Jia L, Wang Z, Jia S. Biomimetic Nacreous Composite Films toward Multipurpose Application Structured by Aramid Nanofibers and Edge-Hydroxylated Boron Nitride Nanosheets. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chengmei Wei
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junwen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuchao Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lichuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhong Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of the Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
27
|
Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. BIOSENSORS 2022; 12:314. [PMID: 35624615 PMCID: PMC9138342 DOI: 10.3390/bios12050314] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional materials (2DMs) exhibited great potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and others due to their unique physical, chemical, and biological properties. In this review, we present recent advances in the fabrication of 2DM-based electrochemical sensors and biosensors for applications in food safety and biomolecular detection that are related to human health. For this aim, firstly, we introduced the bottom-up and top-down synthesis methods of various 2DMs, such as graphene, transition metal oxides, transition metal dichalcogenides, MXenes, and several other graphene-like materials, and then we demonstrated the structure and surface chemistry of these 2DMs, which play a crucial role in the functionalization of 2DMs and subsequent composition with other nanoscale building blocks such as nanoparticles, biomolecules, and polymers. Then, the 2DM-based electrochemical sensors/biosensors for the detection of nitrite, heavy metal ions, antibiotics, and pesticides in foods and drinks are introduced. Meanwhile, the 2DM-based sensors for the determination and monitoring of key small molecules that are related to diseases and human health are presented and commented on. We believe that this review will be helpful for promoting 2DMs to construct novel electronic sensors and nanodevices for food safety and health monitoring.
Collapse
Affiliation(s)
- Tao Li
- College of Textile & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Dawei Shang
- Qingdao Product Quality Testing Research Institute, No. 173 Shenzhen Road, Qingdao 266101, China;
| | - Shouwu Gao
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Bo Wang
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Weidong Shu
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Peilong Xu
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| |
Collapse
|
28
|
Kumar A, Kujur S, Kujur JP, Sharma R, Pathak DD. Copper‐triazine‐dendrimer‐functionalized‐graphene oxide (CTD‐GO): Synthesis, characterization and application in green synthesis of propargylamines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akash Kumar
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Shelly Kujur
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Jyoti Prabha Kujur
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| | - Richa Sharma
- Faculty of Science, Department of Chemistry Dayalbagh Educational Institute, Dayalbagh Agra India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology Indian Institute of Technology (ISM) Dhanbad India
| |
Collapse
|
29
|
Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H, Strano MS. Size Selective Corona Interactions from Self-Assembled Rosette and Single-Walled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104951. [PMID: 35060337 DOI: 10.1002/smll.202104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticle corona phases, especially those surrounding anisotropic particles, are central to determining their catalytic, molecular recognition, and interfacial properties. It remains a longstanding challenge to chemically synthesize and control such phases at the nanoparticle surface. In this work, the supramolecular chemistry of rosette nanotubes (RNTs), well-defined hierarchically self-assembled nanostructures formed from heteroaromatic bicyclic bases, is used to create molecularly precise and continuous corona phases on single-walled carbon nanotubes (SWCNTs). These RNT-SWCNT (RS) complexes exhibit the lowest solvent-exposed surface area (147.8 ± 60 m-1 ) measured to date due to its regular structure. Through Raman spectroscopy, molecular-scale control of the free volume is also observed between the two annular structures and the effects of confined water. SWCNT photoluminescence (PL) within the RNT is also modulated considerably as a function of their diameter and chirality, especially for the (11, 1) species, where a PL increase compared to other species can be attributed to their chiral angle and the RNT's inward facing electron densities. In summary, RNT chemistry is extended to the problem of chemically defining both the exterior and interior corona interfaces of an encapsulated particle, thereby opening the door to precision control of core-shell nanoparticle interfaces.
Collapse
Affiliation(s)
- Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Liang Shuai
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Rachel L Beingessner
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Takeshi Yamazaki
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, No.16 Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, 325000, China
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Kelvin Jones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Hicham Fenniri
- Department of Chemical Engineering, Department of Bioengineering, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Xiong CY, Dai S, Wu Z, Jiang DE. Single Atoms Anchored in Hexagonal Boron Nitride for Propane Dehydrogenation from First Principles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chuan-ye Xiong
- University of California Riverside aDepartment of Chemical and Environmental Engineering UNITED STATES
| | - Sheng Dai
- Oak Ridge National Laboratory Chemical Sciences Division UNITED STATES
| | - Zili Wu
- Oak Ridge National Laboratory Chemical Sciences Division UNITED STATES
| | - De-en Jiang
- University of California, Riverside Department of Chemistry 501 Big Springs Road 92521 Riverside UNITED STATES
| |
Collapse
|
31
|
Vivas VH, Flores MC, Jesus WP, Ferlauto AS, Cunha THR, Figueiredo KC. Chemical vapor deposition graphene transfer onto asymmetric
PMMA
support. J Appl Polym Sci 2022. [DOI: 10.1002/app.51590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Marcelo Costa Flores
- Department of Chemical Engineering Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - André Santarosa Ferlauto
- Engineering, Modeling and Applied Social Sciences Center Federal University of ABC Santo André Brazil
| | | | | |
Collapse
|
32
|
Adil SF, Ashraf M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tremel W, Tahir MN. Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. CHEM REC 2022; 22:e202100274. [PMID: 35103379 DOI: 10.1002/tcr.202100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.
Collapse
Affiliation(s)
- Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
33
|
Ondar EE, Burykina JV, Ananikov VP. Evidence for the “cocktail” nature of platinum-catalyzed alkyne and alkene hydrosilylation reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence of the involvement of a “cocktail”-type catalytic system in the alkyne and alkene hydrosilylation reaction in the presence of platinum on a carbon support is reported.
Collapse
Affiliation(s)
- Evgeniia E. Ondar
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
34
|
Principles and Biomedical Application of Graphene Family Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:3-22. [DOI: 10.1007/978-981-16-4923-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Wabaidur SM, Siddiqui MR, Seikh AH. Graphene Oxide (GO) as Sustainable Heterogeneous Carbocatalyst for Synthesis of Organic Carbamates Using Urea and Alcohols under Mild Reaction Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Masoom Raza Siddiqui
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Asiful H. Seikh
- Mechanical Engineering Department Collage of Engineering King Saud University, P.O. Box 800, Al- Riyadh 11421 Saudi Arabia E-mail: Correspondence
| |
Collapse
|
36
|
Hong X, Yao Q, Long J, Li X, Chen X, Lu ZH. CuNi/La 2O 2CO 3/rGO Nanocomposites: An Efficient Noble-Metal-Free Catalyst for Hydrogen Evolution from N 2H 4·H 2O. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoling Hong
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Qilu Yao
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jianjun Long
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xiugang Li
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xiangshu Chen
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), Key Laboratory of Functional Small Molecules for Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
37
|
Makkar P, Gogoi D, Roy D, Ghosh NN. Dual-Purpose CuFe 2O 4-rGO-Based Nanocomposite for Asymmetric Flexible Supercapacitors and Catalytic Reduction of Nitroaromatic Derivatives. ACS OMEGA 2021; 6:28718-28728. [PMID: 34746566 PMCID: PMC8567344 DOI: 10.1021/acsomega.1c03377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Energy storage and environmental pollution are two major global concerns in today's scenario. As a result of the momentous exhaustion of fossil fuels, the generation of energy from renewable sources is gaining immense importance. However, the irregular availability of energy from these renewable sources is the major encounter to achieve sustainable energy harvesting technology, yielding efficient but continuous and reliable energy supplies. Apart from the requirement of state-of-the-art heavy-duty technologies such as transportation, defense, etc., in the modern lifestyle to fulfill the demand for flexible electronic devices, the development of high-performance mechanically flexible all-solid-state supercapacitors is increasing massively. On the other hand, to cater to the need for accessibility of clean water for healthy lives, several technologies are evolving to treat wastewater and groundwater. Hence, the development of efficient catalysts for destroying water pollutants is an attractive approach. Considering these two crucial facets, in this paper, we have demonstrated the multifunctional features of a CuFe2O4-rGO nanocomposite, which was exploited to fabricate a high-performance mechanically flexible all-solid-state asymmetric supercapacitor and simultaneously used as an efficient but easily recoverable catalyst for the transformation of different nitroaromatic compounds. We have also demonstrated the conversion of trifluralin (a herbicide), which is present in the water body as a pollutant, to its corresponding amine derivatives, which can be utilized in the preparation of important pharmaceutical products.
Collapse
Affiliation(s)
- Priyanka Makkar
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Pilani, Goa 403726, India
| | - Debika Gogoi
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Pilani, Goa 403726, India
| | - Debmalya Roy
- Defence
Materials and Stores Research & Development Establishment (DMSRDE)
DRDO, Ministry of Defence, Government of India, PO DMSRDE, GT Road, Kanpur 208013, India
| | - Narendra Nath Ghosh
- Nano-materials
Lab, Department of Chemistry, Birla Institute
of Technology and Science, Pilani K K Birla Goa Campus, Pilani, Goa 403726, India
| |
Collapse
|
38
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
39
|
Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractDeveloping cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced CoS/C nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of CoS embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis-mass spectroscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It is found that CoS nanoparticles homogenously dispersed in the in situ formed N, S co-doped porous carbon/graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% of current after continuously running for around 5 h, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active CoS and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.
Collapse
|
40
|
Vivas VH, da Cunha THR, Ferlauto AS, de Souza Figueiredo KC. Process of production of CVD graphene membrane for desalination and water treatment: a review of experimental research results. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00119-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Zhao P, El-kott A, Ahmed AE, Khames A, Zein MA. Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Du B, Qiu L, Chen Y, Zhang Z. Rational Design of Self-Supported CuO x -Decorated Composite Films as an Efficient and Easy-Recycling Catalyst for Styrene Oxidation. ACS OMEGA 2021; 6:18157-18168. [PMID: 34308047 PMCID: PMC8296588 DOI: 10.1021/acsomega.1c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The applications of graphene-based materials in catalysis are limited by their strong tendency to aggregate, which may lead to a decrease in active sites. Herein, we propose a facile and controllable strategy to fabricate a series of heterogeneous catalysts with a unique nanostructure wherein CuO x -decorated reduced graphene oxide (rGO) sheets are incorporated into a solid matrix composed of poly(vinylpyrrolidone) (PVP) and carboxymethyl cellulose (CMC). The resultant materials are self-supported films and could be directly used as catalysts for the liquid-phase oxidation of styrene without the requirement for extra substrates. The employment of PVP-CMC (PC) as the support for CuO x -decorated rGO sheets successfully inhibits their aggregation. Benefiting from the dispersion of copper species, these films exhibit good catalytic activity and recyclability under mild reaction conditions. Especially, they can be conveniently removed from the reaction mixture by tweezers due to their structural stability. For catalyzing multiple reactions with high efficiency and facile recyclability, this study offers a universal strategy to design heterogeneous catalysts based on graphene materials and provides a promising platform.
Collapse
|
43
|
Liu C, Zhao Y, Xu D, Zheng X, Huang Q. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of L-cysteine. Anal Bioanal Chem 2021; 413:4013-4022. [PMID: 33961104 DOI: 10.1007/s00216-021-03352-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
A facile and green approach to the preparation of peroxidase-like nanozymes by reducing and functionalizing graphene oxide (rGO) with Ganoderma polysaccharide (GP) has been achieved in this work. Our results showed that the as-fabricated nanozyme, namely rGO-GP, possessed the excellent property of simulating peroxidase with higher catalytic activity compared with GO or rGO obtained by using chitosan, which may be due to the better dispersion of rGO-GP in the solution. Steady-state kinetics studies further showed that the catalytic process conformed to Michaelis-Menten equation and ping-pong mechanism. Benefiting from the excellent peroxidase property of rGO-GP, we have also successfully established a highly sensitive and selective colorimetric detection approach to trace detection of L-cysteine (L-Cys). The limit of detection (LOD) of L-cysteine is 0.1 μM and the linear detection range is 2-30 μM. Furthermore, the nanozyme was successfully applied for detecting L-cysteine in serum. This work therefore demonstrates the advantages of rGO-GP as an effective nanozyme in both its green synthesis and detecting application.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yunmeng Zhao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Di Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xinxin Zheng
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of IntelligentAgriculture, Institute of Intelligent Machines,Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, 230031, Anhui, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
44
|
Chen X, Lin S, Qing S, Zhang Y, Li X. Density functional theory study of the sulfur/oxygen doped CoN4-graphene electrocatalyst for oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
46
|
Mousavi H, Yin Y, Howard-Fabretto L, Sharma SK, Golovko V, Andersson GG, Shearer CJ, Metha GF. Au 101-rGO nanocomposite: immobilization of phosphine-protected gold nanoclusters on reduced graphene oxide without aggregation. NANOSCALE ADVANCES 2021; 3:1422-1430. [PMID: 36132862 PMCID: PMC9417812 DOI: 10.1039/d0na00927j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 05/05/2023]
Abstract
Graphene supported transition metal clusters are of great interest for potential applications, such as catalysis, due to their unique properties. In this work, a simple approach to deposit Au101(PPh3)21Cl5 (Au101NC) on reduced graphene oxide (rGO) via an ex situ method is presented. Reduction of graphene oxide at native pH (pH ≈ 2) to rGO was performed under aqueous hydrothermal conditions. Decoration of rGO sheets with controlled content of 5 wt% Au was accomplished using only pre-synthesised Au101NC and rGO as precursors and methanol as solvent. High resolution scanning transmission electron microscopy indicated that the cluster size did not change upon deposition with an average diameter of 1.4 ± 0.4 nm. It was determined that the rGO reduction method was crucial to avoid agglomeration, with rGO reduced at pH ≈ 11 resulting in agglomeration. X-ray photoelectron spectroscopy was used to confirm the deposition of Au101NCs and show the presence of triphenyl phosphine ligands, which together with attenuated total reflectance Fourier transform infrared spectroscopy, advocates that the deposition of Au101NCs onto the surface of rGO was facilitated via non-covalent interactions with the phenyl groups of the ligands. Inductively coupled plasma mass spectrometry and thermogravimetric analysis were used to determine the gold loading and both agree with a gold loading of ca. 4.8-5 wt%. The presented simple and mild strategy demonstrates that good compatibility between size-specific phosphine protected gold clusters and rGO can prevent aggregation of the metal clusters. This work contributes towards producing an agglomeration-free synthesis of size-specific ligated gold clusters on rGO that could have wide range of applications.
Collapse
Affiliation(s)
- Hanieh Mousavi
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| | - Yanting Yin
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Liam Howard-Fabretto
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Shailendra Kumar Sharma
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Vladimir Golovko
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Gunther G Andersson
- Flinders Centre for NanoScale Science and Technology, Flinders University Adelaide SA 5001 Australia
| | - Cameron J Shearer
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
47
|
Liu W, Speranza G. Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS OMEGA 2021; 6:6195-6205. [PMID: 33718710 PMCID: PMC7948250 DOI: 10.1021/acsomega.0c05578] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 05/24/2023]
Abstract
The need to recover the graphene properties in terms of electrical and thermal conductivity calls for the application of reduction processes leading to the removal of oxygen atoms from the graphene oxide sheet surface. The recombination of carbon-carbon double bonds causes a partial recovery of the original graphene properties mainly limited by the presence of residual oxygen atoms and lattice defects. However, the loss of polar oxygen-based functional groups renders the material dispersibility rather complicated. In addition, oxygen-containing functional groups are reaction sites useful to further bind active molecules to engineer the reduced graphene sheets. For these reasons, a variety of chemical processes are described in the literature to reduce the graphene oxide. However, it is greatly important to select a chemical process enabling a thin modulation of the residual oxygen content thus tuning the properties of the final product. In this work, we will present a chemical-processing technique based on the hydroiodic acid to carefully control the degree of residual oxidation. Graphene oxides were reduced using hydroiodic acid with concentrations from 0.06 to 0.95 mol L-1. Their properties were characterized in detail and tested, and the results showed that their oxygen content was finely tuned from 33.6 to 10.7 atom %. This allows carefully tailoring the material properties with respect to the desired application, which is exemplified by the variation of the bulk resistance from 92 Ω to 14.8 MΩ of the film from the obtained rGO.
Collapse
Affiliation(s)
- Wei Liu
- Fondazione
Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
| | - Giorgio Speranza
- Fondazione
Bruno Kessler, Via Sommarive 18, Trento 38123, Italy
- Department
of Industrial Engineering, University of
Trento, Via Sommarive
9, Trento 38123, Italy
- Istituto
di Fotonica e Nanotecnologie, IFN-CNR, Via Alla Cascata 56/C, Trento 38123, Italy
| |
Collapse
|
48
|
Moriau LJ, Hrnjić A, Pavlišič A, Kamšek AR, Petek U, Ruiz-Zepeda F, Šala M, Pavko L, Šelih VS, Bele M, Jovanovič P, Gatalo M, Hodnik N. Resolving the nanoparticles' structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. iScience 2021; 24:102102. [PMID: 33659872 PMCID: PMC7890412 DOI: 10.1016/j.isci.2021.102102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Achieving highly active and stable oxygen reduction reaction performance at low platinum-group-metal loadings remains one of the grand challenges in the proton-exchange membrane fuel cells community. Currently, state-of-the-art electrocatalysts are high-surface-area-carbon-supported nanoalloys of platinum with different transition metals (Cu, Ni, Fe, and Co). Despite years of focused research, the established structure-property relationships are not able to explain and predict the electrochemical performance and behavior of the real nanoparticulate systems. In the first part of this work, we reveal the complexity of commercially available platinum-based electrocatalysts and their electrochemical behavior. In the second part, we introduce a bottom-up approach where atomically resolved properties, structural changes, and strain analysis are recorded as well as analyzed on an individual nanoparticle before and after electrochemical conditions (e.g. high current density). Our methodology offers a new level of understanding of structure-stability relationships of practically viable nanoparticulate systems.
Collapse
Affiliation(s)
- Leonard Jean Moriau
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Armin Hrnjić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andraž Pavlišič
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ana Rebeka Kamšek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urša Petek
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Simon Šelih
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Highly efficient and green synthesis of spiro[indoline-3,9′-xanthene]trione and spiro[chromene-4,3′-indoline]-3-carbonitrile derivatives in water catalyzed by graphene oxide-supported dicationic ionic liquid. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04405-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate. WATER 2021. [DOI: 10.3390/w13040413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple one-pot method was used to successfully embed manganese ferrite (MnFe2O4) nanoparticles on the nitrogen-doped reduced graphene oxide matrix (NrGO), which was used to activate peroxymonosulfate to treat the landfill leachate nanofiltration concentration (LLNC) with electrochemical enhancement. NrGO-MnFe2O4 and rGO-MnFe2O4 were characterized by various means. This indicates that nitrogen-doped could induce more graphene oxide (GO) spall and reduction to produce more active centers, and was favorable for uniformly loading MnFe2O4 particles. The comparison between electrochemical/peroxymonosulfate/NrGO-MnFe2O4 (EC/PMS/NrGO-MnFe2O4) system and different catalytic systems shows that electrochemical reaction, NrGO and MnFe2O4 can produce synergies, and the chemical oxygen demand (COD) removal rate of LLNC can reach 72.89% under the optimal conditions. The three-dimensional (3D-EEM) fluorescence spectrum shows that the system has a strong treatment effect on the macromolecules with intense fluorescence emission in LLNC, such as humic acid, and degrades into substances with weak or no fluorescence characteristics. Gas chromatography-mass spectrometry (GC-MS) indicates that the complex structure of refractory organic compounds can be simplified, while the simple small molecular organic compounds can be directly mineralized. The mechanism of catalytic degradation of the system was preliminarily discussed by the free radical quenching experiment. Therefore, the EC/PMS/NrGO-MnFe2O4 system has significant application potential in the treatment of refractory wastewater.
Collapse
|