1
|
Akram M, Osama M, Hashmi MA, Kabir-Ud-Din. Molecular interaction of di-ester bonded cationic Gemini surfactants with pepsin: in vitro and in silico perspectives. J Biomol Struct Dyn 2023; 41:12276-12291. [PMID: 36695086 DOI: 10.1080/07391102.2023.2168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
The implications of surfactant-enzyme/protein interactions in a variety of fields, including biotechnology, cosmetics, paints and pharmaceuticals, have attracted a lot of attention in contemporary studies. Herein, we have employed several in vitro and in silico techniques such as excitation and absorption spectroscopies, circular dichroism and FT-IR spectroscopies, density functional and molecular dynamics simulations to understand the interaction behavior of oxy-diester-based green cationic Gemini surfactants, N1,N1,N14,N14-tetramethyl-2,13-dioxo-N1,N14-dialkyl-3,6,12-tetraoxateradecane-1,14-diaminiumdichloride (abbreviated as Cm-E2O2-Cm, where 'm' stands for alkyl chain length, m = 12 and 14) with one of the main digestive proteins, pepsin. The spectroscopic techniques confirm the static quenching effect of surfactants on pepsin. The calculated physical parameters (Ksv, Kb and ΔG) and their order reveal the distinguished implications for the surfactants' chain lengths. The spontaneity of interaction was also confirmed by negative Gibbs free energy change values. The extrinsic spectroscopic study with pyrene as fluorescence probe, FT-IR and CD techniques indicated a potential conformational change in pepsin induced by the Gemini surfactants. DFT, docking and MD simulations provided the theoretical understanding regarding the quantum mechanical environment, location of binding and stability of the protein-surfactant complexation in energy terms. We believe this study will be a humble addition to our existing knowledge in the field of protein-surfactant interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Mohammad Osama
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Bhattarai A, Rub MA, Jaffari ZH, Saha B, Thu HT, Alghamdi YG, Kumar D. Spectroscopic and Conductometric Analyses of Ninhydrin and Threonine Reaction in Double-Headed Geminis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C., Tribhuvan University, Biratnagar 56613, Nepal
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zeeshan Haider Jaffari
- Department of Environmental Engineering and Management, Chaoyang University of Technology, No. 168, Jifeng E. Rd, Wufeng
District, Taichung 413310, Taiwan
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Hoang Thi Thu
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Yousef G. Alghamdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dileep Kumar
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
3
|
Chen Y, Nai X, Li M, Kong J, Hao S, Yan H, Liu M, Zhang Q, Liu J. A comprehensive research on Lactone Sophorolipid (LSL) and Soy Protein Isolate (SPI) interacting mixture. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Krycki MM, Lin SY, Loglio G, Michailov AV, Miller R, Noskov BA. Impact of denaturing agents on surface properties of myoglobin solutions. Colloids Surf B Biointerfaces 2021; 202:111657. [PMID: 33684687 DOI: 10.1016/j.colsurfb.2021.111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023]
Abstract
The addition of denaturants strongly influences the surface properties of aqueous myoglobin solutions. The effect differs from the results for mixed solutions of the denaturants and other globular proteins, for example, bovine serum albumin (BSA), lysozyme and β-lactoglobulin (BLG), although the surface properties of the solutions of the pure proteins are similar. The kinetic dependencies of the dynamic surface elasticity of myoglobin solutions with guanidine hydrochloride (GuHCl) reveal at least two adsorption steps at denaturant concentrations higher than 1 M: a very fast increase of the dynamic surface elasticity to approximately 30 mN/m at the beginning of adsorption, and a slower growth to abnormally high values of 250-300 mN/m. At the same time, the surface elasticity of BSA/GuHCl, BLG/GuHCl and lysozyme/GuHCl solutions is a non-monotonic function of the surface age, and does not exceed 50 mN/m close to equilibrium. The high surface elasticity of myoglobin/GuHCl solutions may be associated with protein aggregation in the surface layer. The formation of aggregates is confirmed by ellipsometry and Brewster angle microscopy. The addition of ionic surfactants to protein solutions leads to the formation of myoglobin/surfactant complexes, and the kinetic dependencies of the dynamic surface elasticity display local maxima indicating multistep adsorption kinetics, unlike the corresponding results for solutions of other globular proteins mixed with ionic surfactants. Ellipsometry and infrared reflection-absorption spectroscopy allow tracing the adsorption of the complexes and their displacement from the interface at high surfactant concentrations.
Collapse
Affiliation(s)
- Michael M Krycki
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia; University of Opole, Opole, Poland
| | - Shi-Yow Lin
- National Taiwan University of Science and Technology, Chemical Engineering Department, Taipei, Taiwan
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy, Genoa, Italy
| | - Alexander V Michailov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia
| | | | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia.
| |
Collapse
|
5
|
Wani FA, Ahmad R, Patel R. Synthesis and Interfacial Properties of Novel Benzimidazolium Based Gemini Surfactants and Their Binding with Crocin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Rabia Ahmad
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
6
|
Kumar D, Rub MA. Study of Reaction Rate between Zinc(II)–Histidine [Zn(II)–his] + Complex and Ninhydrin: Effect of Three Dicationic Gemini (Alkanediyl-α,ω-Type) Surfactants. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00678] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dileep Kumar
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Li YW, Chi Q, Feng T, Xiao H, Li L, Wang X. Interactions of indole alkaloids with myoglobin: A mass spectrometry based spectrometric and computational method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8656. [PMID: 31721336 DOI: 10.1002/rcm.8656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Interactions of drug molecules and proteins play important roles in physiological and pathological processes in vivo. It is of significance to establish a reliable strategy for studying protein-drug ligand interactions and would be helpful for the design and screening of new drugs in pharmacological research. METHODS The interactions between four indole alkaloids (IAs) extracted from Ophiorrhiza japonica (O. japonica) and myoglobin (Mb) protein were investigated using a multi-spectrometric and computational method of native electrospray ionization mass spectrometry (native ESI-MS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), circular dichroism (CD) and molecular docking (MD). RESULTS The IA-bound Mb complexes were analyzed using native ESI-MS, with the obtained protein-to-ligand stoichiometry at 1:1, 1:2 and 1:3. Binding constants were measured according to the interpretation of MS spectra. MD complemented MS measurements, probing the binding sites and modes of the four IAs to Mb. Analyses involving CD and HDX-MS demonstrated that exposure to IAs could affect the conformation of Mb by decreasing the α-helix content and made Mb more susceptible to HDX at the backbone. CONCLUSIONS A new MS-based integrated analysis method has been developed to successfully study the interactions of Mb and IAs extracted from O. japonica. The experimental and calculation results have good consistency, revealing all of the four IA molecules could bind to Mb to form 1:1, 1:2 and 1:3 Mb-IA complexes. The order of binding ability of these IAs to Mb was ophiorrhine B > compound C > ophiorrhine A > compound D. CD and HDX-MS results indicated that binding with IAs destabilizes Mb. HDX-MS analysis suggests that Mb becomes more susceptible to HDX, indicating that binding with IAs destabilizes the structure of Mb. In addition, the interaction with IAs affected the overall structure of Mb, ascribed to the decrease of α-helix content and less folding of the backbone.
Collapse
Affiliation(s)
- Ya-Wen Li
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Quan Chi
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, China
| | - Huaming Xiao
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Linghe Li
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| |
Collapse
|
8
|
Patel BK, Sepay N, Mahapatra A. Structural alteration of myoglobin with two homologous cationic surfactants and effect of β-cyclodextrin: multifaceted insight and molecular docking study. NEW J CHEM 2020. [DOI: 10.1039/d0nj01113d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural alteration and regeneration of myoglobin.
Collapse
Affiliation(s)
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | |
Collapse
|
9
|
Tian Q, Lai L, Zhou Z, Mei P, Lu Q, Wang Y, Xiang D, Liu Y. Interaction Mechanism of Different Surfactants with Casein: A Perspective on Bulk and Interfacial Phase Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6336-6349. [PMID: 31117492 DOI: 10.1021/acs.jafc.9b00969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the interaction mechanism between proteins and surfactants is conducive to the application of protein/surfactant mixtures in the food industry. The present study investigated the interaction mechanism of casein with cationic Gemini surfactant (BQAS), anionic Gemini surfactant (SGS), anionic single-chain surfactant (sodium dodecyl sulfate [SDS]), and two biosurfactants (rhamnolipid [RL] and lactone sophorolipid [SL]) at the interface and in bulk phase. BQAS/casein and SDS/casein mixtures exhibit a strong synergistic effect on the surface activity. For SGS, RL, and SL, the formation of surfactant/casein complexes caused no improvement in surface activity. Dilational elasticity results indicate the displacement of casein by SGS, RL, and SL at the surface. However, the BQAS/casein complexes manifested varying dilational properties from pure casein surface. The strong electrostatic interaction between BQAS and casein produced large-size precipitate particles. For other surfactants, no precipitate particles formed. Determination of ζ-potential, UV-vis absorption spectra, and fluorescence spectra demonstrated the stronger interaction of BQAS and SDS with casein than that of SGS, RL, and SL. Addition of BQAS initially increased and then decreased the α-helix structure of casein. For SGS, RL, and SL, no noticeable change occurred in the casein structure. However, the formation of SDS/casein complexes was conducive to the casein structure. In conclusion, the interaction between BQAS and casein is similar to that of cationic single-chain surfactant. Furthermore, SGS exhibits a significantly different interaction mechanism from the corresponding monomer (SDS), possibly resulting from its excellent interfacial activity, low critical micelle concentration values, and strong self-assembly capability. For RL and SL, the weak interaction is attributed to the relatively complicated structure and less charged degree of hydrophilic headgroups.
Collapse
Affiliation(s)
- Qing Tian
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P. R. China
| | - Lu Lai
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P. R. China
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary T2N 1N4 , Canada
| | - Zhiqiang Zhou
- College of Chemistry and Material Sciences , Guangxi Teachers Education University , Nanning 530001 , P. R. China
| | - Ping Mei
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P. R. China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary T2N 1N4 , Canada
| | - Yanqun Wang
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P. R. China
| | - Dong Xiang
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P. R. China
| | - Yi Liu
- College of Chemistry and Material Sciences , Guangxi Teachers Education University , Nanning 530001 , P. R. China
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
- Key Laboratory of Coal Conversion and Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , P. R. China
| |
Collapse
|
10
|
Akram M, Ansari F, Bhat IA, Kabir-ud-Din. Probing interaction of bovine serum albumin (BSA) with the biodegradable version of cationic gemini surfactants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|