1
|
Torsello M, Ben-Zichri S, Pesenti L, Kunnath SM, Samorì C, Pasteris A, Bacchelli G, Prishkolnik N, Ben-Nun U, Righi S, Focarete ML, Kolusheva S, Jelinek R, Gualandi C, Galletti P. Carbon dot/polylactic acid nanofibrous membranes for solar-mediated oil absorption/separation: Performance, environmental sustainability, ecotoxicity and reusability. Heliyon 2024; 10:e25417. [PMID: 38420388 PMCID: PMC10900409 DOI: 10.1016/j.heliyon.2024.e25417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Shani Ben-Zichri
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lucia Pesenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Sisira M Kunnath
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Samorì
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Greta Bacchelli
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
| | - Noa Prishkolnik
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uri Ben-Nun
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Serena Righi
- Interdepartmental Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Via S. Alberto, 163, 48123, Ravenna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Viale Carlo Berti Pichat, 6/2, 40126, Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Sofiya Kolusheva
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064, Ozzano dell'Emilia, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Paola Galletti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| |
Collapse
|
2
|
Ma HZ, Zhao JN, Tang R, Shao Y, Ke K, Zhang K, Yin B, Yang MB. Polypyrrole@CNT@PU Conductive Sponge-Based Triboelectric Nanogenerators for Human Motion Monitoring and Self-Powered Ammonia Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54986-54995. [PMID: 37967332 DOI: 10.1021/acsami.3c14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 μA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.
Collapse
Affiliation(s)
- Hong-Zhi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiang-Nan Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
3
|
Zhang Y, Wang C, Zhao Y, Yu Z, Yang F, Zhang X. Core-shell structured Co 3O 4@PPy composite for electrochemical determination of terbutylhydroquinone. RSC Adv 2022; 12:29845-29851. [PMID: 36321087 PMCID: PMC9578399 DOI: 10.1039/d2ra05574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
TBHQ is a significant synthetic antioxidant, but excessive use of TBHQ is harmful to human health. Therefore, the preparation of a high-efficiency TBHQ electrochemical sensor is of great significance. In this work, a core-shell structured Co3O4@PPy composite is synthesized for TBHQ determination and exhibits remarkable electrochemical properties. The core-shell structure of Co3O4@PPy composite shows the synergistic effects of fast charge transfer, rich active surface area and more active sites. Under optimal conditions, the linear range of the developed sensor is 0.2-600 μM, and the detection limit is 0.05 μM (S/N = 3). In addition, it also has good stability and reproducibility due to the stable protective role of the PPy shell. The proposed sensor can also be applied to practical sample detection.
Collapse
Affiliation(s)
- Yuxi Zhang
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences Shijiazhuang Hebei 050061 China
- Key Laboratory of Groundwater Contamination and Remediation, China Geological Survey & Hebei Province Shijiazhuang Hebei 050061 China
| | - Cunli Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University Xi'an 710127 China
| | - Yalin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University Xi'an 710127 China
| | - Zhe Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University Xi'an 710127 China
| | - Fengchun Yang
- Key Laboratory of Groundwater Contamination and Remediation, China Geological Survey & Hebei Province Shijiazhuang Hebei 050061 China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University Xi'an 710127 China
| | - Xin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, Northwest University Xi'an 710127 China
| |
Collapse
|
4
|
Novel fabrication of hydrophobic/oleophilic human hair fiber for efficient oil/water separation through one-pot dip-coating synthesis route. Sci Rep 2022; 12:7632. [PMID: 35538093 PMCID: PMC9090757 DOI: 10.1038/s41598-022-11511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Frequent oil spill accidents and industrial wastewater discharge has always been one of the most severe worldwide environmental problems. To cope with this problem, many fluorine-containing and high-cost materials with superwettability have been extensively applied for oil-water separation, which hinders its large-scale application. In this work, a novel human hair fiber (HHF)-polymerized octadecylsiloxane (PODS) fiber was fabricated with a facile one-pot dip-coating synthesis approach, inspired by the self-assembly performance and hydrophobicity of OTS modification. The benefits of prominent hydrophobic/lipophilic behavior lie in the low surface energy, and a rough PODS coating was rationally adhered on the surface of HHF. Driven solely by gravity and capillary force, the HHF-PODS showed excellent oil/water separation efficiency (> 99.0%) for a wide range of heavy and light oil/water mixtures. In addition, HHF-PODS demonstrated durability toward different harsh environments like alkaline, acid, and salty solutions.
Collapse
|
5
|
Chen X, Yang Y, Guan Y, Luo C, Bao M, Li Y. A solar-heated antibacterial sodium alginate aerogel for highly efficient cleanup of viscous oil spills. J Colloid Interface Sci 2022; 621:241-253. [PMID: 35461139 DOI: 10.1016/j.jcis.2022.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Major oil spills highlight the need for environmentally responsible and cost-effective recovery technologies. However, challenges remain for heavy oil spill recovery because of its high viscosity and low fluidity. To achieve this goal, an ecofriendly bio-based aerogel with efficient photothermal conversion ability was developed as a novel absorbent to achieve the fast removal of heavy oil spill by reducing the oil viscosity. EXPERIMENTS From the renewable and abundant raw material sodium alginate (SA), hydrophobic and antibacterial SA/graphene oxide/ZIF-8 aerogel (SAGZM) was successfully fabricated via freezing-drying and chemical vapor deposition (CVD) technique. A series of characterization and tests, including aerogel structure, selective wettability, photothermal conversion ability, crude oil removal capability, and antibacterial ability, have been investigated in detail. SAGZM aerogels have rich pore structure, high porosity, excellent mechanical properties, and better photothermal conversion efficiency. FINDINGS Under sunlight illumination, the recovery ability of SAGZM for heavy crude oil was investigated through infrared thermal imaging, oil permeability behavior analysis, and the continuous absorption for crude oil. In addition, these results are well supported by the theoretical liquid absorption coefficient. This study indicates that SAGZM is highly efficient in in situ regulating oil viscosity through its remarkably photothermal conversion capability. Importantly, SAGZM possesses an excellent antibacterial ability that is often neglected in the design of environmentally friendly materials in extending its service life. The findings of this work not only provide an eco-friendly bio-based aerogel material but also demonstrate that the photo-responsive SAGZM is efficient in heavy crude oil absorption. The proposed solar-heated SA-based aerogel provides a sustainable approach and material to solve the recovery problem of viscous crude oil spills.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yushuang Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Chengyi Luo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, PR China.
| |
Collapse
|
6
|
Nguyen-Dinh MT, Bui TS, Lee BK, Masoumi Z. Superhydrophobic MS@CuO@SA sponge for oil/water separation with excellent durability and reusability. CHEMOSPHERE 2022; 292:133328. [PMID: 34929282 DOI: 10.1016/j.chemosphere.2021.133328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
We present a superhydrophobic material based on commercially melamine sponge (MS) with great durability, recyclability, and excellent sorption performance. The fabrication process of this sponge is facile without using toxic reagents or sophisticated equipment and therefore it is simple to scale up. The CuO layer utilized to give a rough surface of the substrate (MS) was successfully prepared in a commercial microwave to seed copper nucleuses in an alkaline medium. Stearic acid (SA) plays a role as the self-assembled monolayer on the surface of the sponge skeletons. Throughout this study, the properties of the modified sponge were fully characterized, and the changes in wettability were carefully examined. Water contact angle (WCA) measurements revealed the excellent superhydrophobicity of the material with high static WCA of 165.1° and low dynamic WCA of 8°. Furthermore, the as-prepared sponge demonstrated high efficiency in separation (over 99.0%) of different oils from water. Notably, several unique properties of as-modified material were found, consisting of ultrafast sorption capacities of up to 32-52 times of its own weight by using 80 mL of each oil, outstanding reusability with good sorption capacity even after 40 cycles. Even under various harsh environments, the novel materials proved its outstanding durability and ultrafast sorption capacity of oils. The durability, recyclability, and superhydrophobic properties of the novel superhydrophobic sponge provide it a solid basis for oil-water separation applications through an ultrafast sorption capacity of oils as well as quick recovery of the oil by easy squeezing process.
Collapse
Affiliation(s)
- Minh-Thao Nguyen-Dinh
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan, 44610, Republic of Korea
| | - Thanh Son Bui
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan, 44610, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan, 44610, Republic of Korea.
| | - Zohreh Masoumi
- Department of Civil and Environmental Engineering, University of Ulsan, Nam-gu, Daehak-ro 93, Ulsan, 44610, Republic of Korea
| |
Collapse
|
7
|
Kong Y, Zhang S, Gao Y, Cheng X, Kong W, Qi Y, Wang S, Yin F, Dai Z, Yue Q, Gao B. Low-temperature carbonization synthesis of carbon-based super-hydrophobic foam for efficient multi-state oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127064. [PMID: 34537651 DOI: 10.1016/j.jhazmat.2021.127064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In view of the complexity and diversity of multi-state oils, the development of green and low-cost materials with high selectivity to oils has important ecological significance in the polluted water treatment. Herein, a simple method was proposed to develop large-scale production of superhydrophobic sponges (CPMF200 sponges) for high-efficiency oil/water separation under different complex environments. The as-prepared CPMF200 sponges possessed many superior properties, including high roughness, well-developed porosity, good thermal stability, excellent chemical stability, and superhydrophobic properties (water contact angle is 152°), which is conducive to high oil adsorption capacity (up to 70-179 times of its own weight) and oil-water separation. More importantly, the CPMF400 sponge has an excellent photothermal conversion capability to improve the fluidity of high viscosity oil for oil recovery. Based on a simple synthesis method, it exhibits high-efficiency absorption of multi-state oils and excellent oil-water separation performance and strongly proves their application prospects in treating oily wastewater.
Collapse
Affiliation(s)
- Yan Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Shumei Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| | - Xiaohu Cheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Wenjia Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | | | | | - Zhenguo Dai
- Shandong Shanda WIT Science and Technology Co., Ltd., Jinan 250061, Shandong, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| |
Collapse
|
8
|
Superhydrophobic polyaniline absorbent for solar-assisted adsorption of highly viscous crude oil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Maruthapandi M, Saravanan A, Manoj S, Luong JHT, Gedanken A. Facile ultrasonic preparation of a polypyrrole membrane as an absorbent for efficient oil-water separation and as an antimicrobial agent. ULTRASONICS SONOCHEMISTRY 2021; 78:105746. [PMID: 34507263 PMCID: PMC8429107 DOI: 10.1016/j.ultsonch.2021.105746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil-water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil from contaminated waters, comprising different microorganisms and living species. The novelty of this manuscript is described in a new system, the fabrication of PPY membranes with two important properties: biocidal and oil/water separation.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shanmugasundaram Manoj
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
10
|
Huang Y, Gancheva T, Favis BD, Abidli A, Wang J, Park CB. Hydrophobic Porous Polypropylene with Hierarchical Structures for Ultrafast and Highly Selective Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16859-16868. [PMID: 33749239 DOI: 10.1021/acsami.0c21852] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, various porous absorbents have been developed and the in situ vacuum/pump-assisted continuous separation process has proven to be the most efficient technique to utilize those absorbents for oil spill cleanup. However, to achieve a high oil removal throughput, a high pumping pressure and/or large absorbent pore sizes are required, which would compromise the selectivity of oil/water separation, as water may penetrate the absorbent beyond a critical external pressure. In this work, this challenge has been circumvented by employing hierarchically porous polypropylene (PP) with controlled pore sizes generated from a tricontinuous heterophase polymer blend system. As compared to unimodal pores, the incorporation of the secondary smaller pores significantly enhances the oil removal throughput by up to 4-5 times without the necessity of raising the pumping pressure or increasing the diameter of the primary pores, which in turn, prevents compromising the oil/water separation selectivity.
Collapse
Affiliation(s)
- Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Teodora Gancheva
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec H3C 3A7, Canada
| | - Basil D Favis
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec H3C 3A7, Canada
| | - Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jun Wang
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
11
|
Chen H, Wu SL, Wang HL, Wu QY, Yang HC. Photothermal Devices for Sustainable Uses Beyond Desalination. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202000056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Honglei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Shao-Lin Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Hua-Li Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Qing-Yun Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| | - Hao-Cheng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai 519082 China
| |
Collapse
|
12
|
Yue X, Fu D, Zhang T, Yang D, Qiu F. Superhydrophobic Stainless-Steel Mesh with Excellent Electrothermal Properties for Efficient Separation of Highly Viscous Water-in-Crude Oil Emulsions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, Anhui Normal University, Wuhu 241000, China
| | - Dongbo Fu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, Anhui Normal University, Wuhu 241000, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
13
|
Wang X, Peng G, Chen M, Zhao M, He Y, Jiang Y, Zhang X, Qin Y, Lin S. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal. CHEMOSPHERE 2020; 249:126141. [PMID: 32062211 DOI: 10.1016/j.chemosphere.2020.126141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Crude oil pollution can cause severe and long-term ecological damage and oil cleanup has become a worldwide challenge. Conventional treatment strategies like in-situ burning, manual skimmer and bioremediation were labor-intensive and time-consuming. The high viscosity of crude oil also posed difficulty for traditional absorbents. Herein, to address these limitations, we designed and fabricated a floating absorbent that was comprised of reduced graphene oxide (RGO), melamine sponge (MS), and a 3D-printed mounting platform. Through a facile one-pot hydrothermal method, graphene oxide (GO) was simultaneously reduced to RGO and loaded in MS (RGO-MS). The resulted RGO-MS composites possess desirable hydrophobicity/oleophilicity for oil absorption with a water contact angle of 122°. The effective light-to-heat conversion allowed the RGO-MS composite to absorb approximately 95 times its own weight of crude oil within 12 min under light irradiation. A 3D-printed mounting platform for RGO-MS composites was further fabricated to improve its applicability and allow easy retrieval. Taking advantages of the RGO's hydrophobicity/oleophilicity and photothermal property, the floating ability of MS, this study demonstrated the real-life applicability of RGO-MS composites for in-situ crude oil cleanup.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Mei Zhao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuan He
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yue Jiang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaozhen Zhang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yao Qin
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China.
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Luo Z, Wang X, Yang D, Zhang S, Zhao T, Qin L, Yu ZZ. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. J Colloid Interface Sci 2020; 570:61-71. [DOI: 10.1016/j.jcis.2020.02.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
|
15
|
Xu C, Yan F, Wang M, Yan H, Cui Z, Li J, He B. Fabrication of hyperbranched polyether demulsifier modified PVDF membrane for demulsification and separation of oil-in-water emulsion. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117974] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Chenxi Y, Juan L, Jian W, Zhen G, Huanyuan W, Chendi S, Dongwen H, Ling L. Dip-coated rapeseed meal composite as a green carrier for light-induced controlled release of pesticide. NEW J CHEM 2020. [DOI: 10.1039/d0nj02771e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
4-Aminoazobenzene moieties act as light-driven “stirrers” to stimulate the release of pesticide.
Collapse
Affiliation(s)
- Yang Chenxi
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Li Juan
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Wang Jian
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Guo Zhen
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Wang Huanyuan
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Shi Chendi
- ShaanXi Provincial Land Engineering Construction Group Co., Ltd
- Xi'an 710075
- China
- Institute of Land Engineering and Technology
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd
| | - Hua Dongwen
- Shaanxi Key Laboratory of Land Consolidation
- Xi'an 710021
- China
| | - Li Ling
- College of Land Engineering
- Chang'an University
- Xi'an 710021
- China
| |
Collapse
|
17
|
Minju N, Ananthakumar S, Savithri S. Superswelling Hybrid Sponge from Water Glass for Selective Absorption of Crude Oil and Organic Solvents. ACS OMEGA 2019; 4:17990-18001. [PMID: 31720503 PMCID: PMC6843722 DOI: 10.1021/acsomega.9b01655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
A lightweight super hydrophilic hybrid sponge is designed and demonstrated out of water glass and an organic polymer, which has a macroporous flaky nature and is superflexible with an apparent density of 0.069 g cc-1, ∼97% porosity, and 3000% water uptake. The octadecyltrimethoxy silane-modified hybrid sponge exhibits selective absorption of oil and organic solvents in open water. An absorption capacity in the range 12-23 g g-1 for the test liquids light crude oil, engine oil, paraffin oil, chloroform, kerosene, and hexane is revealed. Absorption capacity by a weight basis was directly proportional to the density and inversely proportional to the viscosity of test liquids. Trials under both stagnant and turbulent conditions verify selective uptake of oil from sea water. Complete regeneration of the absorbent was possible for ten cycles for the test liquids. The work provides design of an affordable water clean-up material alternative to commonly used polyurethane sponges.
Collapse
Affiliation(s)
- Nadukkandy Minju
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Solaiappan Ananthakumar
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sivaraman Savithri
- Functional Materials, Material Science and Technology
Division and Computational
Modeling and Simulation Section, Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science
and Technology, Government of
India, Thiruvananthapuram, Kerala 695 019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Gu H, Zhou X, Lyu S, Pan D, Dong M, Wu S, Ding T, Wei X, Seok I, Wei S, Guo Z. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 2019; 560:849-856. [PMID: 31708258 DOI: 10.1016/j.jcis.2019.10.084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Cellulose aerogels are a new category of high-efficiency adsorbents for treating oil spills and water pollution. However, the hydrophilic properties and recyclability of aerogels after adsorption hamper developments and applications. Combining both hydrophobic and magnetic properties are expected to improve their adsorption capacity and functionality. EXPERIMENTS In this study, the effect of oleic acid (OA) and nanomagnetite on the preparation of magnetic nanocellulose aerogels (called as NCA/OA/Fe3O4) by a mechanical mixing combined with freeze-drying method have been investigated. FINDINGS It has been found that the optimal condition for fabricating this NCA/OA/Fe3O4 aerogel is 0.4 wt% nanocellulose, 3 mg mL-1 OA and 0.5 wt% Fe3O4 in the aqueous solution. This aerogel has a very low density of 9.2 mg cm-3 and demonstrates a high adsorption capacity of 68.06 g g-1 for cyclohexane. In addition, this aerogel adsorbent demonstrates an excellent magnetic responsivity and can be easily recycled by a permanent magnet after adsorption. As a consequence, this hydrophobic magnetic NCA/OA/Fe3O4 aerogel is promising not only for easy oil and organic solvent adsorption but also potentially for other magnetic related applications.
Collapse
Affiliation(s)
- Hongbo Gu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaomin Zhou
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shangyun Lyu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Duo Pan
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xin Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Ilwoo Seok
- Mechanical Engineering, Arkansas State University, Jonesboro, AR 72401, USA
| | - Suying Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| |
Collapse
|
19
|
Zhang C, Liang H, Xu Z, Wang Z. Harnessing Solar-Driven Photothermal Effect toward the Water-Energy Nexus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900883. [PMID: 31572646 PMCID: PMC6760470 DOI: 10.1002/advs.201900883] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Indexed: 05/29/2023]
Abstract
Producing affordable freshwater has been considered as a great societal challenge, and most conventional desalination technologies are usually accompanied with large energy consumption and thus struggle with the trade-off between water and energy, i.e., the water-energy nexus. In recent decades, the fast development of state-of-the-art photothermal materials has injected new vitality into the field of freshwater production, which can effectively harness abundant and clean solar energy via the photothermal effect to fulfill the blue dream of low-energy water purification/harvesting, so as to reconcile the water-energy nexus. Driven by the opportunities offered by photothermal materials, tremendous effort has been made to exploit diverse photothermal-assisted water purification/harvesting technologies. At this stage, it is imperative and important to review the recent progress and shed light on the future trend in this multidisciplinary field. Here, a brief introduction of the fundamental mechanism and design principle of photothermal materials is presented, and the emerging photothermal applications such as photothermal-assisted water evaporation, photothermal-assisted membrane distillation, photothermal-assisted crude oil cleanup, photothermal-enhanced photocatalysis, and photothermal-assisted water harvesting from air are summarized. Finally, the unsolved challenges and future perspectives in this field are emphasized. It is envisioned that this work will help arouse future research efforts to boost the development of solar-driven low-energy water purification/harvesting.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Mechanical EngineeringCity University of Hong KongHong KongChina
| | - Hong‐Qing Liang
- Carbon Dioxide Activation Center (CADIAC)Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus University8000Aarhus CDenmark
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Zuankai Wang
- Department of Mechanical EngineeringCity University of Hong KongHong KongChina
| |
Collapse
|
20
|
Hu J, Zhu J, Jiang C, Guo T, Song Q, Xie L. Facile preparation of durably magnetic superhydrophobic sponge and its application in oil-water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Liu Y, Liu N, Jing Y, Jiang X, Yu L, Yan X. Surface design of durable and recyclable superhydrophobic materials for oil/water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Deng Y, Zhang G, Bai R, Shen S, Zhou X, Wyman I. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.069] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|