1
|
Chang XL, Zhang XR, Qiang Y, Cao YH, Shang XY, Wang WF, Yang JL. In Situ Biomineralization and Citric Acid Etching Strategy for Enhancing Activity of Immobilized Acetylcholinesterase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22794-22802. [PMID: 39413434 DOI: 10.1021/acs.langmuir.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enhancing the structural stability of an enzyme and maintaining its catalytic activity are effective ways to improve enzyme utilization and reduce the cost of drug screening. However, immobilized enzyme activity tends to decrease in existing immobilization techniques due to conformational changes and microenvironmental restrictions. In this paper, we present a facile approach to prepare immobilized acetylcholinesterase (AChE) with high activity by a ZIF-8 in situ immobilization and citric acid (CA) etching strategy. CA breaks the coordination bond of ZIF-8 and produces defects, expanding the pore space, improving substrate accessibility, and fully exposing the active site of the enzyme. The enhancement of the catalytic activity of AChE@ZIF-8-CA was about 6.10-fold compared with the free enzyme. In addition, AChE@ZIF-8-CA exhibited an excellent encapsulation efficiency and good tolerance to temperature, pH, and organic solvents. The relative activity remains at the initial 83.77% even in five repeated experiments. The strategy provides a novel and efficient way to quickly construct highly active immobilized enzymes under mild conditions.
Collapse
Affiliation(s)
- Xiang-Lei Chang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Ru Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Hong Cao
- Longnan Academy of Non-wood Forest, Longnan 742500, P. R. China
| | - Xian-Yi Shang
- Longnan Municipal Enrich People Industry Development Corporation, Longnan 742500, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Zhao B, Yang H, Mao J, Zhou Q, Deng Q, Zheng L, Shi J. Hollow Hierarchical Porous and Antihydrolytic Spherical Zeolitic Imidazolate Frameworks for Enzyme Encapsulation and Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9466-9482. [PMID: 38324654 DOI: 10.1021/acsami.3c16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The creation of a new metal-organic framework (MOF) with a hollow hierarchical porous structure has gained significant attention in the realm of enzyme immobilization. The present work employed a novel, facile, and effective combinatorial technique to synthesize modified MOF (N-PVP/HZIF-8) with a hierarchically porous core-shell structure, allowing for the preservation of the structural integrity of the encapsulated enzyme molecules. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, confocal laser scanning microscopy, and other characterization tools were used to fully explore the changes of morphological structure and surface properties in different stages of the preparation of immobilization enzyme CRL-N-PVP/HZIF-8, thus showing the superiority of N-PVP/HZIF-8 as an enzyme immobilization platform and the logic of the immobilization process on the carrier. Additionally, the maximum enzyme loading was 216.3 mg mL-1, the relative activity of CRL-N-PVP/HZIF-8 increased by 15 times compared with the CRL@ZIF-8 immobilized in situ, and exhibited quite good thermal, chemical, and operational stability. With a maximal conversion of 88.8%, CRL-N-PVP/HZIF-8 demonstrated good catalytic performance in the biosynthesis of phytosterol esters as a proof of concept. It is anticipated that this work will offer fresh concepts from several perspectives for the creation of MOF-based immobilized enzymes for biotechnological uses.
Collapse
Affiliation(s)
- Baozhu Zhao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haowen Yang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Ganesan A, Leisen J, Thyagarajan R, Sholl DS, Nair S. Hierarchical ZIF-8 Materials via Acid Gas-Induced Defect Sites: Synthesis, Characterization, and Functional Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40623-40632. [PMID: 37595023 PMCID: PMC10472435 DOI: 10.1021/acsami.3c08344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Microporous metal-organic frameworks (MOFs) have been widely studied for molecular separation and catalysis. The uniform micropores of MOFs (<2 nm) can introduce diffusion limitations and render the interiors of the crystal inaccessible to target molecules. The introduction of hierarchical porosity (interconnected micro and mesopores) can enhance intra-crystalline diffusion while maintaining the separation/catalytic selectivity. Conventional hierarchical MOF synthesis involves complex strategies such as elongated linkers, soft templating, and sacrificial templates. Here, we demonstrate a more general approach using our controlled acid gas-enabled degradation and reconstruction (Solvent-Assisted Crystal Redemption) strategy. Selective linker labilization of ZIF-8 is shown to generate a hierarchical pore structure with mesoporous cages (∼50 nm) while maintaining microporosity. Detailed structural and spectroscopic characterization of the controlled degradation, linker insertion, and subsequent linker thermolysis is presented to show the clustering of acid gas-induced defects and the generation of mesopores. These findings indicate the generality of controlled degradation and reconstruction as a means for linker insertion in a wider variety of MOFs and creating hierarchical porosity. Enhanced molecular diffusion and catalytic activity in the hierarchical ZIF-8 are demonstrated by the adsorption kinetics of 1-butanol and a Knoevenagel condensation reaction.
Collapse
Affiliation(s)
- Arvind Ganesan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johannes Leisen
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raghuram Thyagarajan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sankar Nair
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Yan Y, Guo L, Geng H, Bi S. Hierarchical Porous Metal-Organic Framework as Biocatalytic Microreactor for Enzymatic Biofuel Cell-Based Self-Powered Biosensing of MicroRNA Integrated with Cascade Signal Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301654. [PMID: 37098638 DOI: 10.1002/smll.202301654] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Enzymatic biofuel cells have become powerful tools in biosensing, which however generally suffer from the limited loading efficiency as well as low catalytic activity and poor stability of bioenzymes. Herein, the hierarchical porous metal-organic frameworks (MOFs) are synthesized using tannic acid (TA) for structural etching, which realizes co-encapsulation of glucose dehydrogenase (GDH) and nicotinamide adenine dinucleotide (NAD+ ) cofactor in zeolitic imidazolate framework (ZIF-L) and are further used as the biocatalytic microreactors to modify bioanode. In this work, the TA-controlled etching can not only expand the pore size of microreactors, but also achieve the reorientation of enzymes in their lower surface energy form, therefore enhancing the biocatalysis of cofactor-dependent enzyme. Meanwhile, the topological DNA tetrahedron is assembled on the microreactors, which acts as the microRNA-responsive "lock" to perform the cascade signal amplification of exonuclease III-assisted target recycling on bioanode and hybridization chain reaction (HCR) on biocathode. The proposed self-powered biosensor has achieved a detection limit as low as 2 aM (6 copies miRNA-21 in a 5 µL of sample), which is further successfully applied to identify cancer cells and clinical serums of breast cancer patients based on the different levels of miRNA-21, holding great potential in accurate disease identification and clinical diagnosis.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Li Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongyan Geng
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Bicomponent hydrogels assisted templating synthesis of hierarchically porous ZIF-8 for efficient antibacterial applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Wang Z, Zhao Y, Wu Z, Zhang J, Zhang B, Wang H, Reza ZE, Shi J. Hierarchically Structured CA@ZIF-8 Biohybrids for Carbon Dioxide Mineralization. Appl Biochem Biotechnol 2022; 195:2829-2842. [PMID: 36418710 DOI: 10.1007/s12010-022-04250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Carbonic anhydrase (CA) is a powerful biocatalyst for carbon dioxide (CO2) mineralization, of which immobilization is usually used for maintaining its catalytic activity against harsh external stimuli. However, the incorporated materials for CA immobilization would commonly increase the internal diffusion resistance during the catalytic process, thereby decreasing the catalytic efficiency. In our study, poly-L-glutamic acid (PLGA) as the structure regulator was used to induce the synthesis of CA@zeolitic imidazolate framework-8 (CA@ZIF-8) biohybrids. The introduction of PLGA that could coordinate with Zn2+ interfered the crystallization of ZIF-8, thereby changing the morphological structure of CA@ZIF-8 biohybrids. With the increase of PLGA amount from 0 to 60 mg, PLGA(x)-CA@ZIF-8 biohybrids were gradually transformed from a dodecahedron structure to a 3D lamellar nano-flower structure, which caused elevated exposed surface area. Accordingly, the loading ratio was increased from 34.6 to 49.8 mg gcat-1, while the catalytic activity was elevated from 20.6 to 23.4%. The CO2 conversion rate was enhanced by nearly two folds compared to PLGA(0)-CA@ZIF-8 under the optimized condition. The final CaCO3 yield could reach 5.6 mg mgcat-1, whereas the reaction system could remain above 80% of the initial reaction activity after 8 cycles.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yang Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaxu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Han Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zolfaghari Emameh Reza
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, People's Republic of China.
| |
Collapse
|
7
|
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Wang X, Lewis DA, Wang G, Meng T, Zhou S, Zhu Y, Hu D, Gao S, Zhang G. Covalent Organic Frameworks as a Biomacromolecule Immobilization Platform for Biomedical and Related Applications. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Damani A. Lewis
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Anhui Medical University Hefei 230022 China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Yuheng Zhu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei 230032 China
| |
Collapse
|
9
|
Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, Liu J, Li G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Ni X, Zhang Y, Xue C, Chen X. Ultrasensitive Detection of Ochratoxin A With a Zeolite Imidazolate Frameworks Composite–Based Electrochemical Aptasensor. Front Chem 2022; 10:858107. [PMID: 35464199 PMCID: PMC9019229 DOI: 10.3389/fchem.2022.858107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ochratoxin A (OTA) is a harmful mycotoxin, which is mainly secreted by Penicillium and Aspergillus species. In this work, an electrochemical aptasensor is presented for OTA detection based on Au nanoparticles (AuNPs) modified zeolite imidazolate frameworks (ZIFs) ZIF-8 platform and duplex-specific nuclease (DSN) triggered hybridization chain reaction (HCR) signal amplification. G-quadruplex-hemin assembled HCR nanowire acted as a nicotinamide adenine dinucleotide (NADH) oxidase and an HRP-mimicking DNAzyme. Besides, thionine (Thi) was enriched as a redox probe for signal amplification in this pseudobienzyme electrocatalytic system. Under the optimal conditions, the analytical response ranged from 1 to 107 fg ml−1 with a detection limit of 0.247 fg ml−1. Furthermore, the aptasensor was proven to be applied in real wheat samples with a recovery between 96.8 and 104.2%, illustrating the potential prospects in practical detection.
Collapse
Affiliation(s)
- Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Yuyan Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Chuhan Xue
- Shanghai Pudong New District Jincai High School, Shanghai, China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- *Correspondence: Xiaojun Chen,
| |
Collapse
|
11
|
Wang C, Liao K. Recent Advances in Emerging Metal- and Covalent-Organic Frameworks for Enzyme Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56752-56776. [PMID: 34809426 DOI: 10.1021/acsami.1c13408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme catalysis enables complex biotransformation to be imitated. This biomimetic approach allows for the application of enzymes in a variety of catalytic processes. Nevertheless, enzymes need to be shielded by a support material under challenging catalytic conditions due to their intricate and delicate structures. Specifically, metal-organic frameworks and covalent-organic frameworks (MOFs and COFs) are increasingly popular for use as enzyme-carrier platforms because of their excellent tunability in structural design as well as remarkable surface modification. These porous organic framework capsules that host enzymes not only protect the enzymes against harsh catalytic conditions but also facilitate the selective diffusion of guest molecules through the carrier. This review summarizes recent progress in MOF-enzyme and COF-enzyme composites and highlights the pore structures tuned for enzyme encapsulation. Furthermore, the critical issues associated with interactions between enzymes and pore apertures on MOF- and COF-enzyme composites are emphasized, and perspectives regarding the development of high-quality MOF and COF capsules are presented.
Collapse
Affiliation(s)
- Cuie Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kaiming Liao
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
12
|
A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat Commun 2021; 12:6113. [PMID: 34671044 PMCID: PMC8528827 DOI: 10.1038/s41467-021-26381-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Integrative colloidosomes with hierarchical structure and advanced function may serve as biomimetic microreactors to carry out catalytic reactions by compartmentalizing biological species within semipermeable membranes. Despite of recent progress in colloidosome design, integration of biological and inorganic components into tiered structures to tackle the remaining challenges of biocatalysis is highly demanded. Here, we report a rational design of three-tiered colloidosomes via the Pickering emulsion process. The microreactor consists of crosslinked amphiphilic silica-polymer hybrid nanoparticles as the semipermeable shell, an enzyme-incorporated catalytic sub-layer, and a partially-silicified adsorptive lumen. By leveraging confinement and enrichment effect, we demonstrate the acceleration of lipase-catalyzed ester hydrolysis within the microcompartment of organic-inorganic hybrid colloidosomes. The catalytic colloidosomes are further assembled into a closely packed column for enzymatic reactions in a continuous flow format with enhanced reaction rates. The three-tiered colloidosomes provide a reliable platform to integrate functional building blocks into a biomimetic compartmentalized microreactor with spatially controlled organization and high-performance functions.
Collapse
|
13
|
|
14
|
α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines. Colloids Surf B Biointerfaces 2021; 205:111847. [PMID: 34022705 DOI: 10.1016/j.colsurfb.2021.111847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
In this work, a simple and rapid screening strategy was developed combining capillary electrophoresis analysis with enzymatic assay based on immobilized α-glucosidase. For α-glucosidase immobilization, magnetic core-shell metal-organic frameworks composite (Fe3O4@CS@ZIF-8) was fabricated by a step-by-step assembly method, and α-glucosidase was in situ encapsulated in crystal lattice of ZIF-8. The composite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. After immobilization, α-glucosidase exhibited enhanced tolerance to temperature and pH, and its reusability was greatly improved with 74 % of initial enzyme activity after being recycled 10 times. The Michaelis-Menten constant of immobilized enzyme was calculated to be 0.47 mM and its inhibition constant and IC50 for acarbose were 0.57 μM and 0.18 μM, respectively. The immobilized enzyme was subsequently applied to inhibitor screening from 14 TCMs, and Rhei Radix et Rhizoma was screened out. Among the commercially available 10 components presented in Rhei Radix et Rhizoma, gallic acid, (+)-catechin and epicatechin exhibited the strongest inhibitory effect on α-glucosidase. Their binding sites and modes with α-glucosidase were simulated via molecular docking to further verify the inhibition screening assay results. The positive results indicated that the Fe3O4@CS@ZIF-8-based screening strategy may provide a new avenue for discovering enzyme inhibitors from TCMs.
Collapse
|
15
|
Feng Y, Hu H, Wang Z, Du Y, Zhong L, Zhang C, Jiang Y, Jia S, Cui J. Three-dimensional ordered magnetic macroporous metal-organic frameworks for enzyme immobilization. J Colloid Interface Sci 2021; 590:436-445. [PMID: 33561593 DOI: 10.1016/j.jcis.2021.01.078] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022]
Abstract
Metal-organic frameworks (MOFs) have been emerged as a promising support for immobilizing enzymes owing to the tunable porosity, high surface area, and structural diversity. However, most of these possess nanometer size and small pores, which are difficult to recover them from the reaction medium and present low immobilization efficiency and protein loading capacity, and high substrate diffusion limitations. Herein, a novel magnetic amino-functionalized zeolitic imidazolate framework-8 (ZIF-8) with 3D highly ordered macroporous structure was synthesized using the assembled polystyrene (PS) nanosphere monoliths as a template. Subsequently, catalase (CAT) molecules were immobilized on the surface of macroporous magnetic ZIF-8 and inside the macropores by precipitation, covalent binding and cross-linking. The resultant immobilized CAT showed high immobilization efficiency (58%) and protein loading capacity (29%), leading to 500% higher activity than the immobilized CAT on ZIF-8 (CAT/ZIF-8). Meanwhile, the immobilized CAT could be easily recovered with a magnet without obvious activity loss. The traditional CAT/ZIF-8 lost its activity after 6 cycles, whereas, the immobilized CAT retained 90% activity of its initial activity after reusing for 8 cycles, indicating excellent reusability. In conclusion, this study provides a facile and efficient approach to immobilize enzymes on/in MOFs with enhanced activity and excellent recyclability.
Collapse
Affiliation(s)
- Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenxi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No 9, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Liang J, Gao S, Liu J, Zulkifli MYB, Xu J, Scott J, Chen V, Shi J, Rawal A, Liang K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor‐Dependent Biocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Song Gao
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jian Liu
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Muhammad Y. B. Zulkifli
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jiangtao Xu
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Jason Scott
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Vicki Chen
- School of Chemical Engineering University of Queensland Queensland 4072 Australia
| | - Jiafu Shi
- School of Environmental Science and Engineering Tianjin University 92# Weijin Road, Nankai District Tianjin 300072 China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
17
|
Liang J, Gao S, Liu J, Zulkifli MYB, Xu J, Scott J, Chen V, Shi J, Rawal A, Liang K. Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactor-Dependent Biocatalysis. Angew Chem Int Ed Engl 2021; 60:5421-5428. [PMID: 33258208 DOI: 10.1002/anie.202014002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as excellent hosting matrices for enzyme immobilization, offering superior physical and chemical protection for biocatalytic reactions. However, for multienzyme and cofactor-dependent biocatalysis, the subtle orchestration of enzymes and cofactors is largely disrupted upon immobilizing in the rigid crystalline MOF network, which leads to a much reduced biocatalytic efficiency. Herein, we constructed hierarchically porous MOFs by controlled structural etching to enhance multienzyme and cofactor-dependent enzyme biocatalysis. The expanded size of the pores can provide sufficient space for accommodated enzymes to reorientate and spread within MOFs in their lower surface energy state as well as to decrease the inherent barriers to accelerate the diffusion rate of reactants and intermediates. Moreover, the developed hierarchically porous MOFs demonstrated outstanding tolerance to inhospitable surroundings and recyclability.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Song Gao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jian Liu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Muhammad Y B Zulkifli
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Queensland, 4072, Australia
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92# Weijin Road, Nankai District, Tianjin, 300072, China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Gao Y, Doherty CM, Mulet X. A Systematic Study of the Stability of Enzyme/Zeolitic Imidazolate Framework‐8 Composites in Various Biologically Relevant Solutions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuan Gao
- CSIRO Manufacturing Clayton VIC 3168 Australia
| | | | | |
Collapse
|
19
|
Li Y, Wen L, Qu Y, Lv Y. Metal–Enzyme Hybrid Microspheres Assembled via Mg 2+-Allosteric Effector. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liyin Wen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Medical Device Standard Administration, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yun Qu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Wu Z, Nan Y, Zhao Y, Wang X, Huang S, Shi J. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Phipps J, Chen H, Donovan C, Dominguez D, Morgan S, Weidman B, Fan C, Beyzavi MH. Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26084-26094. [PMID: 32478509 PMCID: PMC7815252 DOI: 10.1021/acsami.0c06964] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, it has been shown that enzyme encapsulation inside metal-organic frameworks (MOFs) can increase enzyme activity and serve as protection from adverse environmental conditions. Little is understood about how the enzymes move into and are held inside the MOFs although it is believed that intermolecular forces between the MOF and the enzyme cause it to be held in place. If this process can be better understood, it can have dramatic implications on the cost-effectiveness and implementation of enzyme-MOF complexes. This is of specific importance in the medical sector for protein therapy and the industrial sector where enzyme use is expected to increase. Herein, we synthesized alcohol dehydrogenase (ADH) and PCN-333 to study encapsulation, stability, and enzyme activity to expand the knowledge of our field and offer a potential improvement to a synthetic route for biofuel synthesis. From this, we found a correlation between the concentration of a buffer and the loading of an enzyme, with surprising loading trends. We conclude that the buffer solution decreases interactions between the enzyme and MOF, supporting conventional theory and allowing it to penetrate deeper into the structure causing higher enzyme loading while allowing for excellent stability over time at various pH values and temperatures and after multiple reactions. We also observe new trends such as a rebounding effect in loading and "out-of-bounds" reactions.
Collapse
Affiliation(s)
- Josh Phipps
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Connor Donovan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Dylan Dominguez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sydney Morgan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Barrett Weidman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - M. Hassan Beyzavi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
- Corresponding Author: Address correspondence to M. Hassan Beyzavi, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 345 N Campus Dr., Fayetteville, AR 72701 USA.
| |
Collapse
|
22
|
Li H, Lu X, Lu Q, Liu Y, Cao X, Lu Y, He X, Chen K, Ouyang P, Tan W. Hierarchical porous and hydrophilic metal-organic frameworks with enhanced enzyme activity. Chem Commun (Camb) 2020; 56:4724-4727. [PMID: 32219295 DOI: 10.1039/d0cc00748j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) for enzyme encapsulation-induced biomimetic mineralization under mild reaction conditions are commonly microporous and hydrophobic, which result in a rather high mass transfer resistance of the reactants and restrain the enzyme catalytic activity. Herein, we prepared a type of hierarchical porous and hydrophilic MOF through the biomimetic mineralization of enzymes, zinc ions, 2-methylimidazole, and lithocholic acid. The hierarchical porous structure accelerated the diffusion process of the reactants and the increased hydrophilicity conferred interfacial activity and increased the enzyme catalytic activity. The immobilized enzyme retained higher catalytic activity than the free enzyme and exhibited enhanced resistance to alkaline, organic, and high-temperature conditions. The nanobiocatalyst was reusable and showed long-term storage stability.
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|