1
|
Fracassa A, Calogero F, Pavan G, Nikolaou P, Fermi A, Ceroni P, Paolucci F, Cozzi PG, Scattolin T, Demitri N, Negri F, Gualandi A, Aliprandi A, Valenti G. Tunable electrochemiluminescence of TADF luminophores: manipulating efficiency and unveiling water-soluble emitters. Chem Sci 2024:d4sc04986a. [PMID: 39397812 PMCID: PMC11462160 DOI: 10.1039/d4sc04986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Thermally Activated Delayed Fluorescent (TADF) luminophores offer the potential to achieve 100% Internal Quantum Efficiency (IQE) by harvesting both singlet and triplet excitons via reverse intersystem crossing from T1 to S1. This class of molecules has therefore been embraced in the pursuit of cheaper and more efficient electrochemiluminescent (ECL) labels. The present study explores how tuning the electron-donating (D) and -accepting (A) strengths of peripheral substituents affects the ECL emission of mono- and dicyanoarene-based TADF dyes. To this end, we synthesized two series of TADF compounds, independently manipulating electron donors and acceptors by (i) halogenating electron-rich diphenylamine moieties, or (ii) mono- or di-substituting the electron-poor cyanoarene core with either fluorine or imidazole. Through a comparative analysis, we elucidate the role of each substituent in shaping the photophysics of the investigated luminophores. Despite only achieving a relative Φ ECL as high as 1.27%, this framework identifies several molecular features that boost the ECL efficiency to pave the way for designing highly efficient TADF-based ECL emitters. Ultimately, imidazole substituents are exploited as a platform for functionalization with triethylene glycol units. The resulting water-soluble TADF luminophores are characterized under conditions usual to commercial ECL bioanalysis, proving their potential as a cost-effective alternative replacement to [Ru(bpy)3]2+ in clinical diagnostic.
Collapse
Affiliation(s)
- Alessandro Fracassa
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Giulio Pavan
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Pavlos Nikolaou
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Francesco Paolucci
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.S 14 Km 163.5 in Area Science Park 34149 Basovizza - Trieste Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| | - Alessandro Aliprandi
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Giovanni Valenti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna Via Gobetti 85 40129 Bologna Italy
| |
Collapse
|
2
|
Zhang R, Cai W, Yuan S, Zhao L, Wang L, Li J, Wu D, Kong Y. Ionic Covalent-Organic Frameworks Composed of Anthryl-Extended Viologen as a Kind of Electrochemiluminescence Luminophore. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356833 DOI: 10.1021/acsami.4c10899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Nowadays, covalent-organic frameworks (COFs) integrated with the electrochemiluminescence (ECL) behavior are highly desired owing to the significant advantages including multifunctionality, high sensitivity, and low background noise. Here, two ionic COFs (iCOFs) consisting of the anthryl-extended viologen as the backbone were designed and synthesized via the Zincke reaction. It is found for the first time that the as-prepared iCOFs accompanied by potassium persulfate as the coreactant can provide a clear ECL response in a water-bearing medium. The maximum ECL emissions of the iCOFs were in agreement with the photoluminescence spectra. Besides, cyclic voltammetry and electron paramagnetic resonance measurements reveal that the pyridinium unit was electrochemically reduced to afford the free radical. Then, it reacted with SO4·- to generate the excited-state [iCOF]*. Finally, [iCOF]* quickly returned to its ground state coupled with a clear ECL emission, yielding a maximum ECL quantum efficiency of 23.4% compared with tris(2,2'-bipyridyl) ruthenium(II) as the benchmark. In brief, the current study opens a way to develop a kind of ECL emitter that holds great potential in sensing, imaging, and light-emitting devices.
Collapse
Affiliation(s)
- Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Zhang G, Ma S, Yang J, Zhang J, Si W, Cao Y, Qin W, Jia Z. The Structural Regulation of Photosensitive Unit and Conjugation in COFs for Efficient Photocatalytic H 2 Evolution. CHEMSUSCHEM 2024:e202401353. [PMID: 39275904 DOI: 10.1002/cssc.202401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
The photosensitive unit and conjugation play a significant role in photocatalytic performance of covalent organic frameworks (COFs). In this work, a series of COFs that introduced the phenyl phenanthridine as photosensitive unit with different planarity of linkages were synthesized and the common regulation between them for photocatalysis hydrogen evolution reaction (HER) was also studied. The results indicate that DHTB-PPD, with 2/3 planarity linkages (β-ketoenamine/imine is 2/3) and the phenyl phenanthridine as building blocks, shows the narrowest bandgap and the strongest charge separation efficiency. Therefore, it shows the highest H2 production rate of 12.13 mmol g-1 h-1. The optimal photocatalytic efficiency of DTHB-PPD can be attributed to the combined effect of the photosensitive unit and the long-range ordering of the COF skeleton. According to The Density Functional Theory (DFT), the O site on β-ketoamine is the most possible H2 generation site, but the photocatalytic efficiency of TP-PPD, with the highest skeletal conjugation and the highest proportion of β-ketoamine is not the most efficient photocatalyst, indicating that the long-range ordering of COFs is important on photocatalytic performance. Thus, these findings provide valuable guidance for the structural design of COFs photocatalysts.
Collapse
Affiliation(s)
- Guohui Zhang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Shuwei Ma
- Shandong Institute for Product Quality Inspection, Jinan, 250199, China
| | - Jilu Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wenbo Si
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuping Cao
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wenwu Qin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaowei Jia
- Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Ding CY, Zhong YW. Multicolor Electrochemiluminescence of Binary Microcrystals of Iridium and Ruthenium Complexes. Chem Asian J 2024:e202400987. [PMID: 39226114 DOI: 10.1002/asia.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending on the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.
Collapse
Affiliation(s)
- Chun-Yun Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Alkhaibari I, Zhang X, Zhao J, Stonelake TM, Knighton RC, Horton PN, Coles SJ, Buurma NJ, Richards E, Pope SJA. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorg Chem 2024; 63:9931-9940. [PMID: 38738860 PMCID: PMC11134496 DOI: 10.1021/acs.inorgchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
Collapse
Affiliation(s)
- Ibrahim
S. Alkhaibari
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Thomas M. Stonelake
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Richard C. Knighton
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Niklaas J. Buurma
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Emma Richards
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| |
Collapse
|
6
|
Fracassa A, Santo CI, Kerr E, Knežević S, Hayne DJ, Francis PS, Kanoufi F, Sojic N, Paolucci F, Valenti G. Redox-mediated electrochemiluminescence enhancement for bead-based immunoassay. Chem Sci 2024; 15:1150-1158. [PMID: 38239687 PMCID: PMC10793598 DOI: 10.1039/d3sc06357g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Electrochemiluminescence (ECL) is a highly sensitive mode of detection utilised in commercialised bead-based immunoassays. Recently, the introduction of a freely diffusing water-soluble Ir(iii) complex was demonstrated to enhance the ECL emission of [Ru(bpy)3]2+ labels anchored to microbeads, but a comprehensive investigation of the proposed 'redox-mediated' mechanism was not carried out. In this work, we select three different water-soluble Ir(iii) complexes by virtue of their photophysical and electrochemical properties in comparison with those of the [Ru(bpy)3]2+ luminophore and the TPrA co-reactant. A systematic investigation of the influence of each Ir(iii) complex on the emission of the Ru(ii) labels on single beads by ECL microscopy revealed that the heterogeneous ECL can be finely tuned and either enhanced up to 107% or lowered by 75%. The variation of the [Ru(bpy)3]2+ ECL emission was correlated to the properties of each Ir(iii)-based mediator, which enabled us to decipher the mechanism of interaction and define guidelines for the future design of novel Ir(iii) complexes to further enhance the ECL emission of bead-based immunoassays. Ultimately, we showcase the potential of this technology for practical sample analysis in commercial instruments by assessing the enhancement of the collective ECL intensity from a bead-based system.
Collapse
Affiliation(s)
- Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| | - Claudio Ignazio Santo
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| | - Emily Kerr
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Sara Knežević
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255 33607 Pessac France
| | - David J Hayne
- Institute for Frontier Materials, Deakin University Geelong Victoria 3220 Australia
| | - Paul S Francis
- Deakin University, Centre for Sustainable Bioproducts, Faculty of Science, Engineering and Built Environment Geelong Victoria 3220 Australia
| | | | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255 33607 Pessac France
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
- ICMATE-CNR Corso Stati Uniti 4 35127 Padova Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna via Selmi 2 Bologna 40126 Italy
| |
Collapse
|
7
|
Kim KR, Oh J, Hong JI. A photoluminescent and electrochemiluminescent probe based on an iridium(III) complex with a boronic acid-functionalised ancillary ligand for the selective detection of mercury(II) ions. Analyst 2023; 148:5619-5626. [PMID: 37840468 DOI: 10.1039/d3an01266b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exposure to mercury(II) ions (Hg2+) can cause various diseases such as Minamata disease, acrodynia, Alzheimer's disease, and Hunter-Russell syndrome, and even organ damage. Therefore, real-time and accurate monitoring of Hg2+ in environmental samples is crucial. In this study, we report a photoluminescent (PL) and electrochemiluminescent (ECL) probe based on a cyclometalated Ir(III) complex for the selective detection of Hg2+. The introduction of a reaction site, o-aminomethylphenylboronic acid, on the ancillary ligands allowed a prompt transmetalation reaction to take place between Hg2+ and boronic acid. This reaction resulted in significant decreases of the PL and ECL signals due to the photo-induced electron transfer from the Ir(III) complex to the Hg2+ ions. The probe was applied to the selective detection of Hg2+, and the signal changes revealed a linear correlation with Hg2+ concentrations in the range of 0-10 μM (LOD = 0.72 μM for PL, 8.03 nM for ECL). The designed probe allowed the successful quantification of Hg2+ in tap water samples, which proves its potential for the selective detection of Hg2+ in environmental samples.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jinrok Oh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea.
| |
Collapse
|
8
|
Li L, Yin H, Xia Y, Zhao L, Lu H, Xue Y, Hu X, Zhou M. Enhanced electrochemiluminescence immunoassay: 2. Enabling signal detection at an early stage of incubation for rapid point-of-care testing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
N-heterocyclic Ir(III) complex targeting G-quadruplex structure to boost label-free and immobilization-free electrochemiluminescent sensing. Biosens Bioelectron 2023; 220:114839. [DOI: 10.1016/j.bios.2022.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
10
|
Zhang X, Tong W, Chen M, Xie J, Wang Y, Mo Z, Wu S, Niu Z, Li G. Synthesis, photophysical properties, and
DFT
calculation of yellow‐red phosphorescent iridium(
III
) complexes based on thiophen‐pyrimidine/pyridine derivatives. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao‐Bin Zhang
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Wan‐Yue Tong
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Meng‐Sen Chen
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Jian‐Li Xie
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Yi‐Tong Wang
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zheng‐Rong Mo
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Shui‐Xing Wu
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhi‐Gang Niu
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Gao‐Nan Li
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| |
Collapse
|
11
|
Yoon S, Teets TS. Enhanced deep red to near-infrared (DR-NIR) phosphorescence in cyclometalated iridium( iii) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bis-cyclometalated iridium complexes with highly conjugated cyclometalating ligands and electron-rich ancillary ligands have exceptional quantum yields for deep-red to near-infrared phosphorescence.
Collapse
Affiliation(s)
- Sungwon Yoon
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA
| | - Thomas S. Teets
- University of Houston, Department of Chemistry, 3585 Cullen Blvd., Room 112, Houston, TX 77204-5003, USA
| |
Collapse
|
12
|
Han J, Cheng SC, Yiu SM, Tse MK, Ko CC. Luminescent monomeric and dimeric Ru(ii) acyclic carbene complexes as selective sensors for NH 3/amine vapor and humidity. Chem Sci 2021; 12:14103-14110. [PMID: 34760194 PMCID: PMC8565393 DOI: 10.1039/d1sc04074j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022] Open
Abstract
A new class of luminescent bis(bipyridyl) Ru(ii) pyridyl acyclic carbene complexes with environmentally-sensitive dimerization equilibrium have been developed. Owing to the involvement of the orbitals of the diaminocarbene ligand in the emissive excited state, the phosphorescence properties of these complexes are strongly affected by H-bonding interactions with various H-bonding donor/acceptor molecules. With the remarkable differences in the emission properties of the monomer, dimer, and H-bonded amine adducts together with the change of the dimerization equilibrium, these complexes can be used as luminescent gas sensors for humidity, ammonia, and amine vapors. With the responses to amines and humidity and the corresponding change in the luminescence properties, a proof-of-principle for binary optical data storage with a reversible concealment process has been described.
Collapse
Affiliation(s)
- Jingqi Han
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
13
|
Bevernaegie R, Wehlin SAM, Elias B, Troian‐Gautier L. A Roadmap Towards Visible Light Mediated Electron Transfer Chemistry with Iridium(III) Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000255] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robin Bevernaegie
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Sara A. M. Wehlin
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 box L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Laboratoire de Chimie Organique CP160/06 Université libre de Bruxelles 50 avenue F. R. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
14
|
Das B, Borah ST, Ganguli S, Gupta P. Phosphorescent Trinuclear Pt–Ir–Pt Complexes: Insights into the Photophysical and Electrochemical Properties and Interaction with Guanine Nucleobase. Chemistry 2020; 26:14987-14995. [PMID: 32846032 DOI: 10.1002/chem.202002941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Sakira Tabbasum Borah
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Sagar Ganguli
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| | - Parna Gupta
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, West Bengal 741246 India
| |
Collapse
|