1
|
Wolff S, Hofmann A, Krause KB, Weisser K, Cula B, Lohmiller T, Herwig C, Limberg C. Mimicking the CO 2-Bound State of the [Ni,Fe]-CO Dehydrogenase. Angew Chem Int Ed Engl 2025; 64:e202419675. [PMID: 39636293 DOI: 10.1002/anie.202419675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Complexes, where a doubly reduced CO2 2- (carbonite) ligand is spanned between a nickel(II) centre and a transition metal(II) ion (TM=Fe, Co, Zn) have been accessed. In non-coordinating solvents the carbonite ligand exhibits a flexible coordination behaviour as observed by NMR spectroscopy and supported by DFT calculations. In particular the [Ni-CO2-Fe] representative replicates the respective entity in an intermediate formed during CO2-conversion by the enzyme [Ni,Fe]-CODH in many ways (structure, spectroscopic properties, reactivity). Our investigations reveal that transition metal ions reduce the reduction potential of the carbonite unit but increase its tendency to undergo C-O bond cleavage. This may explain the choice of an iron(II) ion instead of a s- or p-block-based Lewis acid as part of the active site.
Collapse
Affiliation(s)
- Siad Wolff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Arne Hofmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Konstantin B Krause
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Kilian Weisser
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and, Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
| | - Christian Herwig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
2
|
Durfy CS, Zurakowski JA, Drover MW. CO 2 Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy. Angew Chem Int Ed Engl 2025:e202421599. [PMID: 39776270 DOI: 10.1002/anie.202421599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5 -) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for transforming CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]. Additional experiments highlight relevance of borane hybridization and substituent effects. Mechanistic studies performed in the presence and absence of CO2 emphasize the significance of carbonyl substrate to catalyst longevity. Lessons from these reactions were also transferable - with such borane-containing complexes enabling the chemoselective reduction of aldehydes in the presence of alkenes. These findings provide valuable insights into metal-ligand cooperative design strategies for carbonyl reduction and illustrate the versatility of intramolecularly positioned Lewis acids for otherwise challenging chemical transformations.
Collapse
Affiliation(s)
- Connor S Durfy
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada
| | - Joseph A Zurakowski
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Marcus W Drover
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada
| |
Collapse
|
3
|
Xiao Y, Zhang HT, Zhang MT. Heterobimetallic NiFe Complex for Photocatalytic CO 2 Reduction: United Efforts of NiFe Dual Sites. J Am Chem Soc 2024; 146:28832-28844. [PMID: 39378398 DOI: 10.1021/jacs.4c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni-Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22--κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Spielvogel KD, Campbell EJ, Chowdhury SR, Benner F, Demir S, Hatzis GP, Petras HR, Sembukuttiarachchige D, Shepherd JJ, Thomas CM, Vlaisavljevich B, Daly SR. Modulation of Fe-Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors. Chem Commun (Camb) 2024; 60:8399-8402. [PMID: 39028006 DOI: 10.1039/d4cc02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.
Collapse
Affiliation(s)
- Kyle D Spielvogel
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Emily J Campbell
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Sabyasachi Roy Chowdhury
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Florian Benner
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Gillian P Hatzis
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Hayley R Petras
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | | | - James J Shepherd
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Christine M Thomas
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Bess Vlaisavljevich
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Scott R Daly
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Lachguar A, Ye CZ, Kelly SN, Jeanneau E, Del Rosal I, Maron L, Veyre L, Thieuleux C, Arnold J, Camp C. CO 2 cleavage by tantalum/M (M = iridium, osmium) heterobimetallic complexes. Chem Commun (Camb) 2024; 60:7878-7881. [PMID: 38984492 PMCID: PMC11271703 DOI: 10.1039/d4cc02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(μ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(μ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sheridon N Kelly
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| |
Collapse
|
6
|
See M, Ríos P, Tilley TD. Diborane Reductions of CO 2 and CS 2 Mediated by Dicopper μ-Boryl Complexes of a Robust Bis(phosphino)-1,8-naphthyridine Ligand. Organometallics 2024; 43:1180-1189. [PMID: 38817536 PMCID: PMC11134609 DOI: 10.1021/acs.organomet.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
A dinucleating 1,8-naphthyridine ligand featuring fluorene-9,9-diyl-linked phosphino side arms (PNNPFlu) was synthesized and used to obtain the cationic dicopper complexes 2, [(PNNPFlu)Cu2(μ-Ph)][NTf2]; [NTf2] = bis(trifluoromethane)sulfonimide, 6, [(PNNPFlu)Cu2(μ-CCPh)][NTf2], and 3, [(PNNPFlu)Cu2(μ-OtBu)][NTf2]. Complex 3 reacted with diboranes to afford dicopper μ-boryl species (4, with μ-Bcat; cat = catecholate and 5, with μ-Bpin; pin = pinacolate) that are more reactive in C(sp)-H bond activations and toward activations of CO2 and CS2, compared to dicopper μ-boryl complexes supported by a 1,8-naphthyridine-based ligand with di(pyridyl) side arms. The solid-state structures and DFT analysis indicate that the higher reactivities of 4 and 5 relate to changes in the coordination sphere of copper, rather than to perturbations on the Cu-B bonding interactions. Addition of xylyl isocyanide (CNXyl) to 4 gave 7, [(PNNPFlu)Cu2(μ-Bcat)(CNXyl)][NTf2], demonstrating that the lower coordination number at copper is chemically significant. Reactions of 4 and 5 with CO2 yielded the corresponding dicopper borate complexes (8, [(PNNPFlu)Cu2(μ-OBcat)][NTf2]; 9, [(PNNPFlu)Cu2(μ-OBpin)][NTf2]), with 4 demonstrating catalytic reduction in the presence of excess diborane. Related reactions of 4 and 5 with CS2 provided insertion products 10, {[(PNNPFlu)Cu2]2[μ-S2C(Bcat)2]}[NTf2]2, and 11, [(PNNPFlu)Cu2(μ,κ2-S2CBpin)][NTf2], respectively. These products feature Cu-S-C-B linkages analogous to those of proposed CO2 insertion intermediate.
Collapse
Affiliation(s)
- Matthew
S. See
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Pablo Ríos
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO−CINQA), CSIC and Universidad
de Sevilla, Sevilla 41092, Spain
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Karnes JP, Kumar A, Hopkins Leseberg JA, Day VW, Blakemore JD. Trivalent Cations Slow Electron Transfer to Macrocyclic Heterobimetallic Complexes. Inorg Chem 2024; 63:8710-8729. [PMID: 38669449 DOI: 10.1021/acs.inorgchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Incorporation of secondary redox-inactive cations into heterobimetallic complexes is an attractive strategy for modulation of metal-centered redox chemistry, but quantification of the consequences of incorporating strongly Lewis acidic trivalent cations has received little attention. Here, a family of seven heterobimetallic complexes that pair a redox-active nickel center with La3+, Y3+, Lu3+, Sr2+, Ca2+, K+, and Na+ (in the form of their triflate salts) have been prepared on a heteroditopic ligand platform to understand how chemical behavior varies across the comprehensive series. Structural data from X-ray diffraction analysis demonstrate that the positions adopted by the secondary cations in the crown-ether-like site of the ligand relative to nickel are dependent primarily on the secondary cations' ionic radii and that the triflate counteranions are bound to the cations in all cases. Electrochemical data, in concert with electron paramagnetic resonance studies, show that nickel(II)/nickel(I) redox is modulated by the secondary metals; the heterogeneous electron-transfer rate is diminished for the derivatives incorporating trivalent metals, an effect that is dependent on steric crowding about the nickel metal center and that was quantified here with a topographical free-volume analysis. As related analyses carried out here on previously reported systems bear out similar relationships, we conclude that the placement and identity of both the secondary metal cations and their associated counteranions can afford unique changes in the (electro)chemical behavior of heterobimetallic species.
Collapse
Affiliation(s)
- Joseph P Karnes
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Amit Kumar
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Julie A Hopkins Leseberg
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Xiao Y, Xie F, Zhang HT, Zhang MT. Bioinspired Binickel Catalyst for Carbon Dioxide Reduction: The Importance of Metal-ligand Cooperation. JACS AU 2024; 4:1207-1218. [PMID: 38559717 PMCID: PMC10976602 DOI: 10.1021/jacsau.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Catalyst design for the efficient CO2 reduction reaction (CO2RR) remains a crucial challenge for the conversion of CO2 to fuels. Natural Ni-Fe carbon monoxide dehydrogenase (NiFe-CODH) achieves reversible conversion of CO2 and CO at nearly thermodynamic equilibrium potential, which provides a template for developing CO2RR catalysts. However, compared with the natural enzyme, most biomimetic synthetic Ni-Fe complexes exhibit negligible CO2RR catalytic activities, which emphasizes the significance of effective bimetallic cooperation for CO2 activation. Enlightened by bimetallic synergy, we herein report a dinickel complex, NiIINiII(bphpp)(AcO)2 (where NiNi(bphpp) is derived from H2bphpp = 2,9-bis(5-tert-butyl-2-hydroxy-3-pyridylphenyl)-1,10-phenanthroline) for electrocatalytic reduction of CO2 to CO, which exhibits a remarkable reactivity approximately 5 times higher than that of the mononuclear Ni catalyst. Electrochemical and computational studies have revealed that the redox-active phenanthroline moiety effectively modulates the electron injection and transfer akin to the [Fe3S4] cluster in NiFe-CODH, and the secondary Ni site facilitates the C-O bond activation and cleavage through electron mediation and Lewis acid characteristics. Our work underscores the significant role of bimetallic cooperation in CO2 reduction catalysis and provides valuable guidance for the rational design of CO2RR catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
10
|
Wilson DWN, Fataftah MS, Mathe Z, Mercado BQ, DeBeer S, Holland PL. Three-Coordinate Nickel and Metal-Metal Interactions in a Heterometallic Iron-Sulfur Cluster. J Am Chem Soc 2024; 146:4013-4025. [PMID: 38308743 PMCID: PMC10993082 DOI: 10.1021/jacs.3c12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Majed S. Fataftah
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Zachary Mathe
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Yong WW, Zhang HT, Guo YH, Xie F, Zhang MT. Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Electrocatalyzed CO 2-to-CO Conversion. ACS ORGANIC & INORGANIC AU 2023; 3:384-392. [PMID: 38075450 PMCID: PMC10704577 DOI: 10.1021/acsorginorgau.3c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 03/16/2024]
Abstract
The selective reduction of carbon dioxide remains a significant challenge due to the complex multielectron/proton transfer process, which results in a high kinetic barrier and the production of diverse products. Inspired by the electrostatic and H-bonding interactions observed in the second sphere of the [NiFe]-CODH enzyme, researchers have extensively explored these interactions to regulate proton transfer, stabilize intermediates, and ultimately improve the performance of catalytic CO2 reduction. In this work, a series of cobalt(II) tetraphenylporphyrins with varying numbers of redox-active nitro groups were synthesized and evaluated as CO2 reduction electrocatalysts. Analyses of the redox properties of these complexes revealed a consistent relationship between the number of nitro groups and the corresponding accepted electron number of the ligand at -1.59 V vs. Fc+/0. Among the catalysts tested, TNPPCo with four nitro groups exhibited the most efficient catalytic activity with a turnover frequency of 4.9 × 104 s-1 and a catalytic onset potential 820 mV more positive than that of the parent TPPCo. Furthermore, the turnover frequencies of the catalysts increased with a higher number of nitro groups. These results demonstrate the promising design strategy of incorporating multielectron redox-active ligands into CO2 reduction catalysts to enhance catalytic performance.
Collapse
Affiliation(s)
- Wen-Wen Yong
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Materials, China Academy of Engineering Physics (CAEP), Jiangyou 621908, China
| | - Hong-Tao Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Hua Guo
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Pérez-Jiménez M, Corona H, de la Cruz-Martínez F, Campos J. Donor-Acceptor Activation of Carbon Dioxide. Chemistry 2023; 29:e202301428. [PMID: 37494303 DOI: 10.1002/chem.202301428] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
The activation and functionalization of carbon dioxide entails great interest related to its abundance, low toxicity and associated environmental problems. However, the inertness of CO2 has posed a challenge towards its efficient conversion to added-value products. In this review we discuss one of the strategies that have been widely used to capture and activate carbon dioxide, namely the use of donor-acceptor interactions by partnering a Lewis acidic and a Lewis basic fragment. This type of CO2 activation resembles that found in metalloenzymes, whose outstanding performance in catalytically transforming carbon dioxide encourages further bioinspired research. We have divided this review into three general sections based on the nature of the active sites: metal-free examples (mainly formed by frustrated Lewis pairs), main group-transition metal combinations, and transition metal heterobimetallic complexes. Overall, we discuss one hundred compounds that cooperatively activate carbon dioxide by donor-acceptor interactions, revealing a wide range of structural motifs.
Collapse
Affiliation(s)
- Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Helena Corona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Felipe de la Cruz-Martínez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
13
|
Álvarez-Rodríguez L, Ríos P, Laglera-Gándara CJ, Jurado A, Fernández-de-Córdova FJ, Gunnoe TB, Rodríguez A. Cleavage of Carbon Dioxide C=O Bond Promoted by Nickel-Boron Cooperativity in a PBP-Ni Complex. Angew Chem Int Ed Engl 2023; 62:e202306315. [PMID: 37399341 DOI: 10.1002/anie.202306315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The synthesis and characterization of (tBu PBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni-C bond of (tBu PBP)NiMe (1) is presented. An unexpected CO2 cleavage process involving the formation of new B-O and Ni-CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBu PBOP)2 Ni4 (μ-CO)2 (6). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBu P2 BO)Ni-acyl intermediate (A) that leads to a (tBu P2 BO)-NiI complex (B) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBu P2 BO)NiII (η2 -TEMPO) (7). Additionally, 13 C and 1 H NMR spectroscopy analysis using 13 C-enriched CO2 provides information about the species involved in the CO2 activation process.
Collapse
Affiliation(s)
- Lucía Álvarez-Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo Ríos
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carlos J Laglera-Gándara
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Andrea Jurado
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Francisco José Fernández-de-Córdova
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas-Departamento de Química Inorgánica, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
14
|
Wakizaka M, Matsumoto T, Chang HC. Switching of the redox centers of a tris-2-mercaptophenolato chromium(III) metalloligand by a guest metal ion. Dalton Trans 2023; 52:1538-1542. [PMID: 36722901 DOI: 10.1039/d2dt03502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This work reports that the redox-active metalloligand (ML) fac-[CrIII(mp)3]3- (mp: 2-mercaptophenolato) coordinates with a Co(III) ion to afford the trianionic complex [CoIII{fac-CrIII(mp)3}2]3-. The free ML shows ligand-centered redox processes, whereas the guest-metal-bound trinuclear structure exhibited a guest-metal-centered Co(II)/Co(III) redox couple, demonstrating redox switching through guest-metal binding to the MLs.
Collapse
Affiliation(s)
- Masanori Wakizaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo, University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo, University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo, University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
15
|
Klinman JP. Dynamical activation of function in metalloenzymes. FEBS Lett 2023; 597:79-91. [PMID: 36239559 PMCID: PMC9839491 DOI: 10.1002/1873-3468.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Formulations of hydrogen tunneling in enzyme-catalysed C-H activation reactions indicate enthalpic barriers to reaction that are independent of chemical steps and dependent on the protein scaffold. A tool to identify catalytically relevant site-specific protein thermal networks has emerged from temperature-dependent hydrogen deuterium exchange (TDHDX). Focusing on mutant enzyme forms with altered activation energies for catalysis, TDHDX provides a comparative analysis of the impact of mutation on Ea for local protein unfolding. Identified thermal networks appear unrelated to protein scaffold conservation and track to the dictates of the catalysed reaction, including sites for metal binding. The positions of thermal networks provide a framework for further understanding of time-dependent, functionally relevant protein motions. Measurement of nanosecond Stokes shifts at the surface of the thermal network in soybean lipoxygenase yields activation energies that are identical to Ea values measured for kcat . This finding identifies a rapid (> nanosecond), long-range and cooperative structural reorganization as the thermal barrier to catalysis. A model for protein dynamics is put forward that integrates broadly distributed protein conformational sampling with protein embedded thermal networks.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
16
|
Xia W, Wang F. Molecular catalysts design: Intramolecular supporting site assisting to metal center for efficient CO2 photo- and electroreduction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Dempsey SH, Kass SR. Liberating the Anion: Evaluating Weakly Coordinating Cations. J Org Chem 2022; 87:15466-15482. [DOI: 10.1021/acs.joc.2c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen H. Dempsey
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Corona H, Pérez-Jiménez M, de la Cruz-Martínez F, Fernández I, Campos J. Divergent CO 2 Activation by Tuning the Lewis Acid in Iron-Based Bimetallic Systems. Angew Chem Int Ed Engl 2022; 61:e202207581. [PMID: 35930523 DOI: 10.1002/anie.202207581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Bimetallic motifs mediate the selective activation and functionalization of CO2 in metalloenzymes and some recent synthetic systems. In this work, we build on the nascent concept of bimetallic frustrated Lewis pairs (FLPs) to investigate the activation and reduction of CO2 . Using the Fe0 fragment [(depe)2 Fe] (depe=1,2-bis(diethylphosphino)ethane) as base, we modify the nature of the partner Lewis acid to accomplish a divergent and highly chemoselective reactivity towards CO2 . [Au(PMe2 Ar)]+ irreversibly dissociates CO2 , Zn(C6 F5 )2 and B(C6 F5 )3 yield different CO2 adducts stabilized by push-pull interactions, while Al(C6 F5 )3 leads to a rare heterobimetallic C-O bond cleavage, and thus to contrasting reduced products after exposure to dihydrogen. Computational investigations provide a rationale for the divergent reactivity, while Energy Decomposition Analysis-Natural Orbital for Chemical Valence (EDA-NOCV) method substantiates the heterobimetallic bonding situation.
Collapse
Affiliation(s)
- Helena Corona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Felipe de la Cruz-Martínez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
19
|
Corona H, Perez-Jimenez M, de la Cruz-Martínez F, Fernández I, Campos J. Divergent CO2 Activation by Tuning the Lewis Acid in Iron‐Based Bimetallic Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Helena Corona
- CSIC: Consejo Superior de Investigaciones Cientificas IIQ SPAIN
| | | | | | - Israel Fernández
- Universidad Complutense de Madrid Facultad de Ciencias Quimicas SPAIN
| | - Jesus Campos
- Consejo Superior de Investigaciones Cientificas Institute of Chemical Research Av. Americo Vespucio 49, Isla de la 41092 Sevilla SPAIN
| |
Collapse
|
20
|
Ayyappan R, Abdalghani I, Da Costa RC, Owen GR. Recent developments on the transformation of CO 2 utilising ligand cooperation and related strategies. Dalton Trans 2022; 51:11582-11611. [PMID: 35839074 DOI: 10.1039/d2dt01609e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | - Issam Abdalghani
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | | | - Gareth R Owen
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| |
Collapse
|
21
|
Prat JR, Cammarota RC, Graziano BJ, Moore JT, Lu CC. Toggling the Z-type interaction off-on in nickel-boron dihydrogen and anionic hydride complexes. Chem Commun (Camb) 2022; 58:8798-8801. [PMID: 35838123 DOI: 10.1039/d2cc03219h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Completing a series of nickel-group 13 complexes, a coordinatively unsaturated nickel-boron complex and its derivatives with a H2, N2, or hydride ligand were synthesized and characterized. The toggling "on" of a Ni(0)-B(III) inverse-dative bond enabled the stabilization of a nickel-bound anionic hydride with a remarkably low thermodynamic hydricity of kcal mol-1 in THF. The flexible topology of the boron metalloligand confers both favorable hydrogen binding affinity and strong hydride donicity, albeit at the cost of high H2 basicity during deprotonation to form the hydride.
Collapse
Affiliation(s)
- Jacob R Prat
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Ryan C Cammarota
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Brendan J Graziano
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - James T Moore
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Connie C Lu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA.,Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
22
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Sinhababu S, Lakliang Y, Mankad NP. Recent advances in cooperative activation of CO 2 and N 2O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Trans 2022; 51:6129-6147. [PMID: 35355033 DOI: 10.1039/d2dt00210h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gaseous small molecules, CO2 and N2O, play important roles in climate change and ozone layer depletion, and they hold promise as underutilized reagents and chemical feedstocks. However, productive transformations of these heteroallenes are difficult to achieve because of their inertness. In nature, these gases are cycled through ecological systems by metalloenzymes featuring multimetallic active sites that employ cooperative mechanisms. Thus, cooperative bimetallic chemistry is an important strategy for synthetic systems, as well. In this Perspective, recent advances (since 2010) in cooperative activation of CO2 and N2O are reviewed, including examples involving s-block, p-block, d-block, and f-block metals and different combinations thereof.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Yutthana Lakliang
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
24
|
Aguirre Quintana LM, Yang Y, Ramanathan A, Jiang N, Bacsa J, Maron L, La Pierre HS. Chalcogen-atom abstraction reactions of a Di-iron imidophosphorane complex. Chem Commun (Camb) 2021; 57:6664-6667. [PMID: 34128515 DOI: 10.1039/d1cc02195h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reaction of the complexes [Fe2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Fe) and [Co2(μ2-NP(pip)3)2(NP(pip)3)2] (1-Co), where [NP(pip)3]1- is tris(piperidinyl)imidophosphorane, with nitrous oxide, S8, or Se0 results in divergent reactivity. With nitrous oxide, 1-Fe forms [Fe2(μ2-O)(μ2-NP(pip)3)2(NP(pip)3)2] (2-Fe), with a very short Fe3+-Fe3+ distance. Reactions of 1-Fe with S8 or Se0 result in the bridging, side-on coordination (μ-κ1:κ1-E22-) of the heavy chalcogens in complexes [Fe2(μ-κ1:κ1-E2)(μ2-NP(pip)3)2(NP(pip)3)2] (E = S, 3-Fe, or Se, 4-Fe). In all cases, the complex 1-Co is inert.
Collapse
Affiliation(s)
- Luis M Aguirre Quintana
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Yan Yang
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Arun Ramanathan
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Ningxin Jiang
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - John Bacsa
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Laurent Maron
- Laboratorie de Physique et Chimie des Nano-objects, Institute National Des Sciences Appliquees, Toulouse 31077, Cedex 4, France
| | - Henry S La Pierre
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA. and Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|