1
|
Zhong Q, Lai S, He J, Zhong S, Song X, Wang Y, Zhang Y, Chen G, Yan S, Jia Y. Gender-related alterations of serum trace elements and neurometabolism in the anterior cingulate cortex of patients with major depressive disorder. J Affect Disord 2024; 360:176-187. [PMID: 38723680 DOI: 10.1016/j.jad.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND It is widely known that sex differences have a significant impact on patients with major depressive disorder (MDD). This study aims to evaluate the sex-related connection between serum trace elements and changes in neurometabolism in the anterior cingulate cortex (ACC) of MDD patients. METHODS 109 untreated MDD patients and 59 healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS) under resting conditions. We measured metabolic ratios in the ACC from both sides. Additionally, venous blood samples were taken from all participants to detect calcium (Ca), phosphorus, magnesium (Mg), copper (Cu), ceruloplasmin (CER), zinc (Zn), and iron (Fe) levels. We performed association and interaction analyses to explore the connections between the disease and gender. RESULTS In individuals with MDD, the Cu/Zn ratio increased, while the levels of Mg, CER, Zn and Fe decreased. Male MDD patients had lower Cu levels, while female patients had an increased Cu/Zn ratio. We observed significant gender differences in Cu, CER and the Cu/Zn ratio in MDD. Male patients showed a reduced N-acetyl aspartate (NAA)/phosphocreatine + creatine (PCr + Cr) ratio in the left ACC. The NAA/PCr + Cr ratio decreased in the right ACC in patients with MDD. In the left ACC of male MDD patients, the Cu/Zn ratio was inversely related to the NAA/PCr + Cr ratio, and Fe levels were negatively associated with the GPC + PC/PCr + Cr ratio. CONCLUSIONS Our findings highlight gender-specific changes in Cu homeostasis among male MDD patients. The Cu/Zn ratio and Fe levels in male MDD patients were significantly linked to neurometabolic alterations in the ACC.
Collapse
Affiliation(s)
- Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Bouraguba M, Schmitt AM, Yelisetty VS, Vileno B, Melin F, Glattard E, Orvain C, Lebrun V, Raibaut L, Ilbert M, Bechinger B, Hellwig P, Gaiddon C, Sour A, Faller P. Quest for a stable Cu-ligand complex with a high catalytic activity to produce reactive oxygen species. Metallomics 2024; 16:mfae020. [PMID: 38614957 DOI: 10.1093/mtomcs/mfae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Metal ion-catalyzed overproduction of reactive oxygen species (ROS) is believed to contribute significantly to oxidative stress and be involved in several biological processes, from immune defense to development of diseases. Among the essential metal ions, copper is one of the most efficient catalysts in ROS production in the presence of O2 and a physiological reducing agent such as ascorbate. To control this chemistry, Cu ions are tightly coordinated to biomolecules. Free or loosely bound Cu ions are generally avoided to prevent their toxicity. In the present report, we aim to find stable Cu-ligand complexes (Cu-L) that can efficiently catalyze the production of ROS in the presence of ascorbate under aerobic conditions. Thermodynamic stability would be needed to avoid dissociation in the biological environment, and high ROS catalysis is of interest for applications as antimicrobial or anticancer agents. A series of Cu complexes with the well-known tripodal and tetradentate ligands containing a central amine linked to three pyridyl-alkyl arms of different lengths were investigated. Two of them with mixed arm length showed a higher catalytic activity in the oxidation of ascorbate and subsequent ROS production than Cu salts in buffer, which is an unprecedented result. Despite these high catalytic activities, no increased antimicrobial activity toward Escherichia coli or cytotoxicity against eukaryotic AGS cells in culture related to Cu-L-based ROS production could be observed. The potential reasons for discrepancy between in vitro and in cell data are discussed.
Collapse
Affiliation(s)
- Merwan Bouraguba
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Adeline M Schmitt
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Venkata Suseela Yelisetty
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Elise Glattard
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Orvain
- Inserm UMR_S 1113, Université de Strasbourg, 3 avenue Molière, 67200 Strasbourg, France
| | - Vincent Lebrun
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Raibaut
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Marianne Ilbert
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), UMR 7281, IMM, Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, Université de Strasbourg, 3 avenue Molière, 67200 Strasbourg, France
| | - Angélique Sour
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
3
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
4
|
Malikidogo KP, Drommi M, Atrián-Blasco E, Hormann J, Kulak N, Esmieu C, Hureau C. Ability of Azathiacyclen Ligands To Stop Cu(Aβ)-Induced Production of Reactive Oxygen Species: [3N1S] Is the Right Donor Set. Chemistry 2023; 29:e202203667. [PMID: 36606721 DOI: 10.1002/chem.202203667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that leads to the progressive and irreversible loss of mental functions. The amyloid beta (Aβ) peptide involved in the disease is responsible for the production of damaging reactive oxygen species (ROS) when bound to Cu ions. A therapeutic approach that consists of removing Cu ions from Aβ to alter this deleterious interaction is currently being developed. In this context, we report the ability of five different 12-membered thiaazacyclen ligands to capture Cu from Aβ and to redox silence it. We propose that the presence of a sole sulfur atom in the ligand increases the rate of Cu capture and removal from Aβ, while the kinetic aspect of the chelation was an issue encountered with the 4N parent ligand. The best ligand for removing Cu from Aβ and inhibiting the associated ROS production is the 1-thia-4,7,10-triazacyclododecane [3N1S]. Indeed the replacement of more N by S atoms makes the corresponding Cu complexes easier to reduce and thus able to produce ROS on their own. In addition, the ligand with three sulfur atoms has a weaker affinity for CuII than Aβ, and is thus unable to remove Cu from CuAβ.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Université Grenoble Alpes, DCM (UMR 5250) - CNRS and CEA, IRIG, LCBM (UMR, 5249, Grenoble, France
| | - Marielle Drommi
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Elena Atrián-Blasco
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | | |
Collapse
|
5
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Kumar Pal S, Singh B, Yadav JK, Yadav CL, Drew MGB, Singh N, Indra A, Kumar K. Homoleptic Ni(II) dithiocarbamate complexes as pre-catalysts for the electrocatalytic oxygen evolution reaction. Dalton Trans 2022; 51:13003-13014. [PMID: 35968800 DOI: 10.1039/d2dt01971j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new functionalized Ni(II) dithiocarbamate complexes of the formula [Ni(Lx)2] (1-4) (L1 = N-methylthiophene-N-3-pyridylmethyl dithiocarbamate, L2 = N-methylthiophene-N-4-pyridylmethyl dithiocarbamate, L3 = N-benzyl-N-3-pyridylmethyl dithiocarbamate, and L4 = N-benzyl-N-4-pyridylmethyl dithiocarbamate) have been synthesized and characterized by IR, UV-vis, and 1H and 13C{1H} NMR spectroscopic techniques. The solid-state structure of complex 1 has also been determined by single crystal X-ray crystallography. Single crystal X-ray analysis revealed a monomeric centrosymmetric structure for complex 1 in which two dithiocarbamate ligands are bonded to the Ni(II) metal ion in a S^S chelating mode resulting in a square planar geometry around the nickel center. These complexes are immobilized on activated carbon cloth (CC) and their electrocatalytic performances for the oxygen evolution reaction (OER) have been investigated in aqueous alkaline solution. All the complexes act as pre-catalysts for the OER and undergo electrochemical anodic activation to form Ni(O)OH active catalysts. Spectroscopic and electrochemical characterization revealed the existence of the interface of molecular complex/Ni(O)OH, which acts as the real catalyst for the OER. The active catalyst obtained from complex 2 showed the best OER activity achieving 10 mA cm-2 current density at an overpotential of 330 mV in 1.0 M aqueous KOH solution.
Collapse
Affiliation(s)
- Sarvesh Kumar Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Baghendra Singh
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India.
| | - Jitendra Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Chote Lal Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Michael G B Drew
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Nanhai Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India.
| | - Kamlesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
7
|
Drommi M, Rulmont C, Esmieu C, Hureau C. Hybrid Bis-Histidine Phenanthroline-Based Ligands to Lessen Aβ-Bound Cu ROS Production: An Illustration of Cu(I) Significance. Molecules 2021; 26:7630. [PMID: 34946712 PMCID: PMC8707446 DOI: 10.3390/molecules26247630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
We here report the synthesis of three new hybrid ligands built around the phenanthroline scaffold and encompassing two histidine-like moieties: phenHH, phenHGH and H'phenH', where H correspond to histidine and H' to histamine. These ligands were designed to capture Cu(I/II) from the amyloid-β peptide and to prevent the formation of reactive oxygen species produced by amyloid-β bound copper in presence of physiological reductant (e.g., ascorbate) and dioxygen. The amyloid-β peptide is a well-known key player in Alzheimer's disease, a debilitating and devasting neurological disorder the mankind has to fight against. The Cu-Aβ complex does participate in the oxidative stress observed in the disease, due to the redox ability of the Cu(I/II) ions. The complete characterization of the copper complexes made with phenHH, phenHGH and H'phenH' is reported, along with the ability of ligands to remove Cu from Aβ, and to prevent the formation of reactive oxygen species catalyzed by Cu and Cu-Aβ, including in presence of zinc, the second metal ions important in the etiology of Alzheimer's disease. The importance of the reduced state of copper, Cu(I), in the prevention and arrest of ROS is mechanistically described with the help of cyclic voltammetry experiments.
Collapse
Affiliation(s)
| | | | | | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France; (M.D.); (C.R.); (C.E.)
| |
Collapse
|
8
|
Devonport J, Bodnár N, McGown A, Bukar Maina M, Serpell LC, Kállay C, Spencer J, Kostakis GE. Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorg Chem 2021; 60:15310-15320. [PMID: 34609139 DOI: 10.1021/acs.inorgchem.1c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of a tunable Cu(II) chelating scaffold, 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran (HL). This tetradentate ligand is predicated to have suitable permeation, has an extremely high affinity for Cu compared to clioquinol (pCu7.4 = 10.65 vs 5.91), and exhibits excellent selectivity for Cu(II) over Zn(II) in aqueous media. Solid and solution studies corroborate the formation of a stable [Cu(II)L]+ monocationic species at physiological pH values (7.4). Its action as an antioxidant was tested in ascorbate, tau, and human prion protein assays, which reveal that Salpyran prevents the formation of reactive oxygen species from the binary Cu(II)/H2O2 system, demonstrating its potential use as a therapeutic small molecule metal chelator.
Collapse
Affiliation(s)
- Jack Devonport
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Andrew McGown
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Mahmoud Bukar Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.,College of Medical Sciences, Yobe State University, KM 7, Sir Kashim Ibrahim Way, PMB 1144 Damaturu, Yobe State, Nigeria
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
9
|
Oliveri V, Vecchio G. Bis(8‐hydroxyquinoline) Ligands: Exploring their Potential as Selective Copper‐Binding Agents for Alzheimer's Disease. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| |
Collapse
|