1
|
Lehene M, Zagrean-Tuza C, Iancu SD, Cosma SR, Brânzanic AMV, Silaghi-Dumitrescu R, Stoean B. The chlorite adduct of aquacobalamin: contrast with chlorite dismutase. J Biol Inorg Chem 2025:10.1007/s00775-025-02100-5. [PMID: 39922986 DOI: 10.1007/s00775-025-02100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
In the reaction of aquacobalamin (aquaCbl) with chlorite, a stable species is detected and assigned as a Co(III)-chlorite complex, Co(III)-OClO-. Its UV-Vis spectrum is almost identical to that of aquaCbl, except for some minor differences at ~ 430 nm; cyanide can eliminate and prevent these changes. The 1H-NMR spectra reveal strong influences of chlorite on the B2 and B4 protons of the cobalt-bound dimethyl benzimidazole ligand. Together, the UV-Vis and NMR titrations suggest a Kd of 10 mM or higher for chlorite on Cbl. Resonance Raman spectra reveal minor changes in the spectrum of aquaCbl to chlorite-as well as a disappearance of the free chlorite signals, consistent with Cbl-chlorite complex formation. Corroboration for these interpretations is also offered from mass spectrometry and DFT calculations. This Co(III)-OClO- complex would be a stable analogue of the first reaction intermediate in the catalytic cycle of chlorite dismutase, or in the reaction of chlorite with a number of other heme proteins. The differences in reactivity between Co(III) cobalamin and Fe(III) heme towards chlorite are analyzed and rationalized, leading to a reconciliation of experimental and computational data for the latter.
Collapse
Affiliation(s)
- Maria Lehene
- Department of Chemistry, Babeș-Bolyai University, Str. Arany Janos Nr. 11, 400028, Cluj-Napoca, Romania
| | - Cezara Zagrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, Str. Arany Janos Nr. 11, 400028, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, Str. Kogalniceanu 1, 400084, Cluj-Napoca, Romania
| | - Sergiu-Raul Cosma
- Department of Chemistry, Babeș-Bolyai University, Str. Arany Janos Nr. 11, 400028, Cluj-Napoca, Romania
| | - Adrian M V Brânzanic
- "Raluca Ripan" Institute for Research in Chemistry, Babeș-Bolyai University, Fântânele 30, 400294, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, Str. Arany Janos Nr. 11, 400028, Cluj-Napoca, Romania.
| | - Bianca Stoean
- Department of Chemistry, Babeș-Bolyai University, Str. Arany Janos Nr. 11, 400028, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zagrean-Tuza C, Padurean L, Lehene M, Branzanic AMV, Silaghi-Dumitrescu R. Globin ferryl species: what is the nature of the protonation event at pH < 5? J Biol Inorg Chem 2024:10.1007/s00775-024-02089-3. [PMID: 39699649 DOI: 10.1007/s00775-024-02089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
The ferryl state in globins has previously been reported to undergo a protonation event below pH 5, as assessed using pH jump experiments with stopped-flow UV-Vis spectroscopy. This protonation entails hypsochromic shifts in the α and β bands (~ 20 to 40 nm) and an ~ 10 nm reduction in the energy difference between these two bands. We now report that in Mb this event is also characterized by a hypsochromic shift in the Soret band (~ 5 nm). No similar shifts in Soret, α, and β bands are seen upon the denaturation of ferryl Mb with guanidine-suggesting that the spectroscopic changes in ferryl Mb at pH < 5 are not caused by changes in the solvent exposure or in hydrogen bonding around the ferryl unit. Under the same denaturing conditions (pH jump below pH 5, and/or guanidine), ferric-aqua and ferrous-oxy Mb show no spectral changes of the order seen in the ferryl pH jump experiments. Together, these observations suggest that the protonation event is localized on the iron-bound oxygen atom, as opposed to somewhere on a hydrogen-bonding partner. Time-dependent density functional theory (TD-DFT) calculations were not able to systematically predict the UV-Vis spectra of the heme to the level of detail needed to interpret the experimental findings in this study.
Collapse
Affiliation(s)
- Cezara Zagrean-Tuza
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Lavinia Padurean
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Maria Lehene
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Adrian M V Branzanic
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Lehene M, Brânzanic AMV, Silaghi-Dumitrescu R. The adducts of cyano- and aquacobalamin with hypochlorite. J Biol Inorg Chem 2023; 28:583-589. [PMID: 37493822 DOI: 10.1007/s00775-023-02015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Hypochlorite is known to oxidatively degrade the corrin ring of cobalamin. Here, transient reaction intermediates are described in the reaction of aqua as well as of cyano-cobalamin with hypochlorite, using stopped-flow UV-vis kinetics. For aqua-cobalamin, the intermediate is assigned as arising from substitution of the aqua ligand with hypochlorite. For cyano-cobalamin, the intermediate is proposed to arise from substitution of the benzimidazole ligand trans to the cyanide. In both cases, the intermediates would feature a new Co(III)-OCl-bond-which is also supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Maria Lehene
- Department of Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | | |
Collapse
|
4
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Chang S, Tat J, China SP, Kalyanaraman H, Zhuang S, Chan A, Lai C, Radic Z, Abdel-Rahman EA, Casteel DE, Pilz RB, Ali SS, Boss GR. Cobinamide is a strong and versatile antioxidant that overcomes oxidative stress in cells, flies, and diabetic mice. PNAS NEXUS 2022; 1:pgac191. [PMID: 36276587 PMCID: PMC9578022 DOI: 10.1093/pnasnexus/pgac191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
Increased oxidative stress underlies a variety of diseases, including diabetes. Here, we show that the cobalamin/vitamin B12 analog cobinamide is a strong and multifaceted antioxidant, neutralizing superoxide, hydrogen peroxide, and peroxynitrite, with apparent rate constants of 1.9 × 108, 3.7 × 104, and 6.3 × 106 M-1 s-1, respectively, for cobinamide with the cobalt in the +2 oxidation state. Cobinamide with the cobalt in the +3 oxidation state yielded apparent rate constants of 1.1 × 108 and 8.0 × 102 M-1 s-1 for superoxide and hydrogen peroxide, respectively. In mammalian cells and Drosophila melanogaster, cobinamide outperformed cobalamin and two well-known antioxidants, imisopasem manganese and manganese(III)tetrakis(4-benzoic acid)porphyrin, in reducing oxidative stress as evidenced by: (i) decreased mitochondrial superoxide and return of the mitochondrial membrane potential in rotenone- and antimycin A-exposed H9c2 rat cardiomyocytes; (ii) reduced JNK phosphorylation in hydrogen-peroxide-treated H9c2 cells; (iii) increased growth in paraquat-exposed COS-7 fibroblasts; and (iv) improved survival in paraquat-treated flies. In diabetic mice, cobinamide administered in the animals' drinking water completely prevented an increase in lipid and protein oxidation, DNA damage, and fibrosis in the heart. Cobinamide is a promising new antioxidant that has potential use in diseases with heightened oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cassandra Lai
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoran Radic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Engy A Abdel-Rahman
- Tumor Biology Research Program, Children’s Cancer Hospital, Cairo 57357, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
6
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
7
|
Cheng J, Shiota Y, Yamasaki M, Izukawa K, Tachi Y, Yoshizawa K, Shimakoshi H. Mechanistic Study for the Reaction of B 12 Complexes with m-Chloroperbenzoic Acid in Catalytic Alkane Oxidations. Inorg Chem 2022; 61:9710-9724. [PMID: 35696150 DOI: 10.1021/acs.inorgchem.2c01174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of alkanes with m-chloroperbenzoic acid (mCPBA) catalyzed by the B12 derivative, heptamethyl cobyrinate, was investigated under several conditions. During the oxidation of cyclohexane, heptamethyl cobyrinate works as a catalyst to form cyclohexanol and cyclohexanone at a 0.67 alcohol to ketone ratio under aerobic conditions in 1 h. The reaction rate shows a first-order dependence on the [catalyst] and [mCPBA] while being independent of [cyclohexane]; Vobs = k2[catalyst][mCPBA]. The kinetic deuterium isotope effect was determined to be 1.86, suggesting that substrate hydrogen atom abstraction is not dominantly involved in the rate-determining step. By the reaction of mCPBA and heptamethyl cobyrinate at low temperature, the corresponding cobalt(III)acylperoxido complex was formed which was identified by UV-vis, IR, ESR, and ESI-MS studies. A theoretical study suggested the homolysis of the O-O bond in the acylperoxido complex to form Co(III)-oxyl (Co-O•) and the m-chlorobenzoyloxyl radical. Radical trapping experiments using N-tert-butyl-α-phenylnitrone and CCl3Br, product analysis of various alkane oxidations, and computer analysis of the free energy for radical abstraction from cyclohexane by Co(III)-oxyl suggested that both Co(III)-oxyl and the m-chlorobenzoyloxyl radical could act as hydrogen-atom transfer reactants for the cyclohexane oxidation.
Collapse
Affiliation(s)
- Jiamin Cheng
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Mikako Yamasaki
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Kureha Izukawa
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yoshimitsu Tachi
- Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|