1
|
Kalantari F, Morsali A. Multifunctional Magnetic Chiral HKUST MOF Decorated by Triazine, Fe 3O 4, and Cu(l-Proline) 2 Complex for Green and Mild Asymmetric Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69262-69281. [PMID: 39636780 DOI: 10.1021/acsami.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A multifunctional magnetic chiral metal-organic framework (MOF) was developed for asymmetric applications by utilizing strategies of chiralization and multifunctionalization. Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 was employed as a chiral secondary agent to synthesize a chiral hybrid nanocomposite within a MOF. The use of a chiral secondary agent efficiently induces chirality in an achiral MOF structure that cannot be directly chiralized. The HKUST-1@Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 nanocomposite was afforded by first anchoring chiral Cu(l-proline)2 on the Triazine/Fe3O4@SiO2-NH2 surface and then encapsulating the Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 nanoparticles with HKUST-1 via in situ ultrasonication synthesis. In the synthesis of the HKUST-1@Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 nanocomposite, Cu(l-proline)2 was used as a chiral complex due to its Lewis acidic/basic hydroxyl groups, carboxylate carbonyl functional groups acting as Lewis bases, an active Cu site functioning as a Lewis acid center, and azine groups of TCT acting as Lewis bases, all synergistically interacting with the Lewis acidity of the Cu centers in HKUST-1. To assess these synergic effects, HKUST-1@Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 was used in the formation of an asymmetric C-C bond in nitroaldol condensation and asymmetric cycloaddition of CO2 to epoxides. The findings demonstrated that under mild and green conditions, in both the asymmetric nitroalcohol condensation and the asymmetric cycloaddition of CO2, HKUST-1@Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 had better enantioselectivity than the Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 nanoparticles and a higher selectivity toward β-nitroalcohol and cyclic carbonate over the pure HKUST-1. Despite its simple and easy synthesis, HKUST-1@Cu(l-proline)2-Triazine/Fe3O4@SiO2-NH2 exhibited exceptional performance in the asymmetric nitroaldol condensation and asymmetric cycloaddition of CO2 to epoxides. Additionally, the mechanism of the reactions was depicted with reference to the total energy of the reactants, intermediates, and products.
Collapse
Affiliation(s)
- Fatemeh Kalantari
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14117-13116 Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14117-13116 Tehran, Islamic Republic of Iran
| |
Collapse
|
2
|
Hanifi S, Dekamin MG, Eslami M. Magnetic BiFeO 3 nanoparticles: a robust and efficient nanocatalyst for the green one-pot three-component synthesis of highly substituted 3,4-dihydropyrimidine-2(1H)-one/thione derivatives. Sci Rep 2024; 14:22201. [PMID: 39333595 PMCID: PMC11436662 DOI: 10.1038/s41598-024-72407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, magnetic bismuth ferrite nanoparticles (BFO MNPs) were prepared through a convenient method and characterized. The structure and morphological characteristics of the prepared nanomaterial were confirmed through analyses using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, powder X-ray diffraction (XRD), N2 adsorption-desorption isotherms and vibrating sample magnetometry (VSM) techniques. The obtained magnetic BFO nanomaterial was investigated, as a heterogeneous Lewis acid, in three component synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs/DHPMTs). It was found that the BFO MNPs exhibit remarkable efficacy in the synthesis of various DHPMs as well as their thione analogues. It is noteworthy that this research features low catalyst loading, good to excellent yields, environmentally friendly conditions, short reaction time, simple and straightforward work-up, and the reusability of the catalyst, distinguishing it from other recently reported protocols. Additionally, the structure of the DHPMs/DHPMTs was confirmed through 1H NMR, FTIR, and melting point analyses. This environmentally-benign methodology demonstrates the potential of the catalyst for more sustainable and efficient practices in green chemistry.
Collapse
Affiliation(s)
- Safa Hanifi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, 63616-63973, Iran
| |
Collapse
|
3
|
Singh BD, Pandey J, Khanam H, Tiwari B, Azeez T, Mishra A, Kanchan P. Copper(II) nanodots stabilized on Cassia fistula galactomannan: preparation and catalytic application towards fast solvent-free Biginelli reactions. Org Biomol Chem 2024; 22:3955-3965. [PMID: 38690752 DOI: 10.1039/d4ob00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
New Cu(II) nanodots have been developed using biopolymeric polysaccharide galactomannan. The nanocatalyst Cu(II)NDs@CFG has been developed through a one-step clean and sustainable reaction of Cassia fistula galactomannan and CuSO4·5H2O in an aqueous medium. The catalyst Cu(II)NDs@CFG is well characterized by FT-IR, FE-SEM, EDS, ICP-MS, HR-TEM, XPS, XRD, TGA and BET analysis. This is the first example of preparing copper nanodots by using polysaccharide galactomannan as a supporting template to form copper nanodots in water. Moreover, the copper nanodots act as a potential nanocatalyst for multicomponent Biginelli reactions. A simple, one pot, efficient and environmentally benign synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones has been achieved with wide variety of aldehydes, β-dicarbonyl compounds and urea or thiourea indicating the good tolerance of the catalyst towards various functionalities. The presented work has several merits in terms of economy which include easy operation, complete avoidance of toxic organic solvents and expensive catalysts, simple work-up, less reaction time, and excellent yields.
Collapse
Affiliation(s)
- Bal Dev Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, India.
| | - Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, India.
| | - Huda Khanam
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, India.
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow-226014, India
| | - Tazeen Azeez
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow-226014, India
| | - Ayushi Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, India.
| | - Preeti Kanchan
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, India.
| |
Collapse
|
4
|
Bodaghifard MA, Pourmousavi SA, Ahadi N, Zeynali P. An immobilized Schiff base-Mn complex as a hybrid magnetic nanocatalyst for green synthesis of biologically active [4,3- d]pyrido[1,2- a]pyrimidin-6-ones. NANOSCALE ADVANCES 2024; 6:2713-2721. [PMID: 38752148 PMCID: PMC11093261 DOI: 10.1039/d4na00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The immobilization of metal ions on inorganic supports has garnered significant attention due to its wide range of applications. These immobilized metal ions serve as catalysts for chemical reactions and as probes for studying biological processes. In this study, we successfully prepared Fe3O4@SiO2@Mn-complex by immobilizing manganese onto the surface of magnetic Fe3O4@SiO2 nanoparticles through a layer-by-layer assembly technique. The structure of these hybrid nanoparticles was characterized by various analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectrometry (ICP-OES). Fe3O4@SiO2@Mn-complex was successfully utilized in the synthesis of biologically active 7-aryl[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-one derivatives in an aqueous medium, providing environmentally friendly conditions. The desired products were manufactured in high yields (81-95%) without the formation of side products. The heterogeneity of the solid nanocatalyst was assessed using a hot filtration test that confirmed minimal manganese leaching during the reaction. This procedure offers numerous advantages, including short reaction times, the use of a green solvent, the ability to reuse the catalyst without a significant decrease in catalytic activity, and easy separation of the catalyst using an external magnet. Furthermore, this approach aligns with environmental compatibility and sustainability standards.
Collapse
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University Arak 384817758 Iran
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | | | - Najmieh Ahadi
- Institute of Nanosciences &Nanotechnology, Arak University Arak Iran
| | - Payam Zeynali
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
| |
Collapse
|
5
|
Zargari M, Ardeshiri HH, Ghafuri H, Hassanzadeh MM. Fe 3O 4 nanoparticles impregnated eggshell as an efficient biocatalyst for eco-friendly synthesis of 2-amino thiophene derivatives. Heliyon 2024; 10:e29674. [PMID: 38681630 PMCID: PMC11046122 DOI: 10.1016/j.heliyon.2024.e29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
In this study, a biodegradable and eco-friendly biocatalyst (eggshell/Fe3O4) was synthesized utilizing eggshell impregnated with Fe3O4 nanoparticles. The characterization of prepared catalyst was carried out by Fourier transform infrared radiation (FT-IR), scanning electron microscopy (SEM), X-ray Diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis-differential thermogravimetry (TGA-DTG), vibrating sample magnometer (VSM), and atomic force microscopy (AFM). The eggshell/Fe3O4 biocatalyst was served in multi-component reactions (MCRs) for the synthesis of 2-amino thiophene derivatives from variety aromatic aldehydes, malononitrile, ethyl acetoacetate, and sulfur (S8). To achieve optimal reaction conditions, a thorough examination was conducted on key factors, such as the solvent type, reaction time and temperature, and the ratio of eggshell to Fe3O4. The findings suggest that high yield product can be obtained at microwave temperature (MW) in EtOH solvent within 10 min. Additionally, the eggshell/Fe3O4 biocatalyst exhibited high catalytic activity, which was sustained over the five cycles, without any significant decline in its performance.
Collapse
Affiliation(s)
- Mahsan Zargari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hadi Hassani Ardeshiri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mohammad Hassanzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
6
|
Rezayati S, Moghadam MM, Naserifar Z, Ramazani A. Schiff Base Complex of Copper Immobilized on Core-Shell Magnetic Nanoparticles Catalyzed One-Pot Syntheses of Polyhydroquinoline Derivatives under Mild Conditions Supported by a DFT Study. Inorg Chem 2024; 63:1652-1673. [PMID: 38194483 DOI: 10.1021/acs.inorgchem.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We synthesized a stable and reusable Schiff base complex of copper immobilized on core-shell magnetic nanoparticles [Cu(II)-SB/GPTMS@SiO2@Fe3O4] with simple, efficient, and available materials. A variety of characterization analyses including Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectrometry (EDX), and inductively coupled plasma (ICP) confirm that our synthesized nanocatalyst was obtained. The particle size distribution from the TEM image was obtained in the range of 42-55 nm. The existence of cupric species (Cu2+) in the catalyst was determined with XPS analysis and clearly indicated two peaks at 933.7 and 953.7 eV for Cu 2p3/2 and Cu 2p1/2, respectively. BET results showed that our catalyst synthesized with a mesoporous structure and with a specific area of 48.82 m2 g-1. After detailed characterization, the resulting nanocatalyst exhibited excellent catalytic performance for the explored catalytic reactions in the one-pot synthesis of polyhydroquinoline derivatives by the Hantzsch reaction of dimedone, ethyl acetoacetate, ammonium acetate, and various aldehydes under sustainable and mild conditions. The corresponding products 5a-l are achieved in yields of 88-97%. Additionally, density functional theory (DFT) calculations were carried out to investigate the electrostatic potential root (ESP), natural bond orbital (NBO), and molecular orbitals (MOs), drawing the reaction mechanism using the total energy of the reactant and product and the study of structural parameters.
Collapse
Affiliation(s)
- Sobhan Rezayati
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Maryam Manafi Moghadam
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Naserifar
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
7
|
Partovi M, Rezayati S, Ramazani A, Ahmadi Y, Taherkhani H. Recyclable mesalamine-functionalized magnetic nanoparticles (mesalamine/GPTMS@SiO 2@Fe 3O 4) for tandem Knoevenagel-Michael cyclocondensation: grinding technique for the synthesis of biologically active 2-amino-4 H-benzo[ b]pyran derivatives. RSC Adv 2023; 13:33566-33587. [PMID: 38020042 PMCID: PMC10658220 DOI: 10.1039/d3ra06560j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
In the present study, mesalamine-functionalized on magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) is fabricated as an efficient and magnetically recoverable nanocatalyst. The as-prepared nanocatalyst was successfully synthesized in three steps using a convenient and low-cost method via modification of the surface of Fe3O4 nanoparticles with silica and GPTMS, respectively, to afford GPTMS@SiO2@Fe3O4. Finally, treatment with mesalamine as a powerful antioxidant generates the final nanocatalyst. Then, its structure was characterized by FT-IR, SEM, TEM, EDX, XRD, BET, VSM, and TGA techniques. The average size was found to be approximately 38 nm using TEM analysis and the average crystallite size was found to be approximately 27.02 nm using XRD analysis. In particular, the synthesized nanocatalyst exhibited strong thermal stability up to 400 °C and high magnetization properties. The activity of the synthesized nanocatalyst was evaluated in the tandem Knoevenagel-Michael cyclocondensation of various aromatic aldehydes, dimedone and malononitrile under a dry grinding method at room temperature to provide biologically active 2-amino-4H-benzo[b]pyran derivatives products in a short time with good yields. The presented procedure offers several advantages including gram-scale synthesis, good green chemistry metrics (GCM), easy fabrication of the catalyst, atom economy (AE), no use of column chromatography, and avoiding the generation of toxic materials. Furthermore, the nanocatalyst can be reused for 8 cycles with no loss of performance by using an external magnet.
Collapse
Affiliation(s)
- Mahdiyeh Partovi
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| | - Yavar Ahmadi
- Department of Chemistry Education, Farhangian University P. O. Box 14665-889, Tehran Iran
| | - Hooman Taherkhani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
8
|
Monem A, Habibi D, Goudarzi H. An acid-based DES as a novel catalyst for the synthesis of pyranopyrimidines. Sci Rep 2023; 13:18009. [PMID: 37865671 PMCID: PMC10590378 DOI: 10.1038/s41598-023-45352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Deep eutectic solvents have countless advantages over normal solvents, and in addition to complying with the principles of green chemistry, depending on their nature, they can also act as catalysts. The use of deep eutectic solvents as acid catalysts has several advantages such as non-toxicity, a catalytic effect similar to or higher than the acid itself, and the possibility of recovery and reuse without significant loss of activity. In this project, A novel deep eutectic solvent (MTPPBr-PCAT-DES) was prepared from a one-to-one mole ratio of methyltriphenyl-phosphonium bromide (MTPPBr) and 3,4-dihydroxybenzoic acid (PCAT = protocatechuic acid) and characterized by various techniques such as FT-IR, TGA/DTA, densitometer, eutectic point, 1H NMR, 13C NMR and 31P NMR. Then, it was used as a novel and capable catalyst for the synthesis of pyranopyrimidines from the multicomponent condensation reaction of barbituric acid, 4-hydroxycoumarin, and aromatic aldehydes in mild conditions, short reaction times, and high yields.
Collapse
Affiliation(s)
- Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
9
|
Mishra A, Yadav P, Awasthi SK. Nitrogen-Enriched Biguanidine-Functionalized Cobalt Ferrite Nanoparticles as a Heterogeneous Base Catalyst for Knoevenagel Condensation under Solvent-Free Conditions. ACS ORGANIC & INORGANIC AU 2023; 3:254-265. [PMID: 37810412 PMCID: PMC10557060 DOI: 10.1021/acsorginorgau.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 10/10/2023]
Abstract
Designing efficient, economical heterogeneous catalysts for the Knoevenagel condensation reaction is highly significant owing to the importance of reaction products in industries as well as pharmaceutics. Herein, we have designed and synthesized biguanidine-functionalized basic magnetically retrievable cobalt ferrite nanoparticles (CFNPs) for the synthesis of Knoevenagel condensation products using benzaldehydes and active methylene compounds (malononitrile/ethyl cyanoacetate/cyanoacetamide). Several advanced techniques, such as Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometry (VSM), were utilized to precisely characterize the catalyst. The robust features of the current approach involve outstanding catalytic performance, solvent-free reaction conditions, ease of catalyst retrievability, easy workup procedure, large substrate tolerance, high turnover frequency (TOF) values (up to 486.88 h-1), values of green chemistry metrics such as E-factor (0.15), reaction mass efficiency (RME) value (87.07%), carbon efficiency (93.4%), and atom economy (AE) value (88.10%) close to their ideal values, and recyclability up to eight runs without a considerable reduction in activity, boosting the appeal of this approach from a commercial and ecological point of view.
Collapse
Affiliation(s)
| | | | - Satish K. Awasthi
- Chemical Biology Laboratory,
Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
Sakthivel K, Gana RJ, Shoji T, Takenaga N, Dohi T, Singh FV. Recent progress in metal assisted multicomponent reactions in organic synthesis. Front Chem 2023; 11:1217744. [PMID: 37744060 PMCID: PMC10514581 DOI: 10.3389/fchem.2023.1217744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
To prepare complicated organic molecules, straightforward, sustainable, and clean methodologies are urgently required. Thus, researchers are attempting to develop imaginative approaches. Metal-catalyzed multicomponent reactions (MCRs) offer optimal molecular diversity, high atomic efficiency, and energy savings in a single reaction step. These versatile protocols are often used to synthesize numerous natural compounds, heterocyclic molecules, and medications. Thus far, the majority of metal-catalyzed MCRs under investigation are based on metal catalysts such as copper and palladium; however, current research is focused on developing novel, environmentally friendly catalytic systems. In this regard, this study demonstrates the effectiveness of metal catalysts in MCRs. The aim of this study is to provide an overview of metal catalysts for safe application in MCRs.
Collapse
Affiliation(s)
- Kokila Sakthivel
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - R. J. Gana
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Toshitaka Shoji
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Keihanfar M, Fatemeh Mirjalili BB, Bamoniri A. Fe 3O 4@nano-almond shell@OSi(CH 2) 3/DABCO: a novel magnetic nanocatalyst for the synthesis of chromenes. NANOSCALE ADVANCES 2023; 5:2493-2500. [PMID: 37143820 PMCID: PMC10153103 DOI: 10.1039/d2na00924b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
In this work, we report the synthesis and characterization of Fe3O4@nano-almond shell@OSi(CH2)3/DABCO as a novel magnetic natural-based basic nanocatalyst. The characterization of this catalyst was achieved using different spectroscopy and microscopy techniques, such as Fourier-transform infrared spectroscopy, X-ray diffractometry, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and mapping, vibrating-sample magnetometry, Brunauer-Emmett-Teller measurements, and thermogravimetric analysis. This catalyst was used for the one-pot synthesis of 2-amino-4H-benzo[f]chromenes-3-carbonitrile from the multicomponent reaction of aldehyde and malononitrile with α-naphthol or β-naphthol under solvent-free conditions at 90 °C. The yields of the obtained chromenes are 80-98%. The attractive features of this process are its easy work-up, mild reaction conditions, reusability of the catalyst, short reaction times and excellent yields.
Collapse
Affiliation(s)
- Mina Keihanfar
- Department of Chemistry, College of Science, Yazd University Yazd Iran +98 3538210644 +98 3531232672
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University Yazd Iran +98 3538210644 +98 3531232672
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan Iran
| |
Collapse
|
12
|
Rezayati S, Kalantari F, Ramazani A. Picolylamine-Ni(ii) complex attached on 1,3,5-triazine-immobilized silica-coated Fe 3O 4 core/shell magnetic nanoparticles as an environmentally friendly and recyclable catalyst for the one-pot synthesis of substituted pyridine derivatives. RSC Adv 2023; 13:12869-12888. [PMID: 37114026 PMCID: PMC10128109 DOI: 10.1039/d3ra01826a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In the current study, an environmentally friendly and facile method was proposed for designing and constructing a catalyst with Ni(ii) attached to a picolylamine complex on 1,3,5-triazine-immobilized Fe3O4 core-shell magnetic nanoparticles (NiII-picolylamine/TCT/APTES@SiO2@Fe3O4) via a stepwise procedure. The as-synthesized nanocatalyst was identified and characterized via Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FE-SEM), inductively coupled plasma (ICP), and energy-dispersive X-ray spectrometry (EDX). The obtained results from the BET analysis indicated that the synthesized nanocatalyst had high specific area (53.61 m2 g-1) and mesoporous structure. TEM observations confirmed the particle size distribution was in the range 23-33 nm. Moreover, the binding energy peaks observed at 855.8 and 864.9 eV in the XPS analysis confirmed the successful and stable attachment of Ni(ii) on the surface of the picolylamine/TCT/APTES@SiO2@Fe3O4. The as-fabricated catalyst was used to produce pyridine derivatives by the one-pot pseudo-four component reaction of malononitrile, thiophenol, and a variety of aldehyde derivatives under solvent-free conditions or EG at 80 °C. The highest yield achieved was 97% for compound 4d in EG at 80 °C with a TOF of 823 h-1 and TON of 107. It was found that the used catalyst was recyclable for eight consecutive cycles. On the basis of ICP analysis, the results indicated that the Ni leaching was approximately 1%.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Fatemeh Kalantari
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
13
|
Yosefdad S, Bayat M, Valadbeigi Y. Synthesis of polyfunctionalized imidazopyridine carbonitrile and pyridopyrimidine carbothioamide derivatives. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Taheri M, Shahcheragh SK, Jawhar ZH, Nazari HE. Synthesis of (E)-2-(Chloro (Phenyl) Methylene)-1-(6-Chloroquinoxalin-2-yl) Hydrazine Derivatives by Reusable Fe 3O 4 Nano Powder at Room Temperature. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2182800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Milad Taheri
- Department of Medical Laboratory Science, Lebanese French University, Kurdistan Region, Iraq
| | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | | |
Collapse
|
15
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
16
|
Banerjee B, Priya A, Kaur M, Sharma A, Singh A, Gupta VK, Jaitak V. Sodium Dodecyl Sulphate Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino-3-cyano Substituted Tetrahydrobenzo[b]pyrans and Spiropyrans in Water at Room Temperature. Catal Letters 2023. [DOI: 10.1007/s10562-022-04256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Rezayati S, Ahmadi Y, Ramazani A. Synthesis of the Picolylamine copper complex immobilized on the Core-Shell Fe3O4 nanomagnetic particles and its application in the organic transformation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Ghamari kargar P, Bakhshi F, Bagherzade G. Value-Added Synthesized Acidic Polymer Nanocomposite with Waste Chicken Eggshell: A novel metal-free and heterogeneous catalyst for Mannich and Hantzsch Cascade Reactions from Alcohols. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
19
|
Zandieh H, Mokhtari J, Larijani K. Cu-MOF as Reusable Catalyst for the One-Pot Three-Component Synthesis of 2-Substituted Benzothiazoles Using 2-Iodoaniline, Aldehydes and Elemental Sulfur. Catal Letters 2022. [DOI: 10.1007/s10562-022-04250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Hazarika S, Borah G. Silica supported spinel structured cobalt ferrite multifunctional nano catalyst for hydration of nitriles and oxidative decarboxylation of phenylacetic acids. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Geetika Borah
- Dept. of Chemistry Dibrugarh University Dibrugarh Assam India
| |
Collapse
|
21
|
Sharma A, Singh A, Priya A, Kaur M, Gupta VK, Jaitak V, Banerjee B. Trisodium citrate dihydrate catalyzed one-pot pseudo four-component synthesis of fully functionalized pyridine derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aditi Sharma
- Department of Chemistry, Akal University, Bathinda, India
| | - Arvind Singh
- Department of Chemistry, Akal University, Bathinda, India
| | - Anu Priya
- Department of Chemistry, Akal University, Bathinda, India
| | - Manmeet Kaur
- Department of Chemistry, Akal University, Bathinda, India
| | | | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Bubun Banerjee
- Department of Chemistry, Akal University, Bathinda, India
- Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
22
|
Taherkhani H, Ramazani A, Sajjadifar S, Aghahossieini H, Rezaei A. Design and Preparation of Copper(II)-Mesalamine Complex Functionalized on Silica-Coated Magnetite Nanoparticles and Study of Its Catalytic Properties for Green and Multicomponent Synthesis of Highly Substituted 4 H-Chromenes and Pyridines. ACS OMEGA 2022; 7:14972-14984. [PMID: 35557658 PMCID: PMC9089390 DOI: 10.1021/acsomega.2c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
In the present study, a green and ecofriendly nanocatalyst was synthesized through functionalization of 2,4,6-trichloro-1,3,5-triazine (TCT) and mesalamine on silica-coated magnetic nanoparticles (MNPs), then coordination with Cu2+ without agglomeration, consecutively. The silica-coated MNPs functionalized with the Cu(*II)-mesalamine complex was (Fe3O4@SiO2@NH2-TCT-mesalamine-Cu(II) MNPs) completely characterized by FT-IR, XRD, EDX, FESEM, TEM, VSM, TGA, and BET analyses. Afterward, the activity of the novel catalyst was investigated in the synthesis of chromene heterocycles, which were an important group of organic compounds. The activity of Fe3O4@SiO2@NH2-TCT-mesalamine-Cu(II) MNPs as a high-performance heterogeneous nanocatalyst was evaluated for the synthesis of 2-amino-4-aryl-6-(phenylthio)pyridine-3,5-dicarbonitriles and 2-amino-4H-chromenes via aromatic aldehydes, malononitrile, and enolizable C-H acids (resorcinol, 2-hydroxynaphthalene-1,4-dione, and benzenethiol) in ethanol under reflux conditions. Fe3O4@SiO2-TCT-mesalamine-Cu(II) could be quickly separated using an external magnet and reused nine times without a remarkable reduction of its catalytic activity.
Collapse
Affiliation(s)
- Hooman Taherkhani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
- Department
of Biotechnology, Research Institute of Modern Biological Techniques
(RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
- ,
| | - Sami Sajjadifar
- Department
of Chemistry, Payame Noor University, PO BOX Tehran 19395-4697, Iran
| | - Hamideh Aghahossieini
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Aram Rezaei
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 1673-67145, Iran
| |
Collapse
|
23
|
Mohammadi M, Ghorbani-Choghamarani A. Complexation of guanidino containing l-arginine with nickel on silica-modified Hercynite MNPs: a novel catalyst for the Hantzsch synthesis of polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Dong L, Wang Y, Zhang W, Mo L, Zhang Z. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Dong
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Ya‐Meng Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Wan‐Lu Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang Hebei P. R. China
| |
Collapse
|
25
|
Green Supported Cu nanoparticles on modified Fe3O4 nanoparticles using Thymbra spicata flower extract: Investigation of its antioxidant and the anti-human lung cancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|