1
|
Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Cu-UiO-66 Catalyzed Synthesis of Imines via Acceptorless Dehydrogenative Coupling of Alcohols and Amines. Chem Asian J 2025; 20:e202400984. [PMID: 39495213 DOI: 10.1002/asia.202400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Herein, the Cu-UiO-66 catalyst was developed for acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines. The Cu-UiO-66 catalyst was synthesized by installing Cu2+ onto Zr-oxo clusters in UiO-66, and the catalyst efficiently catalyzes the ADC reaction under mild and environmentally friendly conditions with excellent selectivity. Mechanistic studies reveal that the O2⋅- radicals and porosity of formed in Cu-UiO-66 participate cooperatively during the catalytic cycle. Meanwhile, the only by-product of the system is environmentally benign water. Cycling tests and hot filtration tests showed that the Cu-UiO-66 catalyst exhibited excellent stability and catalytic activity during the reaction. Importantly, the Cu-UiO-66 catalyst might provide a promising strategy for the ADC reaction between alcohols and amines to produce imines.
Collapse
Affiliation(s)
- Yujuan Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Qiulin Zhu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongyang Xu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiawei Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yongfei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Cuiping Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
2
|
Hu X, Yang Y, Li N, Huang C, Zhou Y, Zhang L, Zhong Y, Liu Y, Wang Y. Interface-regulated S-type core-shell PCN-224@TiO 2 heterojunction for visible-light-driven generation of singlet oxygen for selective photooxidation of 2-chloroethyl ethyl sulfide. J Colloid Interface Sci 2024; 674:791-804. [PMID: 38955010 DOI: 10.1016/j.jcis.2024.06.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Selective oxidation of sulfur mustard gas (HD) to non-toxic sulfoxide by the visible-light-catalyzed generation of singlet oxygen (1O2) is a promising degradation strategy. Although PCN-224 can absorb visible light, it suffers from rapid electron-hole recombination and low redox capacity, which limits the performance of HD degradation. Titanium dioxide (TiO2) is an excellent photocatalyst but it lacks visible-light-activity in degrading HD. In this study, PCN-224@TiO2 heterojunction with S-type core-shell structure was synthesized by in-situ growth method to prolong the visible light absorption capacity of TiO2 and inhibit the rapid recombination of PCN-224. The interface formation and internal electric field were optimized by adjusting the Zr/Ti ratio to enhance the charge transfer, redox capacity, electron-hole separation, and visible light absorption. In this study, the formation of heterojunction composites based on Zr-O-Ti linkages is demonstrated by a series of characterization methods. It is demonstrated by experiments and theoretical calculations that PCN-224@TiO2 can generate nearly 100 % 1O2 under visible light conditions without a sacrificial agent, resulting in efficient and selective oxidation of 2-chloroethyl ethyl sulfide (CEES), a simulant of HD, to non-toxic sulfoxide form.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China; Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yanqin Liu
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yao Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
4
|
Zhao R, Lu W, Chai X, Dong C, Shuang S, Guo Y. Design of a dual-mode ratiometric fluorescent probe via MOF-on-MOF strategy for Al (III) and pH detection. Anal Chim Acta 2024; 1298:342403. [PMID: 38462341 DOI: 10.1016/j.aca.2024.342403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The construction of ratiometric fluorescent MOF sensors with integrated self-calibration and dual-channel detection can efficiently overcome the deficiencies of single-signal sensing. In this regard, the rational design of structurally functionalized MOFs is paramount for enhancing their performance in ratiometric fluorescent sensors. Lately, the concept of MOF-on-MOF design has garnered notable interest as a potential strategy for regulating the structural parameters of MOFs by integrating two or more distinct MOF types. Great efforts have been dedicated to exploring new MOF-on-MOF hybrids and developing their applications in diverse fields. Even so, these materials are still in the stage of advancement in the sensing field. RESULTS Herein, a Zr-based metal-organic framework anchored on a rare-earth metal-organic framework (UiO-66(OH)2@Y-TCPP) was prepared for the ratiometric fluorescence detection toward Al (III) and pH. In this probe, the UiO-66(OH)2 featured hydroxyl active sites for Al (III), leading to a significant enhancement in fluorescence intensity upon the addition of Al (III), while the signal emitted by the red-emitting Y-TCPP, serving as the reference, remained constant. UiO-66(OH)2@Y-TCPP exhibited excellent selectivity for Al (III) sensing with a wider linear range of 0.1-1000 μM, and a lower detection limit of 0.06 μM. This probe has also been utilized for the quantitative determination of Al (III) in hydrotalcite chewable tablets with satisfactory results. In addition, the probe realized ratiometric pH sensing in the range of 7-13 using UiO-66(OH)2 as an interior reference. The paper-based probe strip was developed for visual pH sensing. By installing color recognition and processing software on a smartphone, real-time and convenient pH sensing could be achieved. SIGNIFICANCE This is the first ratiometric fluorescent sensor for Al (III) and pH detection based on a MOF-on-MOF composite probe, which yields two different response modes. The detection results of Al (III) in hydrotalcite chewable tables and smartphone imaging for pH test paper demonstrate the practicability of the probe. This work opens up a new outlook on constructing a multi-functional application platform with substantial potential for employment in environmental and biological analysis tasks.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaojing Chai
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Yujing Guo
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
5
|
Zheng M, Li R, Wang J, Huang Y, Han M, Li Z. Application of metal–organic frameworks in stomatology. AIP ADVANCES 2024; 14. [DOI: 10.1063/5.0206476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metal–organic frameworks (MOFs), a new class of porous organic–organic hybrid materials controlled by self-assembly of metal atoms and organic pillars, are attracting considerable interest because of their specific properties. More recently, the advantages of different types of nanoscale metal–organic frameworks for the use of MOF nanoparticles in stomatology have been reported in the literature. This article covers the treatment of oral cancer, surface modification of implants, antibacterial dressings, and treatment of periodontitis and periodontal regeneration. It presents recent applications, future challenges, and prospects for MOFs in stomatology in four areas. It provides an overview of recent advances in the design and application of MOFs in stomatology from their intrinsic properties to different syntheses and their use as smart drug delivery systems or a combination of these.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
7
|
Xue ZY, Yu JL, Xia QQ, Zhu YQ, Wu MX, Liu X, Wang XH. Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53359-53369. [PMID: 36383092 DOI: 10.1021/acsami.2c17600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of color-tunable luminescent polymeric materials with enhanced emission intensity and room-temperature phosphorescence (RTP) performance regulated by a single chromophore component is highly desirable in the scope of photoluminescent materials. Herein, a set of binary copolymers were facilely synthesized using free radical polymerization by selecting different types of polymer matrix and N-substituted naphthalimides (NPA) as chromophores. Surprisingly, the fluorescence emission of copolymers could be remarkably enhanced, because of the intramolecular aggregation of NPA manipulated by a single polymer chain in both solution and solid state. Moreover, RTP signals of binary copolymers were all clearly observed in the air without any processing procedure, because of the embedding of phosphors into hydrogen bonding networks after copolymerization with vinyl-based acrylamide monomers. Taking advantages of the synergistic effect of copolymerization-induced aggregation and copolymerization-induced rigidification to promote optical performance, UV stimulus-responsive luminescent polymer films with processability, flexibility, and adjustable emission wavelength were simply prepared using a drop-casting method in large scale, the setting of which is the basis for application in the fields of organic optoelectronics, information security, and bioimaging/sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jia-Lin Yu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Qing-Qing Xia
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yu-Qi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xing-Huo Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
8
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
9
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Liu X, Wu MX. Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45669-45678. [PMID: 36174061 DOI: 10.1021/acsami.2c12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integrating metal-organic framework (MOF)-covalent organic framework (COF) allows versatile engineering of hybrid materials with properties superior to pristine components, especially COFs suffered from aggregation-caused quenching (ACQ), unlocking more possibilities to improve the luminescence of COFs. In this work, we prepared various MOF@COF composites with different COF layer thicknesses, in which stable UiO-66-NH2 served as the inner substrate and 1,3,5-benzenetricarboxaldehyde (BT), and 3,3'-dihydroxybenzidine (DH) were used to construct a COF layer. In addition to the conventional preparation method, we increased the ratio of BT and DH to be 1:2.5, and impressively, the morphologies of acquired UC (1:2.5) materials were quite different from the previous reticular structure and gradually extended from the spherical structure to the prickly structure with the increase of COF monomers. Remarkably, all of the UC materials possessed better luminescence properties than individual COF due to the limited COF layers. Meanwhile, UC-1 materials with an optimal COF layer displayed the strongest emission. In comparison with a single COF, the quantum yields of UC-1 and UC-1 (1:2.5) were increased nearly 7 times and 5 times, respectively. Moreover, the fluorescence of UC-1 materials was progressively enhanced via selective F- sensing. This work is expected to shed light on the potential hybridization of MOF-COF with structural adjustment, morphological design, and luminescence enhancement.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
10
|
Wu T, Gao XJ, Ge F, Zheng HG. Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm 2022. [DOI: 10.1039/d2ce01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review classifies the latest developments of MOF-based fluorescence sensors according to the analytes, and discusses the challenges faced by MOF-based fluorescence sensors and promotes some directions for future research.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiang-jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
- China Fire and Rescue Institute, Beijing 102201, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - He-gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|