1
|
Luo J, Lu H, Wen BY, Zheng Q, Zhang J, Li Y, Hong W, Zhao S, Shun L, Li F, Cai Z, Lin JM, Chen Q, Zhang M, Li JF. Natural Deep Eutectic Solvents as Absorbing Solution and Preparation Solvent of Perovskite Nanocrystals Simultaneously for CH 3I Gas Visual Sensing. Anal Chem 2024; 96:15816-15823. [PMID: 39307967 DOI: 10.1021/acs.analchem.4c04776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Methyl iodide (CH3I) gas as a toxic gas causes great harm to organisms due to its high volatility and high reactivity with biological nucleophiles. Unfortunately, the sensing and detection of CH3I gas are challenging because of the diffusive nature of the gases and its low concentrations in the environment. Herein, we have developed a fast, green, and sensitive CH3I gas visual sensing method based on the capture technology of toxic gases by natural deep eutectic solvents (NADESs) coupled to the halide rapid exchange capability of perovskite nanocrystals (PNCs). In this strategy, NADESs are used as an absorption solution to adsorb gaseous CH3I, while simultaneously exposing I- through the action of the nucleophilic reagent; then, CsPbBr3 PNCs were synthesized in NADESs and used as sensing material to achieve I- exchange. Benefiting from the capture and enrichment of CH3I gas, the sensitivity of the gas sensor was highly improved. The sensor exhibited the lowest detection limit (limits of detection) of 164.15 μmol/m3, below the minimum safe level for human inhalation, which is 200 μmol/m3. This breakthrough offers greater possibilities for the quantitative detection of CH3I gas.
Collapse
Affiliation(s)
- Jiamin Luo
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Heng Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaowen Zheng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Junying Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yishan Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Wenping Hong
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shanshan Zhao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Libo Shun
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Chen
- College of Materials and Chemical Engineering, MinJiang University, Fuzhou 350108, China
| | - Maosheng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Jian-Feng Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Shen W, Jiang J, He Y, Chen Z, Qiu Y, Cui H, Chen Y, Liu L, Cheng G, Chen S. Two-dimensional Cs 3Sb 2Br 9 inducing transformation of three-dimensional CsPbBr 3 to nanoplates. Chem Commun (Camb) 2024; 60:4044-4047. [PMID: 38516844 DOI: 10.1039/d4cc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
This communication describes an effective morphological control strategy involving introducing two-dimensional (2D) Cs3Sb2Br9 to induce a transformation of three-dimensional (3D) CsPbBr3 to 2D nanoplates (NPLs). By tuning the Sb/Pb ratio, 2D CsPbBr3 NPLs exhibiting a deep-blue emission centered at a wavelength of 464 nm with an FWHM of 24 nm have been produced. The absence of organic ligands in these high-quality 2D NPLs mitigate the instability issue induced by organic ligand migration and penetration, and these NPLs exhibit 80% of the initial PL intensity after 55 days.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Jiayu Jiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Yanxing He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Zhihua Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Yue Qiu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Hao Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Yanfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.
| |
Collapse
|
3
|
Fu H, Wang K, Wu H, Bowen CR, Fang Z, Yan Z, Jiang S, Ou D, Yang Y, Zheng J, Yang W. Enhanced Hygrothermal Stability of In-Situ-Grown MAPbBr 3 Nanocrystals in Polymer with Suppressed Desorption of Ligands. Inorg Chem 2023; 62:13467-13475. [PMID: 37545093 DOI: 10.1021/acs.inorgchem.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.
Collapse
Affiliation(s)
- Hui Fu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
- Institute of Zhejiang, Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Kai Wang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Hao Wu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Chris R Bowen
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AK, U.K
| | - Zhi Fang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Zebin Yan
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Shuheng Jiang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Deliu Ou
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Yang Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
- Institute of Zhejiang, Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang 315211, P. R. China
- Institute of Zhejiang, Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
4
|
Shim HC, Kim J, Park SY, Kim BS, Jang B, Lee HJ, Kim A, Hyun S, Kim JH. Full-color micro-LED display with photo-patternable and highly ambient-stable perovskite quantum dot/siloxane composite as color conversion layers. Sci Rep 2023; 13:4836. [PMID: 36964232 PMCID: PMC10039071 DOI: 10.1038/s41598-023-31945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
In this paper, we successfully fabricated color conversion layers (CCLs) for full-color-mico-LED display using a perovskite quantum dot (PQD)/siloxane composite by ligand exchanged PQD with silane composite followed by surface activation by an addition of halide-anion containing salt. Due to this surface activation, it was possible to construct the PQD surface with a silane ligand using a non-polar organic solvent that does not damage the PQD. As a result, the ligand-exchanged PQD with a silane compound exhibited high dispersibility in the siloxane matrix and excellent atmospheric stability due to sol-gel condensation. Based on highly ambient stable PQD/siloxane composite based CCLs, full-color micro-LED display has a 1 mm pixel pitch, about 25.4 pixels per inch (PPI) resolution was achieved. In addition, due to the thin thickness of the black matrix to prevent blue light interference, the possibility of a flexible display that can be operated without damage even with a bending radius of 5 mm was demonstrated.
Collapse
Affiliation(s)
- Hyung Cheoul Shim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea.
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Juho Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - So Yeon Park
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Bong Sung Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Bongkyun Jang
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hak-Joo Lee
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Center for Advanced Meta-Materials (CAMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Areum Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Seungmin Hyun
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jae-Hyun Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea.
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Cui H, Su Z, Ji Y, Lan T, Zhang JB, Ma J, Yang L, Chen YH, Shen HR, Wang J, Liu L, Cao K, Shen W, Chen S. Healthy and stable lighting via single-component white perovskite nanoplates. NANOSCALE 2022; 14:11731-11737. [PMID: 35916203 DOI: 10.1039/d2nr02702j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-component healthy white light was achieved via Mn2+ post-doping into blue perovskite nanoplates (NPLs). The white light consists of two complementary colors, sky-blue (482 nm) and orange-red (610 nm), without harmful deep blue light (400-450 nm), which realizes the Commission Internationale de I'Eclairage (CIE) coordinates of (0.33, 0.33) (standard pure white light) and a color temperature of 6000 K. Benefitting from the lattice shrinking via Mn2+ doping, the stability of white NPLs toward long-term storage, UV light, heat, and polar solvents was greatly improved. Finally, a healthy and stable white light-emitting diode (WLED) was fabricated via down-conversion of a UV light LED with our white perovskite NPLs, and the WLED worked continuously for 240 minutes with a color drift of only (±0.006, ±0.004) and with a half lifetime (T50) of 212 minutes.
Collapse
Affiliation(s)
- Hao Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Zhan Su
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Yu Ji
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Tao Lan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Jian-Bin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Juan Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Liu Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Yu-Hui Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Hao-Ran Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Jiaqian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Wei Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| |
Collapse
|